
Workshop track - ICLR 2018

ON THE SCALING OF POLYNOMIAL FEATURES FOR
REPRESENTATION MATCHING

Siddhartha Brahma
IBM Research, Almaden, San Jose, USA
brahma@us.ibm.com

ABSTRACT

In many neural models, new features as polynomial functions of existing ones are
used to augment representations. Using the natural language inference task as an
example, we investigate the use of scaled polynomials of degree 2 and above as
matching features. We find that scaling degree 2 features has the highest impact
on performance, reducing classification error by 5% in the best models.

1 INTRODUCTION

In many tasks in natural language processing, it is necessary to match or compare two distributed
representations. These representations may refer to whole sentences, word contexts or any other
construct. For concreteness, let u and v be two representations we want to match. In order to facil-
itate the matching, it is often beneficial to explicitly create new features like element-wise absolute
difference (|u−v|) and element-wise product (u·v) that augment u and v. The combined feature
vector is then processed by further layers in the task specific neural network. For example, Tai
et al. (2015) use these heuristics to improve semantic representations. Most notably, for the natural
language inference task, augmenting the hypothesis (u) and premise (v) representations with |u−v|
and u·v considerably improves performance in a siamese architecture Mou et al. (2016). This is
also used in the more sophisticated models of Chen et al. (2017), where u and v represent word
contexts. Several of these approaches are explored in the Compare-and-Aggregate framework by
Wang & Jiang (2017).

In this paper we focus on polynomial features like u·v for the natural language inference task,
where it is trying to capture similarity between u and v. It is also a monomial of degree 2. We
investigate two aspects of such terms - the use of scaling and the use of higher degree polynomials.
The motivation for the former is the following. The values taken by individual elements of u and
u·v will in general have slightly different statistical distributions. For example, if elements of both
u and v are approximately zero mean Gaussians with variance σ2, the variance of the elements of
u·v will be approximately σ4. As such, subsequent layers in the neural network use weights that
are initialized assuming identically distributed inputs Glorot & Bengio (2010), which is clearly not
the case when σ 6= 1. An appropriate scaling coefficient attached to u·v that can bring its variance
close to that of u is one possible way of addressing this anomaly. The motivation for the latter is
to incorporate more complex multiplicative interaction between u and v through degree 3 and 4
polynomials.

Our findings are two-fold. Through numerical experiments using the Stanford Natural Language
Inference (SNLI) Bowman et al. (2015) dataset, we show that in the absence of scaling, using higher
degree polynomial features instead of u·v improves the performance of baseline models. In the
presence of scaling, this difference all but vanishes and in fact the scaled u·v achieves the best
performance. The use of scaling significantly reduces classification error, by up to 5.0% in the best
performing models. This is observed both for models that only use encodings of whole sentences
and more complex ones.

2 SCALED POLYNOMIAL FEATURES

We present our work in the context of two baseline models for the natural language inference task.
In this task, given a pair of sentences (premise and hypothesis), it needs to be classified into one of

1

Workshop track - ICLR 2018

three categories - entailment, contradiction and neutral. In the first model, both the premise and the
hypothesis sentence are encoded using a bidirectional LSTM Hochreiter & Schmidhuber (1997) and
the intermediate states are max-pooled to get the respective representations u and v. We refer to this
as the InferSent model Conneau et al. (2017). The standard matching feature of Mou et al. (2016)
uses a concatenation of u, v, |u−v| and u·v. We define the following new matching feature vector
that scales the multiplicative term by a constant factor η > 0.

wpoly2 = [u, v, |u− v|, η(u·v)] (1)

To incorporate polynomial multiplicative features between u and v of degree 3 and 4, we define the
following define the following matching feature vectors.

wpoly3 = [u, v, |u− v|, η(u·v) + η2(u·u·v + u·v·v)] (2)

and

wpoly4 = [u, v, |u−v|, η(u·v)+η2(u·u·v+u·v·v)+η3(u·u·u·v+u·u·v·v+u·v·v·v)] (3)

In wpoly3, the additional term is the sum of the two possible monomials of degree 3 involving both
u and v. In wpoly4, the fourth degree term is the sum of the 3 possible monomials of degree 4
involving both u and v. Note that we scale the 3rd degree terms by η2 and the 4th degree terms by
η3. If the dimension of u and v is d, the dimensions of wpoly2,wpoly3 and wpoly4 are all 4d. In each
case, the feature vector is fed into a fully connected layer(s), before computing the 3-way softmax in
the classification layer. It is possible to use each of the degree 3 and 4 terms separately as a feature,
but this did not make our models substantially more accurate. Choosing η = 1 in wpoly2 reduces it
to the matching feature vector proposed by Mou et al. (2016).

The same procedure is repeated for the other baseline model, namely ESIM Chen et al. (2017).
In this case, u represents one of the intermediate states of a bidirectional LSTM encoding of the
premise (hypothesis) and v represents the hypothesis (premise) states weighted by relevance to the
premise (hypothesis) state. We replace the matching feature vector used in ESIM by the ones defined
above. The rest of the model is the same which includes another bidirectional LSTM layer followed
by pooling, a fully connected layer and a classification layer.

3 TRAINING AND RESULTS

For the InferSent model, we train on the SNLI dataset for the sentence encoding dimensions d ∈
{512, 1024, 2048, 4096}. The fully connected layer after wpoly2,wpoly3,wpoly4 has two layers of
512 dimensions each. For optimization, we use SGD with an initial learning rate of 0.1 which is
decayed by 0.99 after every epoch or by 0.2 if there is a drop in the validation accuracy. Gradients
are clipped to a maximum norm of 5.0. Each experiment is repeated 5 times with random weight
initializations and the average classification accuracies on the test set are reported. For training the
ESIM model, we follow the procedure outlined in Chen et al. (2017) with the bidirectional LSTM
dimension being d = 600.

Fig. 1(a) shows the dependence of the test accuracies with changing η for each value of d and
matching feature vector wpoly2 for InferSent. The variation of accuracy on η is clearly visible and
the best accuracy is obtained for η = 32, 32, 16, 32 for d = 4096, 2048, 1024, 512, respectively.
This validates our intuition that the second degree feature (u·v) should be scaled differently than
the remaining first degree features in wpoly2. For d = 4096, the average accuracy for η = 32 is
84.82%, which is 0.44% higher than that of η = 1. Comparing the best performing models for the
different weight initializations, the one for η = 32 has almost 5% less error than η = 1.

Fig. 1(b) shows the same phenomenon for wpoly3. The highest accuracies are obtained for η = 4
for d = 512, 1024 and for η = 16 for d = 2048, 4096. For d = 4096, the average accuracy for
η = 16 is 84.73%, which is 0.15% higher than that of η = 1. Note that the performance tends to
drop significantly for η = 32, 64, which points to possibly unstable training because of the large
values of the coefficients η2. We observe a similar trend for wpoly4.

Fig. 2(a) compares the test accuracies of wpoly2, wpoly3 and wpoly4 for d = 4096. Interestingly,
the use of higher degree terms helps the classifier for η = 1, with wpoly4 achieving 0.25% better
accuracy than wpoly2. However, with scaling wpoly2 does progressively better while the other two
models eventually suffer from unstable training. The overall highest average accuracy of 84.82% is

2

Workshop track - ICLR 2018

1 2 4 8 16 32 64
82

83

84

85

Scaling Factor η

Te
st

A
cc

ur
ac

y

d = 4096

d = 2048

d = 1024

d = 512

(a)

1 2 4 8 16 32 64
82

83

84

85

Scaling Factor η

Te
st

A
cc

ur
ac

y

d = 4096

d = 2048

d = 1024

d = 512

(b)

Figure 1: Average test accuracy of InferSent on the SNLI dataset for (a) wpoly2 and (b) wpoly3.

1 2 4 8 16 32 64

84

84.5

85

Scaling Factor η

Te
st

A
cc

ur
ac

y

wpoly2
wpoly3
wpoly4

(a)

1 2 4 8 16 32 64

85

86

87

Scaling Factor η

Te
st

A
cc

ur
ac

y

d = 600

(b)

Figure 2: (a) Average test accuracy for d = 4096. (b) Test accuracy of wpoly2 on the ESIM model.

achieved by wpoly2 at η = 32 and the highest individual accuracy of 85.22% is achieved at η = 16
by the same model.

Finally, we report the test accuracy of wpoly2 on the ESIM model for natural language inference.
Here again, the gains for using scaled features is quite prominent, with a relative reduction in error
of 5% for η = 8 as compared to η = 1.

4 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we explore the use of higher degree polynomial features and scaling to derive new
features when two distributed representations have to be matched or compared. Using the natural
language inference task as an example, we show that scaling the higher degree terms helps reduce
classification error, in some cases by almost 5%. In our preliminary experiments, we use constant
scaling factors, but they can be learnt as a parameter of the model. We scale the exponent of η as
the degree of the monomials, which itself may be optimized to stabilize training for higher degree
terms. Finally, it will be interesting to use the same scaling mechanism for tasks other than natural
language inference.

3

Workshop track - ICLR 2018

REFERENCES

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
tated corpus for learning natural language inference. In EMNLP, 2015.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced lstm for
natural language inference. In ACL, 2017.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In EMNLP,
2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, 2010.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. Natural language inference by
tree-based convolution and heuristic matching. In ACL, 2016.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In ACL, 2015.

Shuohang Wang and Jing Jiang. A compare-aggregate model for matching text sequences. In ICLR,
2017.

4

	Introduction
	Scaled polynomial features
	Training and Results
	Conclusion and Future Directions

