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ABSTRACT

Developing conditional generative models for text-to-video synthesis is an ex-
tremely challenging yet an important topic of research in machine learning. In this
work, we address this problem by introducing Text-Filter conditioning Generative
Adversarial Network (TFGAN), a GAN model with novel conditioning scheme
that aids improving the text-video associations. With a combination of this con-
ditioning scheme and a deep GAN architecture, TFGAN generates photo-realistic
videos from text on very challenging real-world video datasets. In addition, we
construct a benchmark synthetic dataset of moving shapes to systematically eval-
uate our conditioning scheme. Extensive experiments demonstrate that TFGAN
significantly outperforms the existing approaches, and can also generate videos of
novel categories not seen during training.

1 INTRODUCTION

Generative models have gained much interest in the research community over the last few years as
they provide a promise for unsupervised representation learning. Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) have been one of the most successful generative models till date.
Following its introduction in 2014, significant progress has been made towards improving the sta-
bility, quality and the diversity of the generated images (Salimans et al., 2016; Karras et al., 2017).
While GANs have been successful in the image domain, recent efforts have extended it to other
modalities such as texts (Wang et al., 2018a), graphs (Wang et al., 2018b), etc.

In this work, we focus on the less studied domain of videos. Generating videos are much harder
than images because the additional temporal dimension makes generated data extremely high di-
mensional, and the generated sequences must be both photo-realistically diverse and temporally
consistent. We tackle the problem of text-conditioned video synthesis where the input is a text de-
scription and the goal is to synthesize a video corresponding to the input text. This problem has
many potential applications, some of which include producing multimedia special effects, generat-
ing synthetic data for model-based Reinforcement Learning systems and domain adaptation, etc.

Two recent works that address the problem of text-conditioned video generation include Li et al.
(2018) and Pan et al. (2017). Both these methods are variants of conditional GAN model applied
to the video data. In spite of some successes, they have the following limitations: (1) They employ
3D transposed convolution layers in the generator network, which constrains them to only produce
fixed-length videos. (2) Their models are trained on low-resolution videos - results are shown only
at a 64×64 resolution. (3) Text conditioning is performed using a simple concatenation of video and
text features in the discriminator: Such a conditioning scheme may perform well on certain datasets,
but has difficulty in capturing rich video-text variations.

In this work, we aim to address all the concerns above. First, to model videos of varying length,
we use a recurrent neural network in the latent space and employ a shared frame generator network
similar to (Tulyakov et al., 2018). Second, we present a model for generating high-resolution
videos by using a Resnet-style architecture in the generator and the discriminator network. Third,
we propose a new multi-scale text-conditioning scheme based on convolutional filter generation
to strengthen the associations between the conditioned text and the generated video. We call our
model Text-Filter conditioning GAN (TFGAN). Finally, we construct a benchmark synthetic moving
shapes dataset to extensively evaluate the effectiveness of the new conditioning scheme we proposed.

1



Under review as a conference paper at ICLR 2019

t
f

t
v

z
1

z
2

z
3

zℓ

Real / Fake

. . .

. . .

. . .

Figure 1: Our TFGAN framework. Text representations are extracted from the input text and passed
to a GRU network to get a trajectory in the latent space. These latent vectors are fed to a shared
frame generator to produce the video sequence. The generated videos are then passed to conditional
discriminator networks. The box highlighted in red is where the conditioning is performed and is
expanded in Fig. 2

In summary, our contributions in this work are as follows: (i) A new conditional GAN with an
effective multi-scale text-conditioning scheme based on convolutional filter generation is proposed;
(ii) A benchmark synthetic dataset for studying text conditioning in video generation is presented;
(iii) Photo-realistic video synthesis is achieved using a deeper generator-discriminator architecture.

2 RELATED WORK

Two popular approaches to generative modeling include GANs (Goodfellow et al., 2014) and Vari-
ational Autoencoders(VAEs) (Kingma & Welling, 2014). GANs are formulated as a 2− player min-
imax game between a generator and a discriminator network, while VAEs are based on variational
inference where a variational lower bound of observed data log-likelihood is optimized. Among
the two approaches, GANs have generated significant interest as they have been shown to produce
images of high sample fidelity and diversity (Karras et al., 2017).

A variant of GAN models are conditional GANs where the generator network is conditioned on input
variables of interest. Such a conditioning input can be labels (Odena et al., 2017), attributes (Yan
et al., 2016), text (Zhang et al., 2017; Xu et al., 2018) or even images (Zhu et al., 2017). We
focus on text conditioning since it is relevant to this work. One of the first works to perform text-
conditioned image synthesis is Reed et al. (2016). Their method was only shown to synthesize
low-resolution images. To improve the resolution, Zhang et al. (2017) proposed stacking multiple
GAN architectures, each producing images of increasing resolution. While the above two methods
perform conditioning using the global text representation, Xu et al. (2018) adopts an attention
mechanism to focus on fine-grained word-level representations to enable improved conditioning.

While image generation is a well studied problem, there has been very little progress in the domain
of video generation. Vondrick et al. (2016) proposed a GAN architecture based on 3D convolutions
to generate video sequences, but it can only generate fixed-length videos. Tulyakov et al. (2018)
proposed using a recurrent neural network in the latent space to model videos of varying lengths.
While these models are not designed to handle conditional video generation, Li et al. (2018) and
Pan et al. (2017) perform text-conditioned video synthesis by using the sentence embedding as a
conditional input. However, both of these conditional generative models are based on 3D convolu-
tions, they can only produce fixed-length low-resolution videos. In this work, we address this issue
by developing an architecture capable of producing high-resolution videos of varying length.
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3 METHOD

We first provide a formal description of the problem being address. We are given access to n data
points {(vi, ti)}ni=1 sampled from an underlying joint distribution p(v, t) in the video-sentence
space. Here, each vi ∈ RT×C×W×H is a video clip and ti is a sentence description. We are inter-
ested in learning a model capable of sampling from the unknown conditional distribution p(v|t).
Similar to conditional GANs, we formulate the problem as learning a transformation function
G(z, t) from a known prior distribution Pz(z) and the conditional input variable t to the unknown
conditional distribution p(v|t). The functionG is optimized using an adversarial training procedure.

3.1 MODEL FRAMEWORK

The framework of our proposed model is shown in Fig. 1. The text description t is passed to a
text encoder T to get a frame-level representation tf and a video-level representation tv . Here, tf
is a representation common to all frames, and contains frame-level information like background,
objects, etc. from the text. The video representation tv extracts the temporal information such as
actions, object motion, etc. The text representation along with a sequence of noise vectors {zi}li=1
are passed to a recurrent neural network to produce a trajectory in the latent space. Here, l denotes
the number of frames in the video sequence. These sequence of latent vectors are then passed to a
shared frame generator model G to produce the video sequence.

The generated video is then fed to two discriminator models - DF and DV . DF is a frame-level
discriminator that classifies if the individual frames in the video are real/fake, whereas the video dis-
criminator DF is trained to classify the entire video as real/fake. The discriminator models DF and
DV also take the text encoding tf and tv respectively as inputs so as to enforce text-conditioning.

3.2 TEXT-FILTER CONDITIONING

To build strong conditional models, it becomes important to learn good video-text associations in
the GAN model. A standard technique is to sample negative (v, t) pairs (wrong associations) and
train it as fake class, while the correct (v, t) pairs are trained as real class in the discriminator
network. Since the generator is updated using the gradients from the discriminator network, it
becomes important to effectively fuse the video and text representations in the discriminator so as to
make the generator condition well on the text. Previous methods (Li et al., 2018; Pan et al., 2017)
use a simple concatenation of text and video features as the feature fusion strategy. We found that
this simple strategy produces poor conditioned models in datasets where there are rich text-video
variations (refer to Section. 4 for more details).

Our proposed model Text-Filter conditioning GAN (TFGAN) focuses on improving text condi-
tioning. In TFGAN, we employ a scheme based on generating convolutional filters from the text
features. This scheme, which we call Text-Filter conditioning, is shown in Fig. 2. Let us first divide
the discriminator network D (which can be DF or DV ) into multiple sub-networks {D(i)}mi=1 so
that D(x) = D(m) ◦D(m−1) ◦ . . . D(1)(x). These sub-networks can be as small as a single layer,
or can be a cascade of multiple layers. Let d(i) denote the output of the ith sub-network of the
discriminator. From the text features, we generate a set of convolution filters {fi}mi=1. Each filter fi
is now convolved with the discriminator response d(i), and this convolved output is passed through
additional convolutions after which they are pooled to get a single video-text representation. We use
this pooled feature vector to classify the (v, t) pairs as real or fake. Because the generated convolu-
tional filters {fi} are applied to discriminator sub-network outputs {d(i)} from different layers, the
resulting text conditioning effectively imposes semantic constraints extracted from input texts to the
generated individual frames and video clips at different feature abstraction levels.

3.3 TRAINING ALGORITHM

The discriminator model D and the generator model G are trained using an adversarial game as
done in the standard conditional GANs. However, since we employ deep Resnet-style architectures
for our G −D networks, it was important to stabilize the GAN training. We use the regularizer as
proposed in Mescheder et al. (2018) where the norm of the discriminator gradients are penalized.
With this regularizer, our optimization objective can be expressed as
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Figure 2: Illustration of our Text-Filter conditioning strategy. From the text features, we extract a
set of convolution filters {fi}mi=1 and apply the filter fi to the output d(i) of sub-network D(i). These
responses are then passed to additional convolutional layers before they are pooled to get a single
video-text representation that is used to classify the input (v, t) pair as real/fake.

Lreal =E(v,t)∼pdata,real
[log(D(v, T (t))) +

γ

2
‖∇D(v, t)‖2] (1)

Lfake =
1

2
[E(v,t)∼pdata,fake

log(1−D(v, T (t))) + Ez∼pz log(1−D(G(z, T (t)), T (t)))] (2)

min
G

max
D

Lreal + Lfake (3)

The text encoder T is optimized as follows

max
T

LT = E(v,t)∼pdata,real
log(D(v, T (t))) + E(v,t)∼pdata,fake

log(1−D(v, T (t))) (4)

In the above set of equations, pdata,real denotes the real data distribution with correct video-text
correspondences, whereas pdata,fake refers to the distribution with incorrect video-text correspon-
dences. Note that we have two discriminator networks - DF , DV in our models, and the above
equations have to be repeated for both models. Eq.1-4 are optimized by alternating between the
minimization and maximization problems as done in standard GAN. Please refer to Appendix A for
the detailed training algorithm.

4 EXPERIMENTS

This section discusses the experimental validation of our TFGAN model. We first describe a bench-
mark synthetic dataset we created for the task of text-to-video generation, and use it to better analyze
our system. Then, we show results on a challenging real-world video dataset - the Kinetics human
action video dataset (Kay et al., 2017). Finally, we show how our method can be extended to the
task of text-to-image synthesis and show results on the CUB birds dataset (Welinder et al., 2010).

4.1 MOVING SHAPES DATASET

4.1.1 DATASET CREATION

To better understand the task of text-to-video synthesis, we created a dataset of moving shapes where
a shape moves along a trajectory as described by the corresponding text description. This synthetic
dataset has 5 control parameters: shape type, size, color, motion type and motion direction. Of
these, the first three parameters are frame-level attributes while the last two are temporal attributes.
The set of possible values each parameter can take is listed in Appendix B. The combination of
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(a) Shapes-v1 dataset
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(b) Shapes-v2 dataset

Figure 3: Samples from the Moving Shapes Dataset: In each set of images, the top row corresponds
to the original video and the bottom two rows correspond to the video generated by our TFGAN
model (Better viewed in color).

all parameters results in 360 unique parameter configurations. Some samples from this dataset are
shown in Fig. 3a. We call this dataset Shapes-v1 dataset.

The above dataset contains videos with static background (all black). While this is a reasonable
assumption to make, it is hardly true in practice as many videos have dynamic backgrounds. So, we
create a second dataset called Shapes-v2 dataset which is a version of Moving Shapes dataset with
dynamic backgrounds. To generate the background, we choose images from the Kylberg Texture
Dataset (Kylberg, 2011) and sample a sequence of patches corresponding to a random trajectory.
Each patch in this sequence forms the background of an individual frame in the video. These back-
ground textures are blended with the moving object resulting in videos as shown in Fig. 3b. This
dataset is much more challenging than the Shapes-v1 dataset as the generative models should learn
to ground the text description to the moving object but not to the randomly moving background.
Both these datasets were created with videos containing 16 frames at a 64× 64 frame resolution.

Table 1: Attribute classification accuracy (in %) on Shapes dataset

Method Shape Color Size Motion Direction
Shapes-v1 dataset

Feature concat 70.18 99.23 83.69 96.83 99.00
Feature concat multiscale D 65.25 99.91 74.31 99.12 99.11

Text-filter conditioning 97.66 99.99 98.60 99.40 100.00
Shapes-v2 dataset

Feature concat 64.49 99.98 81.46 97.40 99.40
Feature concat multiscale D 56.12 99.71 65.15 97.20 98.00

Text-filter conditioning 88.52 99.98 94.46 100.00 99.80
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Figure 4: Exploratory experiments on Shapes-v1 dataset. The image on the top shows the long se-
quence experiment where we generate 32-length sequence from a model trained for 16 frames. The
top row of this video are the first 16 frames and the bottom row corresponds to the next 16. The im-
ages on the bottom illustrate the interpolation experiments where we generate a video corresponding
to a smooth transition between two input sentences.

4.1.2 QUANTITATIVE EVALUATION

An important advantage of creating the synthetic dataset is that it provides a framework for quanti-
tative evaluation of the text-conditioning. First, we train five attribute classifiers (shape, size, color,
motion and direction classifiers) on the real data using the ground truth attributes (we have access
to ground-truth attributes as we stored them while creating the dataset). We then use these trained
attribute classifiers to verify if the attributes of the generated videos correspond to those described
by the input text in the test set. For each text description in the test set, we generate the video us-
ing our TFGAN model and measure the attribute prediction accuracy. Higher this accuracy, better
conditioned is our GAN model.

We experiment with the following models: (1) FeatCat: a conditional GAN model trained using
simple text-video feature concatenation in the discriminator network (2) FeatCat branchingD: con-
ditional GAN model with branching D structure where responses at intermediate layers of D are
pooled, and this pooled feature is concatenated with text embedding. This model is essentially TF-
GAN but without performing the convolutions from text-filters, and (3) TFGAN with Text-Filter
conditioning. The architecture and hyper-parameter details are described in the Appendix C. Some
sample generations of our Text-Filter conditioned GAN model is shown in Fig. 3a and 3b

Table 1 reports the quantitative evaluation of the three conditional GAN models on Shapes dataset.
We observe that TFGAN with text-filter conditioning achieves the best performance among the three
models on both the datasets. An important observation to note is that using a branching architecture
in the discriminator network alone does not improve the text conditioning. This shows that the
effectiveness of our method comes not from the branching architecture, but in how text conditioning
is applied (using convolutions) at multiple layers of the discriminator network.

4.1.3 EXPLORATORY EXPERIMENTS

In this section, we report some exploratory experiments we perform on the Shapes dataset.

Sentence interpolation In this experiment, we depict conditional interpolation whereby frames
in a video transition corresponding to the interpolation between two sentence descriptions. Let S1

and S2 denote the two sentences that are interpolated, and (tS1

f , tS1
v ) and (tS2

f , tS2
v ) denote their

corresponding feature representation obtained by passing through the text encoder T . For each
frame to be generated, the corresponding conditioning feature is obtained by a linear interpolation
between these two representations:
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Figure 5: Sample generations from models trained on Kinetics dataset

(tif , t
i
v) = (1− α)(tS1

f , tS1
v ) + α(tS2

f , tS2
v )

Instead of using a fixed text representation (tf , tv) as conditioning argument to all the frames in
the Generator network, we use (tif , t

i
v) as input to the frame i. The resulting interpolated videos

are shown in Fig. 4. We observe that we are able to obtain smooth transitions. When interpolating
between the blue square and the red square, we obtain some intermediate frames with pink shade.
Interestingly, none of the samples in the dataset contain pink color. In the second figure, we observe
a smooth decrease in the object size while the object continues to move in the specified trajectory.

Table 2: Attribute classification acc.
on novel categories (Shapes-v1)

Attribute Accuracy (in %)
Shape 96.21
Color 99.78
Size 98.77

Motion 96.23
Direction 99.42

Generating novel categories To characterize if the model
has learned to generalize and not naively memorize the
dataset, this experiment aims to study the ability of our
TFGAN model to produce videos not seen during training.
Of the 360 unique parameter configurations in the Shapes
dataset, we randomly hold out n configurations from the train-
ing set. After training the model on this training set, we feed
the text descriptions from the held-out n configurations and
measure the attribute classification accuracy in this set. In
this experiment, we choose n = 20. The results are reported
in Table 2. We observe that our model achieves good accuracy
and this illustrates the ability of our method to generalize.

Long Sequence Generation One of the benefits of using a RNN-based GAN model is that it
allows us to model variable-length video sequences. To demonstrate this, we perform an experiment
where we train our TFGAN model on 16-length video sequences and generate 32-length sequences.
This can be performed easily as we could potentially generate a latent trajectory of any length using
the RNN model in the latent space, and the videos are generated using a shared generated acting on
this latent trajectory. Fig. 4 shows the output of one such 32-length sequence generated. We observe
that the model is able to clearly perform the zig-zag motion beyond 16 frames.

4.2 KINETICS DATASET

To demonstrate the practical relevance of our approach, we perform experiments on real-world
video datasets. We use the dataset proposed in Li et al. (2018) for this purpose. This dataset
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Figure 6: Sample generations of Text2img synthesis from our model trained on CUB-birds dataset

contains videos of human actions, and was curated from YouTube and Kinetics human action video
dataset Kay et al. (2017). The dataset contains the following action classes - biking in snow, playing
hockey, jogging, playing soccer ball, playing football, kite surfing, playing golf, swimming, sailing
and water skiing. This is an extremely challenging dataset for the task of video generation due to
the following reasons: (1) videos are extremely diverse, and there are a lot of variations within the
video, and (2) some videos have low-resolution and poor-quality video frames. Some sample videos
from the dataset are shown in Fig. 5

Table 3: Classification accuracy

Method Acc. (%)
In-set 78.1

T2V( Li et al. (2018)) 42.6
Ours 53.2

The results of training our TFGAN model on the Kinetics
dataset are shown in Fig. 5. We observe that our model
is able to produce videos of much higher quality than the
comparison method (Li et al., 2018). We are able to gen-
erate fine motions like golf swing, while Li et al. (2018)
produces a blobby region. Also, we train the model to
produce 128× 128 resolution videos, while the method in
Li et al. (2018) was trained only on 64 × 64 videos. As
done in Li et al. (2018), we report a simplified version of
inception score whereby a video classification model is trained on the real data, and the accuracy on
generated data is reported. We report the performance on the following five categories as done in Li
et al. (2018): kite surfing, playing golf, biking in snow, sailing, swimming and water skiing. As can
be seen from Table. 3, our methods achieves significantly higher accuracy than the method in Li
et al. (2018). In-set refers to the performance obtained on the test set of real videos, thus serves as an
upper bound. We report additional results, architecture and hyper-parameter details in Appendix C.

4.3 TEXT TO IMAGE GENERATION

Table 4: Inception Score on CUB-Birds
dataset

Method Inception Score
StackGAN 3.7 ± 0.04

StackGAN v-2 3.82 ± 0.06
Ours 4.12 ± 0.18

Text-to-image generation is a relatively easier problem
than text-to-video generation due to the absence of tem-
poral constraints. Although the focus of this paper is on
text-to-video synthesis, our framework is flexible and can
be trivially extended to the problem of text-to-image syn-
thesis. This can be accomplished by removing the video-
level discriminator DV and the RNN network in the latent
space. We train our GAN model with Text-Filter condi-
tioning on the CUB-Birds dataset Welinder et al. (2010), a
benchmark dataset for text-to-image generation. Some of
the samples from the generated images are shown in Fig. 6. We observe that our model is able to
produce photo-realistic images. We also report Inception score as a quantitative metric. As can be
seen from Table. 4, our method achieves higher inception scores than the comparison methods.

5 CONCLUSION

In this work, we address the problem of generating videos conditioned on text. We propose a novel
text-conditioning framework whereby conditioning is performed using convolution operations on
image feature maps with filters generated from text. To better understand the text conditioning,
we construct a synthetic dataset and show that our conditioning scheme achieves superior perfor-
mance compared to other techniques. Finally, by using deeper architectures in the discriminator and
generator networks, we generate photo-realistic videos on the challenging Kinetics dataset.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (eds.), Advances in Neural Information Pro-
cessing Systems 27, pp. 2672–2680. Curran Associates, Inc., 2014. URL http://papers.
nips.cc/paper/5423-generative-adversarial-nets.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778. IEEE Computer Society, 2016.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. CoRR, abs/1710.10196, 2017. URL http://arxiv.
org/abs/1710.10196.

Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
Zisserman. The kinetics human action video dataset. CoRR, abs/1705.06950, 2017.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the
Second International Conference on Learning Representations (ICLR 2014), April 2014.

Gustaf Kylberg. The kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for
Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala,
Sweden, September 2011. URL http://www.cb.uu.se/˜gustaf/texture/.

Yitong Li, Martin Renqiang Min, Dinghan Shen, David E. Carlson, and Lawrence Carin. Video gen-
eration from text. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, Louisiana, USA, February 2-7, 2018, 2018.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Which training methods for gans do
actually converge? In International Conference on Machine Learning (ICML), 2018.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier GANs. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 2642–2651, 2017.

Yingwei Pan, Zhaofan Qiu, Ting Yao, Houqiang Li, and Tao Mei. To create what you tell: Gener-
ating videos from captions. October 2017. URL https://www.microsoft.com/en-us/
research/publication/create-tell-generating-videos-captions/.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp.
1060–1069, New York, New York, USA, 20–22 Jun 2016. PMLR.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp.
2234–2242. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6125-improved-techniques-for-training-gans.pdf.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene
dynamics. In Advances in Neural Information Processing Systems 29, pp. 613–
621. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6194-generating-videos-with-scene-dynamics.pdf.

Heng Wang, Zengchang Qin, and Tao Wan. Text generation based on generative adversarial nets
with latent variables. In Advances in Knowledge Discovery and Data Mining - 22nd Pacific-
Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II,
2018a.

9

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://www.cb.uu.se/~gustaf/texture/
https://www.microsoft.com/en-us/research/publication/create-tell-generating-videos-captions/
https://www.microsoft.com/en-us/research/publication/create-tell-generating-videos-captions/
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6194-generating-videos-with-scene-dynamics.pdf
http://papers.nips.cc/paper/6194-generating-videos-with-scene-dynamics.pdf


Under review as a conference paper at ICLR 2019

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In AAAI.
AAAI Press, 2018b.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
He. Attngan: Fine-grained text to image generation with attentional generative adversarial net-
works. 2018.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image
generation from visual attributes. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, 2016.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris
Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In ICCV, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017 IEEE Interna-
tional Conference on, 2017.

APPENDIX A TRAINING ALGORITHM

Section. 3 discusses the various loss terms we use in our TFGAN model. Equation 1 gives the
expressions for the loss terms Lreal, Lfake and LT . Denoting LF

real, L
F
fake, L

F
T as the losses for

frame-level discriminator DF and LV
real, L

V
fake, L

V
T as the losses for video-level discriminator DV ,

the training algorithm we use is mentioned in Alg. 1

Algorithm 1 Training algorithm

Require: θ: Parameters of G, φF : Parameters of DF , φV : Parameters of DV , φT : Parameters of T
Require: Niter: number of training iterations
Require: α: Learning rate, Nb: batch size

1: for t in 1 : Niter do
2: Sample Nb real samples with correct video-text correspondence {(vr

i , t
r
i )}

Nb
i=1

3: Sample Nb real samples with incorrect video-text correspondence {(vf
i , t

f
i )}

Nb
i=1

4: Update DF : φF = φF + α∇[LF
real + LF

fake]

5: Update DV : φV = φV + α∇[LV
real + LV

fake]

6: Update G: θ = θ − α∇[LF
real + LF

fake + LV
real + LV

fake]

7: Update T : φT = φT + α∇[LF
T + LF

T + LV
T + LV

T ]
8: end for

APPENDIX B DATASET GENERATION - SHAPES DATASET

Both Shapes-v1 and Shapes-v2 dataset contain videos with objects moving along a specific trajec-
tory. There are 5 control parameters - shape, size and color of object, type and direction of motion.
Table 5 lists the possible values each parameter can take. The (shape, color, size) tuple describes
the structure of the object, while (motion type, direction) tuple dictates how the object moves in the
video. For straight line and zig-zag motion, the object could move in north, south, west and east di-
rection, while for diagonal motion, the possible directions include north-west, north-east, south-west
and south-east. The zig-zag motion was generated using a sinusoidal function.
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APPENDIX C ARCHITECTURE AND HYPER-PARAMETERS

We first define some basic architecture blocks:

• ResnetBlock(x, y): x + Conv2D(x → y, kernel=3, str=2, pad=1) if x == y, else
Shortcut(x → y) + Conv(x− >y, 3 × 3, str=2, pad=1). Here, Shortcut(x → y) is the
1 × 1 convolution that is maps from x filters to y filters. This is a simplified resnet block
that was proposed in He et al. (2016).

• ResnetBlock3D(x, y): x + Conv3D(x → y, kernel=3, str=2, pad=1) if x == y, else
Shortcut(x→ y) + Conv3D(x− >y, 3× 3, str=2, pad=1)

• Text-Img feat concat: Can be any feature concatenation technique. We use Text-Filt condi-
tioning as discussed in Sec. 3

C.1 TEXT-FILTER CONDITIONING

In all our experiments, we used the following architecture for Text-Filter conditioning. The dis-
criminator (both DV and DF ) were divided into three sub-networks (m = 3). In Moving Shapes
experiments, the sub-network D(0) is the network till Resnet-1 block, D(1) is the sub-network from
Resnet-2 block till the end of Renset-3 block and D(3) forms the rest of the network. For the Ki-
netics experiment, we the sub-network D(0) is the network till Renset-11 block, D(1) spans from
Renset-20 block to Resnet-31 block, and D(3) forms the rest of the network.

We first take the output of D(0) and apply 1D convolution to bring the number of filters to 8. So, if
the output ofD(0) was a n×k×wmap, this transformation will bring it down to 8×k×w. Let the text
embedding (which is obtained by passing through the text encoder) be a d− dimensional vector. We
first apply a FC(d→ 5.5.8.8) to this embedding and reshape it to 8×8×5×5 filter. This filter is then
convolved with the transfomed outputs of D0. These resulting convolved feature maps are passed
through two conv-2D layers with Avg-Pool and then reshaped to 128 dimensional vector. The same
procedure is done for D(1). For D(2), we just take the output and pass it through a fully connected
layer to get 128 dimensional vector. These three 128 dimensional vectors are concatenated to get one
resulting vector which classifies if the input is real or fake. The exact sample procedure is repeated
for Video discriminators, only difference being the size of Text-Filters: 3D filters of size 3 × 5 × 5
is used instead of 5× 5 filter . So, the FC applied on text embedding will be FC(d→ 5.5.3.8.8)

C.2 SHAPES DATASET

For Shapes-v1 and Shapes-v2 datasets, we used an architecture based on ResnetBlock as shown in
Tables. 6, 7 and 8. For the text encoder, we first obtained the GloVE embeddings of individual
words, then applied a 1D-CNN based network with the following network architecture:

Conv1D(512, kernel=3) → ReLU → MaxPool(2) → Conv1D(512, kernel=3) → ReLU → Max-
Pool(2)→ Conv1D(256)

1D-CNN was sufficient in this case as most sentences were of rougly similar lenghts. The inputs
were zero padded to making every sentence have the dimension. We tried using a LSTM model and
it gave similar performance as 1D CNN.

Table 5: Simulation parameters

Atribute Set of values
Shape { Square, Circle, Triangle }
Color { Red, Blue, Green, White, Yellow }
Size { Small, Large }

Motion type { Straight Line, Diagonal, Zig-zag }
Direction { North, South, East, West } for st.line and zig-zag motion

{ North-east, North-west, South-east, South-west } for diagonal motion

11
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C.3 KINETICS DATASET

The architectures used in Kinetics dataset are shown in Tables. 9, 11 and 10. For the text encoder,
we used the same architecture as that of Shapes dataset.

APPENDIX D ADDITIONAL RESULTS

D.1 KINETICS DATASET

Some additional results on the Kinetics dataset are shown in Fig. 7. We observe that we are able to
generate videos of high quality. To illustrate the variations that occur within a class, we generate
multiple videos of the same text description. Figure. 8 shows one such example for swimming class.
We find that out model is capable of generating diverse predictions.

Table 6: Generator architecture - Shapes dataset

Layer Output size Filter
Input 768 -

Fully connected 1024 768→ 1024
Reshape 256× 2× 2 -

ResnetBlock-0 256× 2× 2 256→ 256
Upsample 256× 4× 4 -

ResnetBlock-1 128× 4× 4 256→ 128
Upsample 128× 8× 8 -

ResnetBlock-2 128× 8× 8 128→ 128
Upsample 128× 16× 16 -

ResnetBlock-3 128× 16× 16 128→ 128
Upsample 128× 32× 32 -

ResnetBlock-4 64× 32× 32 128→ 64
Upsample 64× 64× 64 -

ResnetBlock-5 32× 64× 64 64→ 32
Conv2D 3× 64× 64 32→ 3

Tanh 3× 64× 64 -

Table 7: Frame Discriminator architecture - Shapes dataset

Layer Output size Filter
Input 3× 64× 64 -

Conv2D 32× 64× 64 3→ 32
ResnetBlock-0 64× 64× 64 32→ 64

AvgPool 64× 32× 32 -
ResnetBlock-1 128× 32× 32 64→ 128

AvgPool 128× 16× 16 -
ResnetBlock-2 128× 16× 16 128→ 128

AvgPool 128× 8× 8 -
ResnetBlock-3 128× 8× 8 128→ 128

AvgPool 128× 4× 4 -
ResnetBlock-4 256× 4× 4 128→ 256

AvgPool 256× 2× 2 -
ResnetBlock-5 256× 2× 2 256→ 256

Reshape 256.2.2 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1
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Figure 7: Additional results on Kinetics dataset
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D.2 EPIC-KITCHENS DATASET

In this experiment, we consider Epic-Kitchens dataset (Kay et al., 2017) which is a ego-centric
dataset containing videos of people cooking in a kitchen. The videos were recorded using a high-
definition head mounted camera. The dataset is annotated with text descriptions of step-by-step
instructions of a cooking recipe with the corresponding timestamp as people perform the action. We
extracted clips of 16 frames containing the following action classes: ’take’, ’cut’, ’dicing’, ’pour’,
’stir’, ’wash’, ’grate’, ’rinse’, ’put’. This resulted in 4793 (video, text) pairs. We trained our TFGAN
model on this dataset. The generations we obtained are shown in Fig. 9. We observe that our model
is able to produce good videos: In the first video, we observe the action of a person adding the cherry

Table 8: Video Discriminator architecture - Shapes dataset

Layer Output size Filter
Input 3× 16× 64× 64 -

Conv3D 32× 16× 64× 64 3→ 32
ResnetBlock3D-0 64× 16× 64× 64 32→ 64

AvgPool3D 64× 8× 32× 32 -
ResnetBlock3D-1 128× 8× 32× 32 64→ 128
AvgPool3D-spatial 128× 8× 16× 16 -
ResnetBlock3D-2 128× 8× 16× 16 128→ 128

AvgPool3D 128× 4× 8× 8 -
ResnetBlock3D-3 128× 4× 8× 8 128→ 128

AvgPool3D 128× 2× 4× 4 -
ResnetBlock3D-4 256× 2× 4× 4 128→ 256

AvgPool3D 256× 1× 2× 2 -
ResnetBlock3D-5 256× 1× 2× 2 256→ 256

Reshape 256.2.2 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1

Table 9: Generator architecture - Kinetics dataset

Layer Output size Filter
Input 768 -

Fully connected 8192 768→ 8192
Reshape 512× 4× 4 -

ResnetBlock-00 512× 4× 4 512→ 512
ResnetBlock-01 512× 4× 4 512→ 512

Upsample 512× 8× 8 -
ResnetBlock-10 512× 8× 8 512→ 512
ResnetBlock-11 512× 8× 8 512→ 512

Upsample 512× 16× 16 -
ResnetBlock-20 256× 16× 16 512→ 256
ResnetBlock-21 256× 16× 16 256→ 256

Upsample 256× 32× 32 -
ResnetBlock-30 128× 32× 32 256→ 128
ResnetBlock-31 128× 32× 32 128→ 128

Upsample 128× 64× 64 -
ResnetBlock-40 64× 64× 64 128→ 64
ResnetBlock-41 64× 64× 64 64→ 64

Upsample 64× 128× 128 -
ResnetBlock-50 32× 128× 128 64→ 32
ResnetBlock-51 32× 128× 128 32→ 32

Conv2D 3× 128× 128 32→ 3
Tanh 3× 128× 128 -
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tomato to the bowl and taking the hands off. The images of water splashing and spinach placed in
the side can be seen from the third video.

Table 10: Frame Discriminator architecture - Kinetics dataset

Layer Output size Filter
Input 3× 128× 128 -

Conv2D 32× 128× 128 3→ 32
ResnetBlock-00 32× 128× 128 32→ 32
ResnetBlock-01 64× 128× 128 32→ 64

AvgPool 64× 64× 64 -
ResnetBlock-10 64× 64× 64 64→ 64
ResnetBlock-11 128× 64× 64 64→ 128

AvgPool 128× 32× 32 -
ResnetBlock-20 128× 32× 32 128→ 128
ResnetBlock-21 256× 32× 32 128→ 256

AvgPool 256× 16× 16 -
ResnetBlock-30 256× 16× 16 256→ 256
ResnetBlock-31 512× 16× 16 256→ 512

AvgPool 512× 8× 8 -
ResnetBlock-40 512× 8× 8 512→ 512
ResnetBlock-41 512× 8× 8 512→ 512

AvgPool 512× 4× 4 -
ResnetBlock-50 512× 4× 4 512→ 512
ResnetBlock-51 512× 4× 4 512→ 512

Reshape 512.4.4 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1

Table 11: Video Discriminator architecture - Kinetics dataset

Layer Output size Filter
Input 3× 16× 128× 128 -

Conv3D 32× 16× 128× 128 3→ 32
ResnetBlock3D-00 32× 16× 128× 128 32→ 32
ResnetBlock3D-01 64× 16× 128× 128 32→ 64

AvgPool3D 64× 8× 64× 64 -
ResnetBlock3D-10 64× 8× 64× 64 64→ 64
ResnetBlock3D-11 128× 8× 64× 64 64→ 128

AvgPool3D 128× 4× 32× 32 -
ResnetBlock3D-20 128× 4× 32× 32 128→ 128
ResnetBlock3D-21 256× 4× 32× 32 128→ 256

AvgPool3D 256× 2× 16× 16 -
ResnetBlock3D-30 256× 2× 16× 16 256→ 256
ResnetBlock3D-31 512× 2× 16× 16 256→ 512
AvgPool3D-spatial 512× 2× 8× 8 -
ResnetBlock3D-40 512× 2× 8× 8 512→ 512
ResnetBlock3D-41 512× 2× 8× 8 512→ 512

AvgPool3D 512× 1× 4× 4 -
ResnetBlock3D-50 512× 1× 4× 4 512→ 512
ResnetBlock3D-51 512× 1× 4× 4 512→ 512

Reshape 512.4.4 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1
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Figure 8: Variations wihin a category - Swimming class
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Figure 9: Results on Epic-Kitchens dataset
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D.3 TEXT-TO-IMAGE GENERATION

Some additional results on CUB-Birds dataset are shown in Fig. 10. We see that our model can
generate photo-realistic images with good variations.

Table 12: Hyper-parameter details for Shapes and Kinetics experiments

Parameter Config
Batch Size 8 videos

Optimizer G Adam
Learning rate G 0.0001

Adam params G: (β1, β2) (0.0, 0.99)
Optimizer DF Adam

Learning rate DF 0.0001
Adam params DF : (β1, β2) (0.0, 0.99)

Regularization γ for DF 10.0
Optimizer DV Adam

Learning rate DV 0.0001
Adam params DV : (β1, β2) (0.0, 0.99)

Regularization γ for DV 10.0
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Figure 10: Sample generations from text2img model trained on CUB-Birds dataset
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