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ABSTRACT

The Transformer architecture is widely used in natural language processing. De-
spite its success, the design principle of the Transformer remains elusive. In this
paper, we provide a novel perspective towards understanding the architecture:
we show that the Transformer can be mathematically interpreted as a numerical
Ordinary Differential Equation (ODE) solver for a convection-diffusion equation
in a multi-particle dynamic system. In particular, how words in a sentence are
abstracted into contexts by passing through the layers of the Transformer can
be interpreted as approximating multiple particles’ movement in the space using
the Lie-Trotter splitting scheme and the Euler’s method. Given this ODE’s per-
spective, the rich literature of numerical analysis can be brought to guide us in
designing effective structures beyond the Transformer. As an example, we pro-
pose to replace the Lie-Trotter splitting scheme by the Strang-Marchuk splitting
scheme, a scheme that is more commonly used and with much lower local trunca-
tion errors. The Strang-Marchuk splitting scheme suggests that the self-attention
and position-wise feed-forward network (FFN) sub-layers should not be treated
equally. Instead, in each layer, two position-wise FFN sub-layers should be used,
and the self-attention sub-layer is placed in between. This leads to a brand new
architecture. Such an FFN-attention-FFN layer is “Macaron-like”, and thus we
call the network with this new architecture the Macaron Net. Through extensive
experiments, we show that the Macaron Net is superior to the Transformer on both
supervised and unsupervised learning tasks. The reproducible code can be found
on http://anonymized

1 INTRODUCTION

The Transformer is one of the most commonly used neural network architectures in natural language
processing. Variants of the Transformer have achieved state-of-the-art performance in many tasks
including language modeling (Dai et al., 2019; Al-Rfou et al., 2018) and machine translation (Vaswani
et al., 2017; Dehghani et al., 2018; Edunov et al., 2018). Unsupervised pre-trained models based on
the Transformer architecture also show impressive performance in many downstream tasks (Radford
et al., 2019; Devlin et al., 2018).

The Transformer architecture is mainly built by stacking layers, each of which consists of two
sub-layers with residual connections: the self-attention sub-layer and the position-wise feed-forward
network (FFN) sub-layer. For a given sentence, the self-attention sub-layer considers the semantics
and dependencies of words at different positions and uses that information to capture the internal
structure and representations of the sentence. The position-wise FFN sub-layer is applied to each
position separately and identically to encode context at each position into higher-level representations.
Although the Transformer architecture has demonstrated promising results in many tasks, its design
principle is not fully understood, and thus the strength of the architecture is not fully exploited. As
far as we know, there is little work studying the foundation of the Transformer or different design
choices.

In this paper, we provide a novel perspective towards understanding the architecture. In particular,
we are the first to show that the Transformer architecture is inherently related to the Multi-Particle
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Dynamic System (MPDS) in physics. MPDS is a well-established research field which aims at
modeling how a collection of particles move in the space using differential equations (Moulton, 2012).

Particle (Word)

Particles move in the space 
along time (Semantics 
encoded in stacked neural 
network layers)

Figure 1: Physical interpretation of Transformer.

In MPDS, the behavior of each particle is usu-
ally modeled by two factors separately. The first
factor is the convection which concerns the mech-
anism of each particle regardless of other particles
in the system, and the second factor is the diffu-
sion which models the movement of the particle
resulting from other particles in the system.

Inspired by the relationship between the ODE
and neural networks (Lu et al., 2017; Chen et al.,
2018a), we first show that the Transformer lay-
ers can be naturally interpreted as a numerical
ODE solver for a first-order convection-diffusion
equation in MPDS. To be more specific, the self-
attention sub-layer, which transforms the seman-
tics at one position by attending over all other
positions, corresponds to the diffusion term; The position-wise FFN sub-layer, which is applied
to each position separately and identically, corresponds to the convection term. The number of
stacked layers in the Transformer corresponds to the time dimension in ODE. In this way, the stack of
self-attention sub-layers and position-wise FFN sub-layers with residual connections can be viewed
as solving the ODE problem numerically using the Lie-Trotter splitting scheme (Geiser, 2009) and
the Euler’s method (Ascher & Petzold, 1998). By this interpretation, we have a novel understanding
of learning contextual representations of a sentence using the Transformer: the feature (a.k.a, embed-
ding) of words in a sequence can be considered as the initial positions of a collection of particles, and
the latent representations abstracted in stacked Transformer layers can be viewed as the location of
particles moving in a high-dimensional space at different time points.

Such an interpretation not only provides a new perspective on the Transformer but also inspires us to
design new structures by leveraging the rich literature of numerical analysis. The Lie-Trotter splitting
scheme is simple but not accurate and often leads to high approximation error (Geiser, 2009). The
Strang-Marchuk splitting scheme (Strang, 1968) is developed to reduce the approximation error by a
simple modification to the Lie-Trotter splitting scheme and is theoretically more accurate. Mapped
to neural network design, the Strang-Marchuk splitting scheme suggests that there should be three
sub-layers: two position-wise feed-forward sub-layers with half-step residual connections and one
self-attention sub-layer placed in between with a full-step residual connection. By doing so, the
stacked layers will be more accurate from the ODE’s perspective and will lead to better performance
in deep learning. As the FFN-attention-FFN layer is “Macaron-like”, we call it Macaron layer and
call the network composed of Macaron layers the Macaron Net.

We conduct extensive experiments on both supervised and unsupervised learning tasks. For each task,
we replace Transformer layers by Macaron layers and keep the number of parameters to be the same.
Experiments show that the Macaron Net can achieve higher accuracy than the Transformer on all
tasks which, in a way, is consistent with the ODE theory.

2 BACKGROUND

2.1 RELATIONSHIP BETWEEN NEURAL NETWORKS AND ODE

Recently, there are extensive studies to bridge deep neural networks with ordinary differential
equations (Weinan, 2017; Lu et al., 2017; Haber & Ruthotto, 2017; Chen et al., 2018a; Zhang et al.,
2019b; Sonoda & Murata, 2019; Thorpe & van Gennip, 2018). We here present a brief introduction
to such a relationship and discuss how previous works borrow powerful tools from numerical analysis
to help deep neural network design.

A first-order ODE problem is usually defined as to solve the equation (i.e., calculate x(t) for any t)
which satisfies the following first-order derivative and the initial condition:

dx(t)

dt
= f(x, t), x(t0) = w, (1)
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in which x(t) ∈ Rd for all t ≥ t0. ODEs usually have physical interpretations. For example, x(t)
can be considered as the location of a particle moving in the d-dimensional space and the first order
time derivative can be considered as the velocity of the particle.

Usually there is no analytic solution to Eqn (1) and the problem has to be solved numerically. The
simplest numerical ODE solver is the Euler’s method (Ascher & Petzold, 1998). The Euler’s method
discretizes the time derivative dx(t)

dt by its first-order approximation x(t2)−x(t1)
t2−t1 ≈ f(x(t1), t1). By

doing so, for the fixed time horizon T = t0 + γL, we can estimate x(T ) from x0
.
= x(t0) by

sequentially estimating xl+1
.
= x(tl+1) using

xl+1 = xl + γf(xl, tl) (2)

where l = 0, · · · , L − 1, tl = t0 + γl is the time point corresponds to xl, and γ = (T − t0)/L is
the step size. As we can see, this is mathematically equivalent to the ResNet architecture (Lu et al.,
2017; Chen et al., 2018a): The function γf(xl, tl) can be considered as a neural-network block, and
the second argument tl in the function indicates the set of parameters in the l-th layer. The simple
temporal discretization by Euler’s method naturally leads to the residual connection.

Observing such a strong relationship, researchers use ODE theory to explain and improve the neural
network architectures mainly designed for computer vision tasks. Lu et al. (2017); Chen et al. (2018a)
show any parametric ODE solver can be viewed as a deep residual network (probably with infinite
layers), and the parameters in the ODE can be optimized through backpropagation. Recent works
discover that new neural networks inspired by sophisticated numerical ODE solvers can lead to better
performance. For example, Zhu et al. (2018) uses a high-precision Runge-Kutta method to design a
neural network, and the new architecture achieves higher accuracy. Haber & Ruthotto (2017) uses a
leap-frog method to construct a reversible neural network. Liao & Poggio (2016); Chang et al. (2019)
try to understand recurrent neural networks from the ODE’s perspective, and Tao et al. (2018) uses
non-local differential equations to model non-local neural networks.

2.2 TRANSFORMER

The Transformer architecture is usually developed by stacking Transformer layers (Vaswani et al.,
2017; Devlin et al., 2018). A Transformer layer operates on a sequence of vectors and outputs a
new sequence of the same shape. The computation inside a layer is decomposed into two steps:
the vectors first pass through a (multi-head) self-attention sub-layer and the output will be further
put into a position-wise feed-forward network sub-layer. Residual connection (He et al., 2016) and
layer normalization (Lei Ba et al., 2016) are employed for both sub-layers. The visualization of a
Transformer layer is shown in Figure 2(a) and the two sub-layers are defined as below.

Self-attention sub-layer The attention mechanism can be formulated as querying a dictionary with
key-value pairs (Vaswani et al., 2017), e.g., Attention(Q,K, V ) = softmax(QKT /

√
dmodel) · V,

where dmodel is the dimensionality of the hidden representations and Q (Query), K (Key), V (Value)
are specified as the hidden representations of the previous layer in the so-called self-attention sub-
layers in the Transformer architecture. The multi-head variant of attention allows the model to jointly
attend to information from different representation subspaces, and is defined as

Multi-head(Q,K, V ) = Concat(head1, · · · , headH)WO, (3)

headk = Attention(QWQ
k ,KW

K
k , V W

V
k ), (4)

where WQ
k ∈ Rdmodel×dK ,WK

k ∈ Rdmodel×dK ,WV
k ∈ Rdmodel×dV , and WO ∈ RHdV ×dmodel are

project parameter matrices, H is the number of heads, and dK and dV are the dimensionalities of
Key and Value.

Position-wise FFN sub-layer In addition to the self-attention sub-layer, each Transformer layer
also contains a fully connected feed-forward network, which is applied to each position separately
and identically. This feed-forward network consists of two linear transformations with an activation
function σ in between. Specially, given vectors h1, . . . , hn, a position-wise FFN sub-layer transforms
each hi as FFN(hi) = σ(hiW1 + b1)W2 + b2, where W1,W2, b1 and b2 are parameters.

In this paper, we take the first attempt to provide an understanding of the feature extraction process
in natural language processing from the ODE’s viewpoint. As discussed in Section 2.1, several
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works interpret the standard ResNet using the ODE theory. However, we found this interpretation
cannot be directly applied to the Transformer architecture. First, different from vision applications
whose size of the input (e.g., an image) is usually predefined and fixed, the input (e.g., a sentence)
in natural language processing is always of variable length, which makes the single-particle ODE
formulation used in previous works not applicable. Second, the Transformer layer contains very
distinct sub-layers. The self-attention sub-layer takes the information from all positions as input
while the position-wise feed-forward layer is applied to each position separately. How to interpret
these heterogeneous components by ODE is also not covered by previous works (Tao et al., 2018;
Chen et al., 2018a).

3 REFORMULATE TRANSFORMER LAYERS AS AN ODE SOLVER FOR
MULTI-PARTICLE DYNAMIC SYSTEM

In this section, we first introduce the general form of differential equations in MPDS and then
reformulate the stacked Transformer layers to show they form a numerical ODE solver for a specific
problem. After that, we use advanced methods in the ODE theory to design new architectures.

3.1 MULTI-PARTICLE ODE AND ITS NUMERICAL SOLVER

Understanding the dynamics of multiple particles’ movements in space is one of the important
problems in physics, especially in fluid mechanics and astrophysics (Moulton, 2012). The behavior of
each particle is usually modeled by two factors: The first factor concerns about the mechanism of its
movement regardless of other particles, e.g., caused by an external force outside of the system, which
is usually referred to as the convection; The second factor concerns about the movement resulting
from other particles, which is usually referred to as the diffusion. Mathematically, assume there are n
particles in d-dimensional space. Denote xi(t) ∈ Rd as the location of i-th particle at time t. The
dynamics of particle i can be formulated as

dxi(t)

dt
= F (xi(t), [x1(t), · · · , xn(t)], t) +G(xi(t), t),

xi(t0) = wi, i = 1, . . . , n. (5)

Function F (xi(t), [x1(t), · · · , xn(t)], t) represents the diffusion term which characterizes the inter-
action between the particles. G(x, t) is a function which takes a location x and time t as input and
represents the convection term.

Splitting schemes As we can see, there are two coupled terms in the right-hand side of Eqn
(5) describing different physical phenomena. Numerical methods of directly solving such ODEs
can be complicated. The splitting method is a prevailing way of solving such coupled differential
equations that can be decomposed into a sum of differential operators (McLachlan & Quispel, 2002).
Furthermore, splitting convection from diffusion is quite standard for many convection-diffusion
equations (Glowinski et al., 2017; Geiser, 2009). The Lie-Trotter splitting scheme (Geiser, 2009) is
the simplest splitting method. It splits the right-hand side of Eqn (5) into function F (·) and G(·) and
solves the individual dynamics alternatively. More precisely, to compute xi(t+ γ) from xi(t), the
Lie-Trotter splitting scheme with the Euler’s method reads as

x̃i(t) = xi(t) + γF (xi(t), [x1(t), x2(t), · · · , xn(t)], t), (6)
xi(t+ γ) = x̃i(t) + γG(x̃i(t), t). (7)

From time t to time t+ γ, the Lie-Trotter splitting method first solves the ODE with respect to F (·)
and acquire an intermediate location x̃i(t). Then, starting from x̃i(t) , it solves the second ODE with
respect to G(·) to obtain xi(t+ γ).

3.2 PHYSICAL INTERPRETATION OF THE TRANSFORMER

We reformulate the two sub-layers of the Transformer in order to match its form with the ODE
described above. Denote xl = (xl,1, . . . , xl,n) as the input to the l-th Transformer layer, where n is
the sequence length and xl,i is a real-valued vector in Rd for any i.
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Reformulation of the self-attention sub-layer Denote x̃l,i as the output of the (multi-head) self-
attention sub-layer at position i with residual connections. The computation of x̃l,i can be written
as

x̃l,i = xl,i + Concat (head1, ..., headH)WO,l, (8)

where headk =

n∑
j=1

α
(k)
ij [xl,jW

V,l
k ] =

n∑
j=1

(
exp(e

(k)
ij )∑n

q=1 exp(e
(k)
iq )

)
[xl,jW

V,l
k ], (9)

and e(k)ij is computed as the dot product of input xl,i and xl,j with linear projection matrices WQ,l
k

and WK,l
k , i.e., e(k)ij = d

−1/2
model · (xl,iW

Q,l
k )(xl,jW

K,l
k )T . Considering α(k)

ij as a normalized value of

the pair-wise dot product e(k)ij over j, we can generally reformulate Eqn (8) as

x̃l,i = xl,i + MultiHeadAttW l
att
(xl,i, [xl,1, xl,2, · · · , xl,n]), (10)

where W l
att denotes all trainable parameters in the l-th self-attention sub-layer.

Reformulation of the position-wise FFN sub-layer Next, x̃l,i is put into the position-wise FFN
sub-layer with residual connections and output xl+1,i. The computation of xl+1,i can be written as

xl+1,i = x̃l,i + FFNW l
ffn
(x̃l,i), (11)

where W l
ffn denotes all trainable parameters in the l-th position-wise FFN sub-layer.

Reformulation of Transformer layers Combining Eqn (10) and (11), we reformulate the Trans-
former layers1 as

x̃l,i = xl,i + MultiHeadAttW l
att
(xl,i, [xl,1, xl,2, · · · , xl,n]), (12)

xl+1,i = x̃l,i + FFNW l
ffn
(x̃l,i). (13)

We can see that the Transformer layers (Eqn (12-13)) resemble the multi-particle ODE solver in
Section 3.1 (Eqn (6-7)). Indeed, we can formally establish the link between the ODE solver with
splitting scheme and stacked Transformer layers as below.

Claim 1. Define γF ∗(xl,i, [xl,1, · · · , xl,n], tl) = MultiHeadAttW l
att
(xl,i, [xl,1, · · · , xl,n]) and

γG∗(xl,i, tl) = FFNW l
ffn
(xl,i). The Transformer can be viewed as a numerical ODE solver us-

ing Lie-Trotter splitting scheme and the Euler’s method (with time step γ) for Eqn (5) with F ∗ and
G∗.

The above observation grants a physical interpretation of natural language processing and provides a
new perspective on the Transformer architecture. First, this perspective provides a unified view of the
heterogeneous components in the Transformer. The self-attention sub-layer is viewed as a diffusion
term which characterizes the particle interactions while the position-wise feed-forward network
sub-layer is viewed as a convection term. The two terms together naturally form the convection-
diffusion equation in physics. Second, this interpretation advances our understanding of the latent
representations of language through the Transformer. Viewing the feature (a.k.a., embedding) of
words in a sequence as the initial position of particles, we can interpret the latent representations
of the sentence abstracted by the Transformer as particles moving in a high-dimensional space as
demonstrated in Figure 1 (Zhang, 2019).

3.3 IMPROVING TRANSFORMER VIA STRANG-MARCHUK SPLITTING SCHEME

In the previous subsection, we have successfully mapped the Transformer architecture to a numerical
ODE solver for MPDS. However, we would like to point out that one of the key components in this
ODE solver, the Lie-Trotter splitting scheme, is the simplest one but has relatively high errors. In this

1Layer normalization is sometimes applied to the sub-layers but recent work (Zhang et al., 2019a) shows that
the normalization trick is not essential and can be removed. One can still readily check that the reformulation
(Eqn (12) and (13)) still holds with layer normalization.
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Figure 2: The Transformer and our Macaron architectures.

subsection, we incorporate one of the most popular and widely used splitting scheme (Geiser, 2009),
the Strang-Marchuk splitting scheme, into the design of the neural networks.

The Lie-Trotter splitting scheme solves the dynamics of F (·) and G(·) alternatively and exclusively
in that order. This inevitably brings bias and leads to higher local truncation errors (Geiser, 2009).
To mitigate the bias, we use a simple modification to the Lie-Trotter splitting scheme by dividing
the one-step numerical solver for G(·) into two half-steps: we put one half-step before solving
F (·) and put the other half-step after solving F (·). This modified splitting scheme is known as the
Strang-Marchuk splitting scheme (Strang, 1968). Mathematically, to compute xi(t+ γ) from xi(t),
the Strang-Marchuk splitting scheme reads as

x̃i(t) = xi(t) +
γ

2
G(xi(t), t), (14)

x̂i(t) = x̃i(t) + γF (x̃i(t), [x̃1(t), x̃2(t), · · · , x̃n(t)], t), (15)

xi(t+ γ) = x̂i(t) +
γ

2
G
(
x̂i(t), t+

γ

2

)
. (16)

The Strang-Marchuk splitting scheme enjoys higher-order accuracy than the Lie-Trotter splitting
scheme (Bobylev & Ohwada, 2001) in terms of the local truncation error (Ascher & Petzold, 1998),
which measures the per-step distance between the true solution and the approximated solution using
numerical schemes. Mathematically, for a differential equation dx(t)

dt = f(x, t) and a numerical
scheme A, the local truncation error of numerical schemeA is defined as τ = x(t+ γ)−A(x(t), γ).
For example, when A is the Euler’s method, τEuler = x(t+ γ)− x(t)− γf(x(t), t). The order of
local truncation error of the two schemes has been studied in Bobylev & Ohwada (2001), as shown in
the following theorem.
Theorem 1. (Bobylev & Ohwada, 2001) The local truncation error of the Lie-Trotter splitting scheme
is second-order (O(γ2)) and the local truncation error of the Strang-Marchuk splitting scheme is
third-order (O(γ3)).

For completeness, we provide the formal theorem with proof in the appendix. We can see from Eqn
(14-16) that the Strang-Marchuk splitting scheme uses a three-step process to solve the ODE. Mapped
to neural network design, the Strang-Marchuk splitting scheme (together with the Euler’s method)
suggests there should also be three sub-layers instead of the two sub-layers in the Transformer. By
replacing function γF and γG by MultiHeadAtt and FFN, we have

x̃l,i = xl,i +
1

2
FFNW l,down

ffn
(xl,i), (17)

x̂l,i = x̃l,i + MultiHeadAttW l
att
(x̃l,i, [x̃l,1, x̃l,2, · · · , x̃l,n]), (18)

xl+1,i = x̂l,i +
1

2
FFNW l,up

ffn
(x̂l,i). (19)
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Table 1: Translation performance (BLEU) on IWSLT14 De-En and WMT14 En-De testsets.

IWSLT14 De-En WMT14 En-De
Method small base big

Transformer (Vaswani et al., 2017) 34.4 27.3 28.4
Weighted Transformer (Ahmed et al., 2017) / 28.4 28.9
Relative Transformer (Shaw et al., 2018) / 26.8 29.2
Universal Transformer (Dehghani et al., 2018) / 28.9 /
Scaling NMT (Ott et al., 2018) / / 29.3
Dynamic Conv (Wu et al., 2019a) 35.2 / 29.7

Macaron Net 35.4 28.9 30.2

From Eqn (17-19), we can see that the new layer composes of three sub-layers. Each hidden vector
at different positions will first pass through the first position-wise FFN sub-layer with a half-step 2

residual connection (“1
2” in Eqn (17)), and then the output vectors will be feed into a self-attention

sub-layer. In the last step, the output vectors from the self-attention sub-layer will be put into the
second position-wise FFN sub-layer with a half-step residual connection. Since the FFN-attention-
FFN structure is “Macaron”-like, we call the layer as Macaron layer and call the network using
Macaron layers as Macaron Net, as shown in Figure 2(b). Previous works (Lu et al., 2017; Zhu et al.,
2018) have successfully demonstrated that the neural network architectures inspired by higher-order
accurate numerical ODE solvers will lead to better results in deep learning and we believe the
Macaron Net can achieve better performance on practical natural language processing applications
than the Transformer.

4 EXPERIMENTS

We test our proposed Macaron architectures in both supervised and unsupervised learning setting.
For the supervised learning setting, we use IWLST14 and WMT14 machine translation datasets. For
the unsupervised learning setting, we pretrain the model using the same method as in Devlin et al.
(2018) and test the learned model over a set of downstream tasks. Extra descriptions about datasets,
model specifications, and hyperparameter configurations can be found in the appendix.

4.1 EXPERIMENT SETTINGS

Machine Translation Machine translation is an important application for natural language process-
ing (Vaswani et al., 2017). We evaluate our methods on two widely used public datasets: IWSLT14
German-to-English (De-En) and WMT14 English-to-German (En-De) dataset.

For the WMT14 dataset, the basic configurations of the Transformer architecture are the base and
the big settings (Vaswani et al., 2017). Both of them consist of a 6-layer encoder and 6-layer decoder.
The size of the hidden nodes and embeddings are set to 512 for base and 1024 for big. The number
of heads are 8 for base and 16 for big. Since the IWSLT14 dataset is much smaller than the
WMT14 dataset, the small setting is usually used, whose size of hidden states and embeddings is
set to 512 and the number of heads is set to 4. For all settings, the dimensionality of the inner-layer
of the position-wise FFN is four times of the dimensionality of the hidden states.

For each setting (base, big and small), we replace all Transformer layers by the Macaron layers3

and obtain the base, big and small Macaron, each of which contains two position-wise feed-
2The half-step is critical in the Strang-Marchuk splitting scheme to solve an ODE problem, but it may be not

essential in training a particular neural network. For example, the FFN sub-layer in the Transformer is designed
as FFN(hi) = σ(hiW1 + b1)W2 + b2. Placing 1/2 to rescale this FFN sub-layer is equivalent to rescale the
parameter W2 and b2 from the beginning of the optimization.

3The translation model is based on the encoder-decoder framework. In the Transformer, the decoder layer
has a third sub-layer which performs multi-head attention over the output of the encoder stack (encoder-decoder-
attention) and a mask to prevent positions from attending to subsequent positions. In our implementation of
Macaron decoder, we also use masks and split the FFN into two sub-layers and thus our decoder layer is (FFN,
self-attention, encoder-decoder-attention, and FFN).
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Table 2: Test results on the GLUE benchmark (except WNLI).

Method CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE GLUE
Existing systems

ELMo (Peters et al., 2018) 33.6 90.4 84.4/78.0 74.2/72.3 63.1/84.3 74.1/74.5 79.8 58.9 70.0
OpenAI GPT (Radford et al.) 47.2 93.1 87.7/83.7 85.3/84.8 70.1/88.1 80.7/80.6 87.2 69.1 76.9
BERT base (Devlin et al., 2018) 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3

Our systems

BERT base (ours) 52.8 92.8 87.3/83.0 81.2/80.0 70.2/88.4 84.4/83.7 90.4 64.9 77.4
Macaron Net base 57.6 94.0 88.4/84.4 87.5/86.3 70.8/89.0 85.4/84.5 91.6 70.5 79.7

forward sub-layers in a layer. To make a fair comparison, we set the dimensionality of the inner-layer
of the two FFN sub-layers in the Macaron layers to two times of the dimensionality of the hidden
states. By doing this, the base, big and small Macaron have the same number of parameters as
the base, big and small Transformer respectively.

Unsupervised Pretraining BERT (Devlin et al., 2018) is the current state-of-the-art pre-trained
contextual representation model based on a multi-layer Transformer encoder architecture and trained
by masked language modeling and next-sentence prediction tasks. We compare our proposed
Macaron Net with the base setting from the original paper (Devlin et al., 2018), which consists of
12 Transformer layers. The size of hidden states and embeddings are set to 768, and the number
of attention heads is set to 12. Similarly, we replace the Transformer layers in BERT base by the
Macaron layers and reduce the dimensionality of the inner-layer of the two FFN sub-layers by half,
and thus we keep the number of parameters of our Macaron base same as BERT base.

4.2 EXPERIMENT RESULTS

Machine Translation We use BLEU (Papineni et al., 2002) as the evaluation measure for machine
translation. Following common practice, we use tokenized case-sensitive BLEU and case-insensitive
BLEU for WMT14 En-De and IWSLT14 De-En respectively.

The results for machine translation are shown in Table 1. For the IWSLT14 dataset, our Macaron
small outperforms the Transformer small by 1.0 in terms of BLEU. For the WMT14 dataset,
our Macaron base outperforms its Transformer counterpart by 1.6 BLEU points. Furthermore, the
performance of our Macaron base model is even better than that of the Transformer big model
reported in Vaswani et al. (2017), but with much less number of parameters. Our Macaron big
outperforms the Transformer big by 1.8 BLEU points. Comparing with other concurrent works, the
improvements in our proposed method are still significant.

Unsupervised Pretraining Following Devlin et al. (2018), we evaluate all models by fine-tuning
them on 8 downstream tasks in the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2019), including CoLA (Warstadt et al., 2018), SST-2 (Socher et al., 2013), MRPC
(Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP (Chen et al., 2018b), MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016), and RTE (Bentivogli et al., 2009). More details about
individual tasks and their evaluation metrics can be found in the appendix and Wang et al. (2019);
Devlin et al. (2018). To fine-tune the models, we follow the hyperparameter search space in Devlin
et al. (2018) for all downstream tasks, including different batch sizes, learning rates, and numbers of
epochs.

The GLUE results are presented in Table 2. We present the results of two BERT base models. One is
from Devlin et al. (2018), and the other is trained using our own data. Due to that some pieces of data
used in Devlin et al. (2018) are no longer freely distributed, the two numbers are slightly different.
We can see from the table, our proposed Macaron Net base outperforms all baselines in terms of
the general GLUE score. Specifically, given the same dataset, our proposed model outperforms our
trained BERT base model in all tasks. Even comparing with the BERT base model in Devlin et al.
(2018), our model performs better in 6 out of 8 tasks and achieves close performance in the rest 2
tasks.

8



Under review as a conference paper at ICLR 2020

Table 3: Additional Comparisions on WMT14 En-De translation tasks.

Method #Params BLEU
Att-FFN-Att 213M 28.6
No residual 213M 28.3
8-Layer Transformer (big, Wu et al., 2019b) 284M 28.8
10-Layer Transformer (big, Wu et al., 2019b) 355M 28.6

Macaron Net (big) 213M 30.2

As a summary, the improvement in both machine translation and GLUE tasks well aligns with the
ODE theory and our proposed architecture performs better than the Transformer in real practice.

4.3 ADDITIONAL COMPARISONS

As we can see, the main difference between Macaron Net and the Transformer is that Macaron Net
uses two FFN sub-layers in a layer block while the Transformer just uses one. One may argue that
the improvements of the new architecture may be simply due to adding nonlinearities but not from
ODE theory. We point out here that adding nonlinearities does not always guarantee improvements in
deep learning. For example, feed-forward neural networks contain much more nonlinearities than
convolutional neural networks but the performance of feed-forward neural networks is superior than
that of convolutional neural networks in image classification. Furthermore, Wu et al. (2019b) shows
that simply adding nonlinearities by stacking more Transformer layers does not work well in practice.

To evaluate the effectiveness of our network, we further conducted experiments to show the ODE-
inspired way of adding nonlinearities is better than following heuristic methods:

• Att-FFN-Att: In Macaron Net, we use two FFN sub-layers and one attention sub-layer
in a layer. Here we construct a baseline that uses two attention sub-layers and one FFN
sub-layer layer. Note that the attention sub-layer also contains nonlinearities in the softmax
and dot-product operations.

• No residual: In the Transformer, the FFN sub-layer has one hidden layer. We changed it to
two hidden layers without residual connections, which increases the nonlinearities.

We compare these two models with Macaron Net on WMT14 En-De task and keep all the model
parameters to be the same as the Transformer big setting. We list the performance of different
models in Table 3. We can see that the BLEU scores of two models are 28.6/28.3 respectively. As a
comparison, the BLEU score of Macaron Net is 30.2. We also cite the results from Wu et al. (2019b),
which shows that simply stacking more Transformer layers cannot reach comparable performance.
Therefore, we believe our ODE-inspired architecture design is principled and better than heuristics,
which provides a better understanding to the Transformer model.

Furthermore, we can also see that the empirical results are consistent with the ODE theories. The step
size γ in ODE relates to #layers in deep learning. In detail, a small step size γ maps to a large value
of #layer: a neural network with more layers stacked corresponds to an ODE solver with smaller step
size γ. In Table 1 and 2, we can see that that given the same step size γ (#layers), our Macaron Net is
better than the Transformer. Results in Wu et al. (2019b) show that even using a smaller γ (8-layer
or 10-layer Transformer), our Macaron Net (6-layer) is still better. These results are consistent with
ODE theories: (1) A higher-order ODE solver is better given the same step size (6-layer Macaron
Net v.s. 6-layer Transformer). (2) The order matters, a higher-order ODE solver works well even
using a relatively larger step size (6-layer Macaron Net v.s. 10-layer Transformer).

5 CONCLUSION AND FUTURE WORK

In this paper, we interpret the Transformer as a numerical ODE solver for a convection-diffusion
equation in a multi-particle dynamic system. Specifically, how words in a sentence are abstracted
into contexts by passing through the layers of the Transformer can be interpreted as approximating
multiple particles’ movement in the space using the Lie-Trotter splitting scheme and the Euler’s
method. By replacing the Lie-Trotter splitting scheme with the more advanced Strang-Marchuk
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splitting scheme, we obtain a new architecture. The improvements in real applications show the
effectiveness of the new model and are consistent with the ODE theory. In the future, we will explore
deeper connections between the ODE theory and the Transformer models and use the ODE theory to
improve the individual components in the Transformer architecture such as attention modules.
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APPENDIX

A PROOF OF THE THEOREM

Theorem 2. (Bobylev & Ohwada, 2001) We denote the true solution of equation dx
dt = F (x), x(0) =

y0
4 at time t as x(t) = StF (y0). Simliarily, we can define StG and StF+G. The local truncation error

at t = 0 of the Lie-Trotter splitting scheme is SγF+G(y0)− S
γ
G[S

γ
F (y0)] =

γ2

2 {F
′(y0)(y0)G(y0)−

G′(y0)(y0)F (y0)}+O(γ3) which is second-order. The local truncation error at t = 0 of the Strang-
Marchuk splitting scheme Sγ/2G {S

γ
F [S

γ/2
G (y0)]} is SγF+G(y0)−S

γ/2
G {S

γ
F [S

γ/2
G (y0)]} = O(γ3) which

is third-order.

Proof. Since

SγF (y0) = y0 + γF (y0) +
γ2

2
F ′(y0)F (y0) +O(γ3),

SγG(y0) = y0 + γG(y0) +
γ2

2
G′(y0)G(y0) +O(γ3),

we have

SγG[S
γ
F (y0)] = SγF (y0) + γG(SγF (y0)) +

γ2

2
G′(SγF (y0))G(S

γ
F (y0)) +O(γ3).

At the same time, we have

G(y0 + γF (y0) +O(γ2)) = G(y0) + γG′(y0)F (y0) +O(γ2),

G′(SγF (y0))G(S
γ
F (y0)) = G′(y0)G(y0) +O(γ).

Combine the estimations we have

SγG[S
γ
F (y0)] = y0 + γ[F (y0) +G(y0)]

+
γ2

2
[G′(y0)G(y0) + F ′(y0)F (y0) + 2G′(y0)F (y0)] +O(γ3).

As a result, we can estimate the local truncation error of Lie-Trotter splitting scheme as

SγF+G(y0)− S
γ
G[S

γ
F (y0)]

= y0 + γ(F (y0) +G(y0)) +
γ2

2
(F ′(y0) +G′(y0))(F (y0) +G(y0)) +O(γ3)

− (y0 + γ[F (y0) +G(y0)] +
γ2

2
[G′(y0)G(y0) + F ′(y0)F (y0) + 2G′(y0)F (y0)] +O(γ3))

=
γ2

2
{F ′(y0)G(y0)−G′(y0)F (y0)}+O(γ3).

To estimate the Strang-Marchuk splitting scheme’s local truncation error, we rewrite the Strang-
Marchuk splitting scheme as

S
γ/2
G {S

γ
F [S

γ/2
G (y0)]} = S

γ/2
G {S

γ/2
F {S

γ/2
F [S

γ/2
G (y0)]}}.

From the previous estimation of Lie–Trotter splitting scheme we have

S
γ/2
F+G(y0)− S

γ
G[S

γ
F (y0)] =

γ2

8
{F ′(y0)G(y0)−G′(y0)F (y0)}+O(γ3),

S
γ/2
F+G(y0)− S

γ
F [S

γ
G(y0)] =

γ2

8
{G′(y0)F (y0)− F ′(y0)G(y0)}+O(γ3).

4Since a time-dependent ODE can be formulated as a time-independent ODE by introducing an auxiliary
variable (Chicone, 2007), the theorem here developed for time-independent ODEs can also be applied to
time-dependent ODEs without loss of generality.
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Combine the two estimations, we have

S
γ/2
G {S

γ/2
F {S

γ/2
F [S

γ/2
G (y0)]}} = SγF+G(y0) +

γ2

8
{F ′(y0)G(y0)−G′(y0)F (y0)}

+
γ2

8
{G′(y0)F (y0)− F ′(y0)G(y0)}+O(γ3)

= SγF+G(y0) +O(γ3).

B EXPERIMENT SETTINGS

B.1 MACHINE TRANSLATION

Dataset The training/validation/test sets of the IWSLT14 dataset contain about 153K/7K/7K sen-
tence pairs, respectively. We use a vocabulary of 10K tokens based on a joint source and target byte
pair encoding (BPE) (Sennrich et al., 2016). For WMT14 dataset, we replicate the setup of Vaswani
et al. (2017), which contains 4.5M training parallel sentence pairs. Newstest2014 is used as the test
set, and Newstest2013 is used as the validation set. The 37K vocabulary for WMT14 is based on a
joint source and target BPE factorization.

Model For the WMT14 dataset, the basic configurations of the Transformer architecture are the
base and the big settings (Vaswani et al., 2017). Both of them consist of a 6-layer encoder and
6-layer decoder. The size of the hidden nodes and embeddings are set to 512 for base and 1024 for
big. The number of heads are 8 for base and 16 for big. Since the IWSLT14 dataset is much
smaller than the WMT14 dataset, the small setting is usually used, whose size of hidden states and
embeddings is set to 512 and the number of heads is set to 4. For all settings, the dimensionality of
the inner-layer of the position-wise FFN is four times of the dimensionality of the hidden states.

For each setting (base, big and small), we replace all Transformer layers by the Macaron layers
and obtain the base, big and small Macaron, each of which contains two position-wise feed-
forward sub-layers in a layer. The translation model is based on the encoder-decoder framework.
In the Transformer, the decoder layer has a third sub-layer which performs multi-head attention
over the output of the encoder stack (encoder-decoder-attention) and a mask to prevent positions
from attending to subsequent positions. In our implementation of Macaron decoder, we also use
masks and split the FFN into two sub-layers and thus our decoder layer is (FFN, self-attention,
encoder-decoder-attention and FFN).

To make a fair comparison, we set the dimensionality of the inner-layer of the two FFN sub-layers in
the Macaron layers to two times of the dimensionality of the hidden states. By doing this, the base,
big and small Macaron have the same number of parameters as the base, big and small
Transformer respectively.

Optimizer and training We use the Adam optimizer and follow the optimizer setting and learning
rate schedule in Vaswani et al. (2017). For the big setting, we enlarge the batch size and learning
rate as suggested in Ott et al. (2018) to accelerate training. We employ label smoothing of value
εls = 0.1 (Szegedy et al., 2016) in all experiments. Models for WMT14/IWSLT14 are trained on 4/1
NVIDIA P40 GPUs respectively. Our code is based on the open-sourced fairseq (Gehring et al.,
2017) code base in PyTorch toolkit.

Evaluation We use BLEU5 (Papineni et al., 2002) as the evaluation measure for machine translation.
Following common practice, we use tokenized case-sensitive BLEU and case-insensitive BLEU for
WMT14 En-De and IWSLT14 De-En respectively. During inference, we use beam search with beam
size 4 and length penalty 0.6 for WMT14, and beam size 5 and length penalty 1.0 for IWSLT14,
following Vaswani et al. (2017).

5https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl
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B.2 UNSUPERVISED PRETRAINING

Pre-training dataset We follow Devlin et al. (2018) to use English Wikipedia corpus and Book-
Corpus for pre-training. As the dataset BookCorpus (Zhu et al., 2015) is no longer freely distributed.
We follow the suggestions from Devlin et al. (2018) to crawl and collect BookCorpus6 on our own.
The concatenation of two datasets includes roughly 3.4B words in total, which is comparable with
the data corpus used in Devlin et al. (2018). We first segment documents into sentences with Spacy;7
Then, we normalize, lower-case, and tokenize texts using Moses (Koehn et al., 2007) and apply BPE
(Sennrich et al., 2016). We randomly split documents into one training set and one validation set.
The training-validation ratio for pre-training is 199:1.

Model We compare our proposed Macaron Net with the base setting from the original paper
(Devlin et al., 2018), which consists of 12 Transformer layers. The size of hidden states and
embeddings are set to 768, and the number of attention heads is set to 12. Similarly, we replace
the Transformer layers in BERT base by the Macaron layers and reduce the dimensionality of the
inner-layer of the two FFN sub-layers by half, and thus we keep the number of parameters of our
Macaron base as the same as BERT base.

Optimizer and training We follow Devlin et al. (2018) to use two tasks to pretrain our model.
One task is masked language modeling, which masks some percentage of the input tokens at random,
and then requires the model to predict those masked tokens. Another task is next sentence prediction,
which requires the model to predict whether two sentences in a given sentence pair are consecutive.
We use the Adam optimizer and follow the optimizer setting and learning rate schedule in Devlin
et al. (2018) and trained the model on 4 NVIDIA P40 GPUs.

B.3 GLUE DATASET

We provide a brief description of the tasks in the GLUE benchmark (Wang et al., 2019) and our
fine-tuning process on the GLUE datasets.

CoLA The Corpus of Linguistic Acceptability (Warstadt et al., 2018) consists of English accept-
ability judgments drawn from books and journal articles on linguistic theory. The task is to predict
whether an example is a grammatical English sentence. The performance is evaluated by Matthews
correlation coefficient (Matthews, 1975).

SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) consists of sentences from movie
reviews and human annotations of their sentiment. The task is to predict the sentiment of a given
sentence (positive/negative). The performance is evaluated by the test accuracy.

MRPC The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
sentence pairs automatically extracted from online news sources, with human annotations for whether
the sentences in the pair are semantically equivalent, and the task is to predict the equivalence. The
performance is evaluated by both the test accuracy and the test F1.

STS-B The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence
pairs drawn from news headlines, video and image captions, and natural language inference data.
Each pair is human-annotated with a similarity score from 1 to 5; the task is to predict these scores.
The performance is evaluated by Pearson and Spearman correlation coefficients.

QQP The Quora Question Pairs8 (Chen et al., 2018b) dataset is a collection of question pairs
from the community question-answering website Quora. The task is to determine whether a pair of
questions are semantically equivalent. The performance is evaluated by both the test accuracy and
the test F1.

6https://www.smashwords.com/
7https://spacy.io
8https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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MNLI The Multi-Genre Natural Language Inference Corpus (Williams et al., 2018) is a crowd-
sourced collection of sentence pairs with textual entailment annotations. Given a premise sentence
and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment
), contradicts the hypothesis (contradiction), or neither (neutral). The performance is evaluated by the
test accuracy on both matched (in-domain) and mismatched (cross-domain) sections of the test data.

QNLI The Question-answering NLI dataset is converted from the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) to a classification task. The performance is evaluated by
the test accuracy.

RTE The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
entailment challenges (Bentivogli et al., 2009). The task is to predict whether sentences in a sentence
pair are entailment. The performance is evaluated by the test accuracy.

WNLI The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
in which a system must read a sentence with a pronoun and select the referent of that pronoun from
a list of choices. We follow Devlin et al. (2018) to skip this task in our experiments because few
previous works do better than predicting the majority class for this task.

Fine-tuning on GLUE tasks To fine-tune the models, following Devlin et al. (2018), we search
the optimization hyperparameters in a search space including different batch sizes (16/32), learning
rates (5e-3/3e-5), number of epochs (3/4/5), and a set of different random seeds. We select the model
for testing according to their performance on the development set.

Test data Note that the GLUE dataset distribution does not include the Test labels, and we only
made a single GLUE evaluation server submission9 for each of our models.

9https://gluebenchmark.com
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