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Abstract

Computational neuroscience aims to fit reliable models of in vivo neural activity
and interpret them as abstract computations. Recent work has shown that functional
diversity of neurons may be limited to that of relatively few cell types; other work
has shown that incorporating constraints into artificial neural networks (ANNs) can
improve their ability to mimic neural data. Here we develop an algorithm that takes
as input recordings of neural activity and returns clusters of neurons by cell type
and models of neural activity constrained by these clusters. The resulting models
are both more predictive and more interpretable, revealing the contributions of
functional cell types to neural computation and ultimately informing the design of
future ANNs.

1 Introduction

The primary goal in the field of computational neuroscience is to build mathematical models that link
the in vivo activity of our brains with the intelligent behavior they produce. The primary obstacles to
accomplishing this stem from the brain’s complexity. The large number and variable characteristics
of individual neurons in a given brain produce highly nonlinear and high dimensional activity. This
makes theoretical analysis difficult and limits our observations of the brain to a subset of neurons,
making computational models fitted to data less reliable.

Luckily, applying biological constraints to our models may help us understand the brain. The ANN
trained to perform spatial localization by Cueva [3] required a metabolic constraint on total neural
activity to reproduce patterns of neural responses in the Entorhinal Cortex. The ANN trained by
Yamins [9] to recognize objects required a convolutional structural constraint to reproduce activity of
the visual system. These works have strengthened the connection between AI and neuroscience by
showing how the same constraints produce similar activity and behavior.

In this work, we seek to make this connection with a different constraint, cell diversity limited to small
variations within relatively few cell types. The Allen Institute for Brain Science has pioneered projects
for identifying such cell types by looking at transcriptomic, morphological, and electrophyisiological
features of individual neurons [5], [6]. This idea of discrete cell types is also in line with theoretical
results analyzing how simple point models of neural activity undergo bifurcations in parameter space
between a few qualitatively different behaviors (see [4] for bifurcation analysis of the Izhikevich
model, and [8] for evidence that the GLM has similar stereotypical behaviors). We take a bottom-up
approach of inferring functional cell types from neural activity data and using these types to constrain
single-cell activity models. By using cell types as a constraint, we can fit more reliable models for
individual neurons and ultimately uncover the roles of functionally distinct cell types in computations
by real and artificial brains.
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2 Methods

2.1 Generative Model

We use a Generalized Linear Model (GLM) to model the single-cell spiking activity xi(t) in response
to a stimulus si(t): xi(t) ∼ Poisson(exp[(si ? Fi)(t) + (xi ?Wi)(t) + bi]) := D(si(t),Wi, Fi, bi),
where (a ? b)(t) =

∫∞
−∞ a(τ)b(t− τ)dτ , Fi is the stimulus filter for cell i, Wi is the self-interaction

filter for cell i, and bi is the bias term for cell i (see [7] for a thorough introduction). We hypothesize
that Wi will be closely related to the functional type of cell i while Fi and bi will be more specific
to each cell, since the self-interaction filter captures many of the intrinsic dynamical properties that
neurons possess [8]. To make our cell types supposition explicit and guide algorithm development,
we specify the following generative model for a neural activity dataset, consisting of two stages (see
Figure 1 A for a diagram):

1. The self-interaction filter of neuron i, Wi, is drawn from a K-component Gaussian Mixture
Model (GMM) where each component corresponds to a cell type:
P (Wi|{πk, µk,Σk}) =

∑K
k=1 πkN (Wi;µk,Σk). The other cell-specific parameters Fi, bi

are selected from some common (e.g. flat) prior distribution.
2. The cell generates a spiking response xi(t) to its incoming stimulus si(t):
xi(t) ∼ Poisson(exp[(si ? Fi)(t) + (xi ? Wi)(t) + bi]).

In this work we consider only diagonal covariance matrices Σk, but full covariance matrices could be
fit with data from enough neurons N >> |Wi|2

2.2 E-M Algorithm

Our goal is to recover the parameters of the generative model from a dataset si(t), xi(t), i ∈
{1, ..., N}, t ∈ {1, ..., T}. We use an Expectation-Maximization algorithm to estimate the dis-
tribution over the variables latent to each neuron’s activity, Wi, while computing a point estimate of
the global parameters, πk, µk,Σk ∀k = {1, ...,K} (see Algorithm 1 for an overview).

The Expectation (E) step estimates the posterior distribution over the latent variables,
P (Wi|{πk, µk,Σk}, si(t), xi(t), Fi, bi). Because Wi are continuous random variables, we use
Variational Inference to make estimating this distribution tractable by approximating it with a
simple function and minimizing the KL divergence between the approximation and true poste-
rior. Here, we use a multivariate Gaussian with diagonal covariance matrix: Wi ∼ N (mi, Ci).
To minimize the KL divergence between this approximation and the true posterior distribution
P (Wi|{πk, µk,Σk}, si(t), xi(t), Fi, bi) ∝ D(xi(t)|si(t),Wi, Fi, bi)(

∑K
k=1 πkN (Wi;µk,Σk)),

we sample from the posterior and fit mi, Ci to the samples. To accomplish this, we use impor-
tance sampling, drawing samples Ws from the GMM and assigning them likelihood weights,

Data: si, xi ∀i ∈ {1, ..., N},K
Result: {πk, µk,Σk} ∀k ∈ {1, ...,K},mi, Ci ∀i ∈ {1, ...N}
initialize Wi, Fi, bi with maximum likelihood parameters for si, xi;
initialize {πk, µk,Σk} with GMM fit to Wi;
repeat

/* E-Step: approximate distributions over latent variables Wi */
for each neuron i do

Sample Ws from the GMM parameterized by ({πk, µk,Σk} ∀k) ∀s = {1, ..., S};
ws ← D(xi(t)|si(t),Ws, Fi, bi) ∀s ∈ {1, ..., S};
w̃s = ws∑

s′ w
′
s
∀s ∈ {1, ..., S};

mi ←
∑

s w̃sWs;
Ci ←

∑
s w̃s(Ws −mi)

2;
end
/* M-Step: find maximum likelihood global parameters {πk, µk,Σk} */
Sample Wi,r ∼ N (mi, Ci) ∀r = {1, ..., R}, ∀i = {1, ..., N};
{πk, µk,Σk} ← best fit GMM to {Wi,r};

until convergence;
Algorithm 1: E-M algorithm
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Figure 1: Simulated Datasets. A: The generative model described in Section 2.1. B: True self-
interaction filters (black) and fitted cluster centers µk (colors) for an example simulated dataset
with K = 4, σ = 0.1; shaded region is ±

√
diag(Σk). C: Adjusted Rand Score (ARS) versus Max

Overlap Score for 12 simulations of 120 model GLM neurons each. Small circles are for simulations
with K = 2, large ones for K = 4. D: Comparison of our method to fitting a GMM to individually
fit GLM parameters; our method discovers classes with a higher ARS to the true labels

ws = D(xi(t)|si(t),Ws, Fi, bi). After these weights are normalized, w̃s = ws/
∑

s′ w
′
s, they

are used to define the expectations necessary to estimate the moments mi ≈
∑

s w̃sWs, and
Ci ≈

∑
s w̃s(Ws −mi)

2.

The Maximization (M) step consists of finding {πk, µk,Σk} that minimize the KL divergence between
the approximated distribution over W , P (W ) ≈ 1/N

∑
iN (W |mi, Ci), and the mixture model.

To do this, we sample the approximated distribution Wi,r ∼ N (mi, Ci) ∀r = {1, ..., R}, ∀i =
{1, ..., N}, then fit the mixture model to these samples using standard methods.

3 Results

We focus on applying Algorithm 1 to the In Vitro Single Cell Characterization (IVSCC) dataset
collected by the Allen Institute for Brain Science [1]. Specifically, we model the spiking response of
isolated neurons to a pink noise stimulus.

3.1 Simulation Results

First, we demonstrate that the algorithm accurately recovers the true parameters of a generative model
from simulated data. We use the same stimuli that were presented in the IVSCC dataset, and simulate
responses of GLMs with parameters sampled from a GMM. We vary the number of clusters and
the within-cluster variance σ2 (σ2I = Σk ∀k), and repeat for several different GMMs. We then use
the Adjusted Rand Score to provide an unbiased measure of clustering accuracy. To account for
chance variations in the selection of self-interaction filters, results are reported with respect to an
Overlap Score, where a score of 1 means that two clusters are indistinguishable, and a score of 0
means all clusters are perfectly separated. Figure 1 shows that the algorithm successfully recovers
the latent classes when there is not too much overlap. In particular, Figure 1 D shows that our method
outperforms clustering individually fitted parameters.
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Figure 2: IVSCC Dataset. A: Cluster centers µk of self-interaction filters fit to data; shaded region
is ±

√
diag(Σk). B: Validation ANLL for each neuron, using the GMM-GLM model versus using

independent GLMs. C: ANLL difference between our method and independent GLMs (mean ± SEM
with significant p-values) for the IVSCC dataset.

3.2 IVSCC Data

To assess how well the model is able to explain real neural data, we apply Algorithm 1 to spiking
data from 290 cells in the IVSCC dataset. As there is no available ground truth for the cell types,
we compare the Average Negative Log Likelihood (ANLL) of held out data to that achieved by
independently fit GLMs to assess model performance. Figure 2 A-B shows the results of fitting a
GMM-GLM model with K = 7 components to the dataset, and Figure 2 C compares models with
differentK according to ANLL.K = 4 clusters seem to fit this dataset best, evidenced by a minimum
in the validation ANLL and an elbow in the decline of training ANLL with increasing K.

With the IVSCC dataset, we are fortunate to have limited morphological, locational, and transcrip-
tomic information available about each cell in addition to the electrophysiological recordings. It is
of scientific interest to see if the electrophysiological cell types that we discover are at all related to
other partitions of the cells based on these metadata, in the same spirit as [5] and [6]. Note, however,
that these metadata do not constitute a "ground truth" for cell types - they merely provide different
dimensions along which neurons can be clustered; any similarities (or lack thereof) between our
discovered types and the metadata is a scientific result, not a direct validation of our method.

Figure 3 shows the results of comparing these metadata to the K = 7 clusters discovered by our
method. Evidently, cells that have spiny dendrites, are in cortical layer 1, or express most Cre lines
were assigned to certain clusters much more often than chance. The correspondence we find between
our clusters and transgenic line is comparable to that found by Teeter et al. (Figure 6 in [6]), and our
ARS is slightly higher.

4 Discussion

In this work, we make particular choices for the mixture model (GMM), single-cell model (GLM), and
which parameters are related to cell type (Self-interaction filters, Wi), but our algorithm generalizes
to any choices for these. In future work, we will perform model selection over other options.

Ultimately, we seek to apply this algorithm to in vivo neural recordings, so testing the algorithm’s
robustness to noise is also important. When we apply the algorithm to in vivo data, it may be necessary
to use other constraints present in the brain, as well as any available metadata (cell morphology, gene
expression, spiking waveform, etc.).
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Figure 3: IVSCC Metadata. Z-scored differences between the cluster distribution of cells with
each attribute and the distribution of all cells. Clusters are the same as in Figure 2 A-B, and
attributes are spiny or aspiny dendrites, location (hemisphere and cortical layer), and Cre line.
Note the ARS between the cluster and metadata labels in each title. Z-scores are calculated as
Z

(a)
i = (p̂

(a)
i − p̂i)/

√
p̂
(a)
i (1− p̂(a)i )/N (a) + p̂i(1− p̂i)/N , where p̂i is the empirical probability

that a cell is in cluster i and p̂(a)i is the empirical probability that a cell with attribute a is in cluster i,
N is the number of cells, and N (a) is the number of cells with attribute a.

Neural Network models with functional cell types that this algorithm produces can support the
growing body of theoretical literature regarding such networks, biological and artificial (e.g. [2]).
In return, such theoretical techniques can provide a guide for understanding the functional cell type
network models our algorithm produces in terms of more abstract network operations.
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