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ABSTRACT

It is valuable yet remains challenging to apply neural networks in logical reasoning
tasks. Despite some successes witnessed in learning SAT (Boolean Satisfiability)
solvers for propositional logic via Graph Neural Networks (GNN), there haven’t
been any successes in learning solvers for more complex predicate logic. In this
paper, we target the QBF (Quantified Boolean Formula) satisfiability problem, the
complexity of which is in-between propositional logic and predicate logic, and
investigate the feasibility of learning GNN-based solvers and GNN-based heuristics
for the cases with a universal-existential quantifier alternation (so-called 2QBF
problems).
We conjecture, with empirical support, that GNNs have certain limitations in learn-
ing 2QBF solvers, primarily due to the inability to reason about a set of assignments.
Then we show the potential of GNN-based heuristics in CEGAR-based solvers, and
explore the interesting challenges to generalize them to larger problem instances.
In summary, this paper provides a comprehensive surveying view of applying
GNN-based embeddings to 2QBF problems, and aims to offer insights in applying
machine learning tools to more complicated symbolic reasoning problems.

1 INTRODUCTION

As deep learning makes astonishing achievements in the domain of image (He et al., 2016) and audio
(Hannun et al., 2014) processing, natural languages (Vaswani et al., 2017), and discrete heuristics
decisions in games (Silver et al., 2017), there is a profound interest in applying the relevant techniques
in the field of logical reasoning. Logical reasoning problems span from simple propositional logic to
complex predicate logic and high-order logic, with known theoretical complexities from NP-complete
(Cook, 1971) to semi-decidable and undecidable (Church, 1936). Testing the ability and limitation of
machine learning tools on logical reasoning problems leads to a fundamental understanding of the
boundary of learnability and robust AI, and addresses the interesting questions in decision procedures
in logic, symbolic reasoning, and program analysis and verification as defined in the programming
language community.

There have been some successes in learning propositional logic reasoning (Selsam et al., 2019;
Amizadeh et al., 2019), which focus on SAT (Boolean Satisfiability) problems as defined below. A
propositional logic formula is an expression composed of Boolean constants (> : true, ⊥ : false) ,
Boolean variables (xi), and propositional connectives such as ∧, ∨, ¬ (for example (x1 ∨ ¬x2) ∧
(¬x1 ∨ x2)). The SAT problem asks if a given formula can be satisfied (evaluated to >) by assigning
proper Boolean values to the variables. A crucial feature of the logical reasoning domain (as is visible
in the SAT problem) is that the inputs are often structural, where logical connections between entities
(variables in SAT problems) are the key information. Accordingly, previous successes have used
GNN (Graph Neural Networks) and message-passing based embeddings to solve SAT problems.

However, it should be noted that logical decision procedures is more complex that just reading the
formulas correctly. It is unclear if GNN embeddings (via simple message-passing) contain all the
information needed to reason about complex logical questions on top of the graph structures derived
from the formulas, or whether the complex embedding schemes can be learned from backpropagation.
Previous successes on SAT problems argued for the power of GNN, which can handle NP-complete
problems (Selsam et al., 2019; Amizadeh et al., 2019), but no successes have been reported for solving
semi-decidable predicate logic problems via GNN. In order to find out where the limitation of GNN



is and why, in learning logical reasoning problems, we decide to look at problems with complexity in-
between SAT and predicate logic problems, for which QBF (Quantified Boolean Formula) problems
serve as excellent middle steps. QBF is an extension of propositional formula, which allows quantifiers
(∀ and ∃) over the Boolean variables (such as ∀x1∃x2. (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)). In general, a
quantified Boolean formula in prenex normal form can be expressed as such:

QiXiQi−1Xi−1...Q0X0. φ

where Qi are quantifiers that always differ from their neighboring quantifiers, Xi are disjoint sets
of Boolean variables, and φ is a propositional formula with all Boolean variables bounded in Qi.
Complexity-wise, QBF problems are PSPACE-complete (Kleine Büning & Bubeck, 2009), which
lies in-between the NP-completeness of SAT problems and the semi-decidability of predicate logic
problems. Furthermore, 2-QBF (QBF with only two alternative quantifiers) is ΣP

2 -complete (Kleine
Büning & Bubeck, 2009).

Another direction of addressing logical reasoning problems via machine learning is to learn heuristic
decisions within traditional decision procedures. This direction is less appealing from a theoretical
perspective, but more interesting from a practical one, since it has been shown to speed up SAT
solvers in practical settings (Selsam & Bjørner, 2019). In this direction, there is less concern about
the embedding power of GNN, but more about the design of the training procedures (what is the
data and label for training) and how to incorporate the trained models within the decision procedures.
The embeddings captured via GNN is rather preferred to be lossy to prevent overfitting (Selsam &
Bjørner, 2019).

In this paper we explore the potential applications of GNNs to 2QBF problems. In Section 2, we
illustrate our designs of GNN architectures for embedding 2QBF formulas. In Section 3, we evaluate
GNN-based 2QBF solvers, and conjecture with empirical evidences that the current GNN techniques
are unable to learn complete SAT solvers or 2QBF solvers. In Section 4, we demonstrate the potential
of our GNN-based heuristics for selecting candidates and counter-examples in the CEGAR-based
solver framework. In Section 5, we discuss the related work and conclude in Section 6. Throughout
the paper we redirect details to supplementary materials.

We make the following contributions:

1. Design and test possible GNN architectures for embedding 2QBF.
2. Pinpoint the limitation of GNN in learning logical decision procedures that need reasoning

about a space of Boolean assignments.
3. Learn GNN-based CEGAR solver heuristics via supervised learning and uncover interesting

challenges for GNN to generalize across graph structures.

2 GNN EMBEDDING OF PROPOSITIONAL LOGICAL FORMULAS

Preliminary: Graph Neural Networks. GNNs refer to the neural architectures devised to learn
the embeddings of nodes and graphs via message-passing. Resembling the generic definition in Xu
et al. (2019), they consist of two successive operators to propagate the messages and evolve the
embeddings over iterations:

m(k)
v =Aggregate(k)

(
{h(k−1)

u : u ∈ N (v)}
)
, h(k)

v =Combine(k)
(
h(k−1)
v ,m(k)

v

)
(1)

where h(k)v denotes the hidden state (embedding) of node v at the kth layer/iteration, and N (v)

denotes the neighbors of node v. In each iteration, the Aggregate(k)(·) aggregates hidden states
from node v’s neighbors to produce the new message (i.e., m(k)

v ) for node v, and Combine(k)(·, ·)
computes the new embedding of v with its last state and its current message. After a specific number
of iterations (e.g., K), the embeddings should capture the global relational information of the nodes,
which can be fed into other neural network modules for specific tasks.

GNN Architecture for Embedding SAT formulas. Previous success (Selsam et al., 2019) of
GNN-based SAT solvers embedded SAT formulas like below. Each SAT formula is translated into a
bipartite graph, where one kind of nodes represent all literals (Boolean variables and their negations,
denoted as L) , and the other kind of nodes represent all clauses (sets of literals that are connected



via ∨, denoted as C). Edges between literal and clause nodes represent the literal appearing in that
clause, and all edges are represented by a sparse adjacent matrix (EdgeMatrix (E)) of dimension
|C| × |L|. There is also another kind of edges connecting literals with their negations. The graph
representation of (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) is given below as an example. Note that this architecture
is specific for propositional formulas in Conjunctive Normal Form (CNF), which is composed of
clauses connected via ∧.

C1

C2

x1

x2

¬x1
¬x2

The embeddings of literals and clauses are initialized with tiled random vectors. Then the GNN
uses MLPs to compute the messages of literals and clauses from the embeddings, and LSTMs to
update embeddings with the aggregated messages. The mathematical process for one iteration of
message-passing is given below, where EmbL and EmbC denotes embedding matrices of literals
and clauses respectively, MsgX→Y denotes messages from X to Y , MLPX denotes MLPs of X for
generating messages from the embeddings, LSTMX denotes LSTMs of X for digesting incoming
messages and updating the embeddings, and · T [] represent matrix multiplication, transposition, and
concatenation respectively. Furthermore, Emb¬L denotes a permutational view of EmbL such that
the same row of EmbL and Emb¬L are embeddings of a variable and its negation respectively.

MsgL→C = E ·MLPL(EmbL) #aggregate clauses
EmbC = LSTMC(EmbC ,MsgL→C) #combine clauses

MsgC→L = ET ·MLPC(EmbC) #aggregate literals
EmbL = LSTML(EmbL, [MsgC→L,Emb¬L]) #combine literals

(2)

Note that different instances of MLPs and LSTMs are used for clauses and literals (they have different
subscripts). What’s more, Emb¬L is used as additional message when updating EmbL.

GNN Architectures for Embedding 2QBF. The difference between SAT formulas and 2QBF is that
in 2QBF the variables are quantified by ∀ or ∃. To reflect that difference in graph representation, we
separate ∀-literals and ∃-literals into different groups of nodes. For example, the graph representation
of ∀x1∃x2. (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) is shown below:

C1

C2

x1

¬x1

x2

¬x2

Accordingly, in GNN architectures, the separated ∀-literals and ∃-literals are embedded via different
modules. The GNN architecture design closely resembles the design philosophy of Selsam et al.
(2019) in terms of permutation invariance and negation invariance, and would most likely carry over
the success of GNN in solving SAT problems to 2QBF problems.

MsgL→C = [E∀ ·MLP∀(Emb∀),E∃ ·MLP∃(Emb∃)] #aggregate clauses
EmbC = LSTMC(EmbC ,MsgL→C) #combine clauses

MsgC→∀ = ET
∀ ·MLPC→∀(EmbC) #aggregate ∀

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀]) #combine ∀
MsgC→∃ = ET

∃ ·MLPC→∃(EmbC) #aggregate ∃
Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃]) #combine ∃

(3)

Note that we use ∀ and ∃ to denote all ∀-literals and all ∃-literals respectively. We use EX to denote
the EdgeMatrix between X and C, and MLPC→X to denote MLPs that generate MsgC→X . We de
facto have tested more GNN architectures for 2QBF (see the supplementary material A.1), yet the
model above performed the best in our later evaluation, so we used it in the main paper.



3 GNN-BASED SOLVERS FAIL IN 2QBF PROBLEMS

In the previous section, we have discussed GNN-based embeddings in propositional logical formulas.
We then test whether GNN-based 2QBF solvers can be learned, following the previous successes
(Selsam et al., 2019; Amizadeh et al., 2019).

3.1 EMPIRICAL STUDY FOR REASONING 2QBF BY GNN

Data Preparation. In training and testing, we follow the previous work (Chen & Interian, 2005)
to generate random 2QBF formulas of specs (2,3) and sizes (8,10). That is to say, each clause has
5 literals, 2 of them are randomly chosen from a set of 8 ∀-quantified variables, and 3 of them are
randomly chosen from a set of 10 ∃-quantified variables. We modify the generation procedure so that
it generates clauses until the formula becomes unsatisfiable. We then randomly negate an ∃-quantified
literal per formula to get a very similar but satisfiable formula.

Predicting Satisfiability. We first tested whether our graph embeddings can be used to predict
satisfiability of 2QBF formulas. We extended the GNN architectures with a voting MLP (MLPvote)
that takes the embeddings of the ∀-variables after the propagation, and uses the average votes as
logits for satisfiability/unsatisfiability prediction:

logitssat = mean(MLPvote(Emb∀))

We trained our GNNs with different amount of data (40 pairs, 80 pairs, and 160 pairs of satisfiable/un-
satisfiable formulas) and different numbers of message-passing iterations (8 iters, 16 iters, and 32
iters), and then evaluated the converged models on 600 pairs of new instances. We report the accuracy
rate of unsatisfiable and satisfiable formulas as tuples for both the training dataset and the testing
dataset. By alternating the random seeds, the models with the best training data performance are
selected and shown in Table 1. Since pairs of satisfiable/unsatisfiable formulas are only different by
one literal, it forces the GNNs to learn subtle structural differences in the formulas. The GNNs fit
well to the smaller training dataset but have trouble for 160 pairs of formulas (numbers in the green
color). Performances of the models on testing dataset are close to random guesses (numbers in the
blue color), and running more iterations during testing does not help with their performances.

Predicting Unsatisfiability Witnesses. Previous work (Selsam et al., 2019; Amizadeh et al., 2019)
also showed successes in predicting satisfiable witnesses (variable assignments that satisfy the
formulas) of SAT problems. 2QBF problems have unsatisfiable witnesses (assignments to ∀ variables
that render the reduced propositional formulas unsatisfiable). Next, we test if we can train GNNs to
predict unsatisfiable witnesses of 2QBF formulas. Specifically, the final embeddings of ∀-variables are
transformed into logits via an assignment MLP (MLPasn) and then used to compute the cross-entropy
loss with the actual unsatisfiability witnesses of the formula:

logitswitness = MLPasn(Emb∀)

Once again we tried different amount of training data (160, 320, and 640 unsatisfiable formulas) and
different numbers of iterations (8 iters, 16 iters, and 32 iters), and then tested the converged models
on 600 unsatisfiable new 2QBF formulas. We report the accuracy per variable and the accuracy per
formula as tuples for both the training dataset and the testing dataset in Table 2, from which we can
observe that the GNNs fit well to the training data (numbers in green color), especially with more
message-passing iterations. However, the GNN performance on testing data is only slightly better
than random guesses (numbers in blue color), and running more iterations during testing does not
help with the performance either.

3.2 WHY GNN-BASED 2QBF SOLVER FAILED

In contrast to our initial expectation, the results above clearly show that GNNs fail to learn a 2QBF
solver, unlike the previous successes in solving SAT. To investigate what limits GNNs in 2QBF solver,
we first backtrack one step and examine the performance of GNNs on SAT problems.

Difficulty in Proving Unsatisfiability for SAT problems. Interestingly, previous works showed
that GNN-based SAT solvers actually had trouble in predicting unsatisfiability with high confidence



Table 1: GNN Performance to Predict SAT/UNSAT

DATASET 40 PAIRS 80 PAIRS 160 PAIRS

8 ITERS (0.98, 0.94) (1.00, 0.92) (0.84, 0.76)
TESTING (0.40, 0.64) (0.50, 0.48) (0.50, 0.50)

16 ITERS (1.00, 1.00) (0.96, 0.96) (0.88, 0.70)
TESTING (0.54, 0.46) (0.52, 0.52) (0.54, 0.48)

32 ITERS (1.00, 1.00) (0.98, 0.98) (0.84, 0.80)
TESTING (0.32, 0.68) (0.52, 0.50) (0.52, 0.50)

Table 2: GNN Performance to Predict Witnesses of UNSAT

DATASET 160 UNSAT 320 UNSAT 640 UNSAT

8 ITERS (1.00, 0.99) (0.95, 0.72) (0.82, 0.28)
TESTING (0.64, 0.06) (0.67, 0.05) (0.69, 0.05)

16 ITERS (1.00, 1.00) (0.98, 0.87) (0.95, 0.69)
TESTING (0.64, 0.05) (0.65, 0.05) (0.65, 0.06)

32 ITERS (1.00, 1.00) (0.99, 0.96) (0.91, 0.57)
TESTING (0.63, 0.05) (0.64, 0.05) (0.63, 0.05)

(Selsam et al., 2019), if those formulas do not have a small unsatisfiable core (minimal number
of clauses that is enough to cause unsatisfiability). Another work (Amizadeh et al., 2019) even
completely removed unsatisfiable formulas from the training dataset (since they slowed down the
training process), and only trained for predicting solutions to satisfiable formulas. However, these
defects are not a problem for SAT solvers, since predicting satisfiability with high confidence is
already good enough for a binary distinction.

The difficulty in proving unsatisfiability is understandable, since constructing a proof of unsatisfiability
demands a complete reasoning in the search space, which is more complex than constructing a proof
of satisfiability that only requires a witness. Traditionally it relies on the recursive/iterative decision
procedures that either traverse all possible assignments (implicitly or explicitly) to construct the proof
(DPLL (Davis et al., 1962)), or generate extra constraints from assignment trials that lead to conflicts,
until some of the constraints contradict each other (CDCL (Silva et al., 2009)). In comparison, the
message-passing scheme in GNN doesn’t seem to resemble either of those procedures, but is rather
similar to a subfamily of incomplete SAT solvers (WalkSAT (Selman et al., 1993)) that randomly
assign variables and stochastically search for local witnesses. Similarly, those SAT solvers cannot
prove unsatisfiability.

GNN-based 2QBF Solver is Conjecturally Infeasible For 2QBF problems, constructions of
both proofs (of satisfiability and unsatisfiability) need complete reasoning about a search space.
Proof of satisfiability needs to show that for all possible assignments of ∀ variables, there exist
satisfying assignments of ∃ variables, while proof of unsatisfiability needs to show that given a
witness (assignment of ∀ variables), the reduced propositional formula is proven unsatisfiable. Given
this, it’s reasonable to conjecture that GNNs are probably incapable of constructing either proofs,
thus being unable to learn a 2QBF solver. Traditional decision procedures (such as CEGAR-based
solvers (Rabe et al., 2018)) has a way to incrementally construct such proof, but it is unlikely that the
message-passing scheme in GNNs is capable of such task. Here, we conjecture that learning complete
SAT solvers and 2QBF solvers are infeasible with the current GNN architectures and message-passing
schemes.

4 LEARN GNN-BASED HEURISTICS FOR 2QBF

In Section 3, we conjecture (with empirical support) that GNN-based 2QBF solvers are infeasible.
Thus the successes of learning GNN-based SAT solvers (Selsam et al., 2019; Amizadeh et al.,
2019) cannot be simply extended to more complex logical reasoning problems. Therefore we
pivot our attention to learning GNN-based heuristics that work with traditional decision procedures.
Considerable QBF decision procedures have been proposed due to the importance of QBF solvers in
fields such as conditional planning (Rintanen, 1999) and symbolic model checking (Plaisted et al.,
2003). In this section, we will just focus on the CEGAR (Counter Example Guided Abstraction
Refinement) based solving algorithm.

4.1 CEGAR-BASED 2QBF ALGORITHM

We first present the CEGAR-based solving procedure (Janota & Silva, 2011) in Algorithm 1. It-
eratively, the CEGAR algorithm proposes an assignment of all ∀ variables as a candidate, which
reduces the 2QBF formula to a SAT formula. If the SAT formula is proven unsatisfiable, the candidate
becomes a witness and the algorithm returns (unsat, witness). Otherwise, a satisfying assignment



of ∃ variables can be found as a counter-example. Each counter-example disables a set of potential
candidates, and this constraints on candidates can be expressed via accumulated clauses in the
constraint SAT formula ω (details in supplementary material A.2). New candidates must be proposed
from the satisfying solutions of ω, to avoid proposing candidates that are already countered (thus
abstract refinement). As counter-examples add clauses to ω, ω may become unsatisfiable, meaning
that no more candidates can be proposed. In that case, the algorithm returns (sat, -).

Algorithm 1 CEGAR-based 2QBF Algorithm
Input: ∀X∃Y φ
Output: (sat, -) or (unsat, witness)
Initialize constraints ω as an empty set of clauses.
while true do

# proposing candidates
(has-candidate, candidate) = SAT-solver(ω)
if not has-candidate then

return (sat, -)
end if
# proposing counter-examples
(has-counter, counter) = SAT-solver(φ[X�candidate])
if not has-counter then

return (unsat, candidate)
end if
# abstract refinement
# details in supplementary material A.2
add counter to constraints ω

end while

The algorithm is clearly exponential, since both
of the search spaces (of the candidates and the
counter-examples) are exponential. It is also in-
tuitive that the quality of candidates and counter-
examples affects the runtime of the algorithm.
The traditional decision procedures have pro-
posed a MaxSAT-based heuristics, which states
that the good candidates should maximize the
number of unsatisfied clauses in the formula
(thus making the reduced SAT problem diffi-
cult), and the good counter-examples should
maximize the number of satisfied clauses in the
formula (thus providing a strong constraint on
the candidates) (Janota & Silva, 2011). How-
ever, MaxSAT-based heuristics are not practical,
due to the heavy overhead of MaxSAT proce-
dures. Furthermore, the number of clauses only
relates to the difficulty of the SAT problems and
the strength of the constraints, but does not di-
rectly decide it. This motivates us to test whether
GNN-based heuristics can be used instead.

4.2 BASIC SETUPS FOR GNN-BASED HEURISTICS

There are challenges in integrating neural-based heuristics into CEGAR-based solvers, since each
proposed assignment (candidate or counter-example) must fit some logical constraints (i.e. they must
satisfy a SAT formula). It is rather difficult to add logical constraints to neural-based proposals, but
relatively easy to employ neural-based ranking on proposals that already satisfy the logical constraints.
In fact, it is rather easy to ask for multiple satisfying assignments from SAT solvers, if there exist.
Therefore we choose to use the GNN-based embeddings to rank multiple assignments, instead of
directly predicting the best assignments. We also benefit from more training data and less risk of
overfitting with the ranking methodology.

To get rankings from the GNN-based embeddings, we first transform the embeddings (of all ∀
variables or all ∃ variables) into scoring matrix (Sm) via a scoring MLP (MLPscore). Then a batch of
assignments (A) are ranked by passing through a two-layer perceptron (using the Sm and a learnable
weighting vector Wv as weights without biases).

Sm = MLPscore(Emb)
RankingScoresLogits = ReLU(A · Sm) ·Wv

During training, we make use of the TensorFlow ranking library (Pasumarthi et al., 2019) to compute
the pairwise-logistic-loss with NDCG-lambda-weight. We then incorporate the trained models into
the CEGAR cycles by replacing the SAT-solver subroutine with a procedure that returns the highest
ranked solution from multiple solutions to a given SAT formula. Note that when used in CEGAR-
based solvers, the GNN models only need to embed each formula once to get the scoring matrix
(Sm), which is then used in all the following iterations to solve that formula. This is a significant
improvement compared with previous work (Lederman et al., 2018).

The evaluations are done on 4 separate datasets:
• TrainU: 1000 unsatisfiable formulas used for training
• TrainS: 1000 satisfiable formulas used for training
• TestU: 600 unsatisfiable formulas used for testing
• TestS: 600 satisfiable formulas used for testing



Table 3: Performance of CEGAR Candidate-Ranking

DATASET TRAINU TRAINS TESTU TESTS

- 21.976 34.783 21.945 33.885
MAXSAT 13.144 30.057 12.453 28.863

GNN1 14.387 31.800 14.273 30.588
GNN2 13.843 31.404 13.787 30.273

Table 4: Performance of CEGAR CounterExample-Ranking

DATASET TRAINU TRAINS TESTU TESTS

- 21.976 34.783 21.945 33.885
MAXSAT 14.754 22.265 14.748 21.638

GNN3 16.95 26.717 16.743 24.325
GNN4 17.492 26.962 17.198 25.198

with 2 baselines:

• -: vanilla CEGAR without ranking
• MaxSAT: ranking by the number of satisfied clauses via on-the-fly formula simplification

(Note that although MaxSAT performs the best in our evaluations, it is too expensive to use
in practice. See asymptotic analysis in supplementary material A.2)

via measuring the average number of iterations needed to solve the 2QBF problems. Here we choose
to measure the number of iterations rather than the wall clock time, because the former only measures
the quality of our heuristics, while the latter is subject to various optimizations and implementation
details that involve lots of engineering effort (out of the scope of this paper). From multiple random
seeds, we report the results of the models that perform best on the training datasets.

4.3 RANKING THE CANDIDATES

Since the size of 2QBF formulas for training are quite small (the same dataset as in Section 3), we can
basically enumerate all assignments in the search space to generate the training data. The interesting
question left is how we assign ranking scores to all the possible candidates. One way is to follow the
MaxSAT-style and rank them based on the number of clauses they satisfy (the less the better, shown
as “GNN1” in Table 3). Another way is to rank them based on the number of solutions to the reduced
SAT formula (the less the better, shown as “GNN2” in Table 3), since having less solutions relates to
more difficult SAT problems, thus stronger candidates (see details of ranking scores in supplementary
material A.2).

As shown in Table 3, all 3 ranking heuristics (including the GNN-based and the MaxSAT-baseline)
improved the solving performances of all 4 datasets. The improvement on unsatisfiable problems
is more significant, since we are ranking the candidates. GNN2 seems slightly better than GNN1,
implying that the training data by hardness (number of solutions to the reduced SAT formula) is
probably better.

4.4 RANKING THE COUNTEREXAMPLES

We generate the training dataset for counter-examples in a similar fashion. Once again we propose
two ways to generate the ranking scores. One way is to follow the MaxSAT-style and rank them based
on the number of clauses they satisfy (the more the better, shown as “GNN3” in Table 4). Another
way is to adjust the ranking score of “GNN3” based on whether the counter-examples associate with
the unsatisfiable cores in ω, the constraint SAT formula (shown as “GNN4” in Table 4, see details of
ranking scores in supplementary material A.2).

As shown in Table 4, all 3 ranking heuristics improved the solving performances of all 4 datasets. The
improvement on satisfiable problems is more significant this time, since we are ranking the counter-
examples. However, GNN4 performs slightly worse than GNN3. The result implies that the additional
information regarding the unsatisfiable cores in 2QBF, beyond our expectation, actually damages the
GNN-based heuristic. The likely explanation is that information associated with unsatisfiable cores
in 2QBF may be too complicated for GNN, which goes back to the limitation of GNN in reasoning
about the whole solution space and unsatisfiability.

4.5 COMBINATION OF THE HEURISTICS

It is reasonable to assume that ranking both the candidates and the counter-examples will further
improve the solver performance. We retrained GNN models using the ranking datasets for both
candidates and counter-examples, so that we still just do one GNN embedding per formula. We
evaluated GNN1-3 (combining the training data of GNN1 and GNN3), GNN2-3 (combining the



training data of GNN2 and GNN3), and GNN2-4 (combining the training data of GNN2 and GNN4).
As shown in Table 5, GNN2-3 is arguably our best GNN-based model via this ranking method. We
further compute relative improvement of GNN2-3, which is the ratio of improvement via GNN2-3
from “-” over the improvement via MaxSAT from “-”, represented by percentages. That is shown in
the last row of Table 5 as GNN2-3R.

Table 5: Performance of CEGAR Both-Ranking

DATASET TRAINU TRAINS TESTU TESTS

- 21.976 34.783 21.945 33.885
MAXSAT 9.671 20.777 9.425 19.883

GNN1-3 12.505 25.505 12.22 24.638
GNN2-3 11.25 24.76 12.008 24.295
GNN2-4 11.686 25.021 11.605 24.318

GNN2-3R 87.1% 71.6% 79.4% 68.5%

4.6 EVALUATION OF LARGER 2QBF PROBLEMS

We then tested the performance of our best GNN-based heuristics (GNN2-3) on larger 2QBF problems
that are extended in two different ways. On one hand, we fixed the specs (number of ∀ and ∃ literals
per clause) but increased the sizes (the total number of ∀ variables or ∃ variables per formula). This
essentially generated larger graphs with similar connectivity (as in the upper half of Table 6). On
the other hand, we fixed the sizes but increased the specs (as in the lower half of Table 6), which
essentially generated graphs with different vertex degrees. We changed the number of clauses per
formula such that about half of the randomly generated 2QBF formulas are satisfiable.

We list the evaluation results in Table 6. The DataSet column shows the specs (the first tuple), the
sizes (the second tuple), and the satisfiability status with the number of clauses per formula (the
letter/number after the second tuple).

Table 6: Performance on Larger 2QBF

DATASET - MAXSAT GNN2-3 GNN2-3R

(2,3)(16,20)U188 289.84 110.19 157.80 73.4%
(2,3)(16,20)S188 569.39 218.14 335.78 66.5%
(2,3)(8,40)U521 74.125 28.388 42.875 68.3%
(2,3)(8,40)S521 238.30 223.93 232.20 42.4%

(3,3)(8,10)U200 26.625 9.857 18.027 51.2%
(3,3)(8,10)S200 49.838 31.863 42.639 40.1%
(2,4)(8,10)U262 26.723 10.538 17.369 57.8%
(2,4)(8,10)S262 45.817 28.023 37.163 48.6%
(3,4)(8,10)U510 36.6 14.196 35.265 6.0%
(3,4)(8,10)S510 71.846 48.088 71.992 -0.6%

As shown in Table 6, the GNN-based heuristics generalizes well to larger sizes (the upper half of
Table 6). The relative improvement via GNN2-3 is about 70% compared with that of the MaxSAT
baseline (modulo the (2,3)(8,40)S521 dataset which is hard to improve with either heuristics for some
reasons), which is similar to its performance on smaller instances in Table 5. On the other hand, the
GNN-based heuristics cannot generalize so well to instances with larger specs. For the dataset with
either one more ∀-literal per clause, or one more ∃-literal per clause, the relative improvement via
GNN2-3 is about 50%. For the dataset with both one more ∀-literal and one more ∃-literal per clause,
the GNN2-3 failed completely in generalization.

This reveals an interesting challenge in GNN-based embedding or structural data embedding in
general. It is natural for GNN-based embedding to generalize to larger graphs if the vertex degrees
remain unchanged. In that case, it is almost like embedding a larger batch of data. However, it is
not intuitive to claim that the GNN-based embedding generalizes to graphs with different vertex
degrees. This caveat should promote more researches on message-passing schemes and structural
data embedding in general.



5 RELATED WORK AND DISCUSSION

Without using the existing decision procedures, several reasoning methods purely based on neural
networks are proposed for SAT solvers. Selsam et al. (2019) presented a GNN architecture that
embedded the propositional formulas. From single bit supervision (the formula is satisfiable or not),
the GNN learned a procedure to find satisfying assignments before issuing predictions. Also, the GNN
embeddings converge given more embedding iterations, indicating that the learned procedure is stable.
Amizadeh et al. (2019) further improved this line of work by adapting a RL-style explore-exploit
mechanism but considering circuit-SAT problems and DAG embeddings. They trained their DAG
architectures via guided gradient descent and showed that their DAG embeddings found solutions
faster than the previous GNN-embeddings, but didn’t even try to tackle unsatisfiable formulas.
Our paper tries to extend them to 2QBF problems, and we show that the inability to reason about
unsatisfiability prevent GNNs to be a 2QBF solver. Recent work of Xu et al. (2019) discussed GNN’s
expressivity power, but not in the logical reasoning context.

Samulowitz & Memisevic (2007) applied classification to predict optimal choices of heuristics inside
a portfolio-based and a dynamic QBF solver . Similar to our work, (Lederman et al., 2018) targeted
the 2QBF problem and used GNN-based embeddings to learn branching heuristics in CADET solver
in a reinforcement learning setting. However, they have to embed an updated 2QBF formula for each
branching step, thus incurring high embedding overhead. To reduce the overhead, the authors used
very simple GNN architectures. They also used a small number of message-passing iterations (in fact,
one iteration performed best), which defeats the purpose of GNN, because 1-iteration GNN reduces
to a neighbor-counting model. On the contrary, we design our solver/heuristics such that only one
GNN embedding is needed per formula, which significantly reduces the GNN inference overhead.
As a result, we can use more sophisticated GNN architectures with more message-passing iterations.

Belief propagation (BP) is a Bayesian message-passing method first proposed by Pearl (1982), which
is a useful approximation algorithm and has been applied to the SAT problems (specifically in
3-SAT (Mézard et al., 2002)) and 2QBF problems (Zhang et al., 2012). BP can find the witnesses of
unsatisfiability of 2QBF by adopting a bias estimation strategy. Each round of BP allows the user to
select the most biased ∀-variable and assign the biased value to the variable. After all the ∀-variables
are assigned, the formula is simplified by the assignment and sent to SAT solvers. The procedure
returns the assignment as a witness of unsatisfiability if the simplified formula is unsatisfiable, or
UNKNOWN otherwise. However, the fact that BP is used for each ∀-variable assignment leads to
high overhead, similar to the RL approach given by (Lederman et al., 2018). It is interesting, however,
to see that with the added overhead, BP can find witnesses of unsatisfiability, which is what one-shot
GNN-based embeddings cannot achieve.

QBF problems attracted lots of research attentions due to its theoretical interests and practical
applications in artificial intelligence (Rintanen, 1999), automated theorem proving (Ranjan et al.,
2004), and sequential circuit verification (Sheeran et al., 2000). The subclass of 2QBF is worthy of
studying in its own rights, due to applications in AI planning generalized to non-deterministic domains
(Rabe et al., 2018), and planning with exponentially long plans (PSPACE-complete) (Castellini et al.,
2001).

6 CONCLUSION

In this paper we investigated GNN-based 2QBF solvers and GNN-based 2QBF heuristics. We
revealed the previously unrecognized limitation of GNN in reasoning about unsatisfiability of SAT
problems, and conjectured that this limitation prevents GNN from learning solvers for more complex
logical reasoning problems such as 2QBF satisfiability problem. This limitation is probably rooted
in the simpility of message-passing scheme, which is good enough for embedding graph structures,
but not for conducting complex reasoning on top of the graph structures. We then demonstrated
that learning GNN-based 2QBF heuristics is potentially successful, though still faces interesting
challenges in terms of generalization across graph structures. Our work extends previous progress in
this field, and offers insights in applying machine learning tools to symbolic reasoning in general.
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A APPENDIX

A.1 ALL GNN-EMBEDDING ARCHITECTURES

We use subscript symbols ∀ to denote all ∀-quantified literals, ∃ to denote all ∃-quantified literals, L to denote
all literals, and C to denote all clauses. We use notations EmbX to denote embeddings of X , where X can
be subscript ∀, ∃, L, or C. We use notations Emb¬X to denote embeddings of the negations of X (∀, ∃, or
L), which is permutational views of EmbX such that the same row of EmbX and Emb¬X are embeddings of a
variable and its negation respectively. We use notations MsgX→Y to denote messages from X to Y . We also use
notations MLPX to denote MLPs that generate messages from the embeddings of X , notations MLPX→Y to
denote MLPs that generate messages from the embeddings of X for Y , notations LSTMX to denote LSTMs that
update embeddings of X given incoming messages, and notations LSTMX←Y to denote LSTMs that update
embeddings of X given incoming messages from Y . We also use notations EX to denote the sparse adjacency
matrix of X (∀, ∃, or L) and clauses, notations X · Y to denote matrix multiplication of X and Y , notations
[X,Y ] to denote matrix concatenation of X and Y , and notations XT to denote matrix transposition of X .

Our first form of GNN message-passing of 2QBF (Model 1) is given below.

Model 1:
MsgC = E∀ ·MLP∀(Emb∀) + E∃ ·MLP∃(Emb∃)
EmbC = LSTMC(EmbC ,MsgC)

MsgC→∀ = ET
∀ ·MLPC(EmbC)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

MsgC→∃ = ET
∃ ·MLPC(EmbC)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])

In Model 2, we update the clause embedding with 2 LSTMs, each of them take the messages from ∀ and ∃
literals respectively.

Model 2:
Msg∀→C = E∀ ·MLP∀(Emb∀)
Msg∃→C = E∃ ·MLP∃(Emb∃)

EmbC = LSTMC←∀(EmbC ,Msg∀→C)

EmbC = LSTMC←∃(EmbC ,Msg∃→C)

MsgC→∀ = ET
∀ ·MLPC(EmbC)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

MsgC→∃ = ET
∃ ·MLPC(EmbC)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])

We switch the order of these 2 LSTMs in Model 3.

Model 3:
Msg∃→C = E∃ ·MLP∃(Emb∃)
Msg∀→C = E∀ ·MLP∀(Emb∀)

EmbC = LSTMC←∃(EmbC ,Msg∃→C)

EmbC = LSTMC←∀(EmbC ,Msg∀→C)

MsgC→∀ = ET
∀ ·MLPC(EmbC)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

MsgC→∃ = ET
∃ ·MLPC(EmbC)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])



In Model 4 we concatenate the messages from ∀ and ∃ literals.

Model 4:
MsgC = [E∀ ·MLP∀(Emb∀),E∃ ·MLP∃(Emb∃)]
EmbC = LSTMC(EmbC ,MsgC)

MsgC→∀ = ET
∀ ·MLPC(EmbC)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

MsgC→∃ = ET
∃ ·MLPC(EmbC)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])

The performance of our GNN architectures improve greatly after we realize that (in Model 5) we may also need
to use different MLP modules to generate messages from clauses to ∀ and ∃ literals. Note that this is also the
model we reported in the main paper, and the model we decided to use for all results reported in the main paper.

Model 5:
MsgC = [E∀ ·MLP∀(Emb∀),E∃ ·MLP∃(Emb∃)]
EmbC = LSTMC(EmbC ,MsgC)

MsgC→∀ = ET
∀ ·MLPC→∀(EmbC)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

MsgC→∃ = ET
∃ ·MLPC→∃(EmbC)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])

We also explore the possibility (in Model 6) of having two embeddings for each clause, one serving the ∀ literals
and one serving the ∃ literals. We need extra notations: EmbX→Y denotes embeddings of X that serves Y .
LSTMX→Y denotes LSTMs that updates embedding of X that serves Y .

Model 6:
MsgC = [E∀ ·MLP∀(Emb∀),E∃ ·MLP∃(Emb∃)]

EmbC→∀ = LSTMC→∀(EmbC→∀,MsgC)

EmbC→∃ = LSTMC→∃(EmbC→∃,MsgC)

MsgC→∀ = ET
∀ ·MLPC→∀(EmbC→∀)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

MsgC→∃ = ET
∃ ·MLPC→∃(EmbC→∃)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])

We further explore possibility (in Model 7) that our embedding scheme should reflect a CEGAR cycle, which
starts from ∀ variables (proposing candidates), to clauses, to ∃ variables (finding counterexamples), back to
clauses, then back to ∀ variables.



Model 7:
Msg∀→C = E∀ ·MLP∀(Emb∀)
EmbC→∃ = LSTMC→∃(EmbC→∃,Msg∀→C)

MsgC→∃ = ET
∃ ·MLPC→∃(EmbC→∃)

Emb∃ = LSTM∃(Emb∃, [MsgC→∃,Emb¬∃])

Msg∃→C = E∃ ·MLP∃(Emb∃)
EmbC→∀ = LSTMC→∀(EmbC→∀,Msg∃→C)

MsgC→∀ = ET
∀ ·MLPC→∀(EmbC→∀)

Emb∀ = LSTM∀(Emb∀, [MsgC→∀,Emb¬∀])

A.2 CEGAR ALGORITHM AND RANKING SCORES

Steps of Abstract-Refinement in CEGAR-based 2QBF sovlers This paragraph explains in detail
about how abstract refinement in CEGAR-based 2QBF sovlers works (Janota & Silva, 2011) for our 2QBF
formulas in CNF (conjunction normal form). Basically, abstract refinement is about maintaining and augmenting
the constraint SAT formula ω, the solutions of which are the candidates in the next round of iteration.

In the main paper, we said that we initialize ω as empty set of clauses. That was a simplification. Actually, we
initialize ω with many variables and clauses. The variables include all the ∀ variables in the 2QBF formula, and
a fresh variable zc for each clause c in the 2QBF formula. Intuitively, the variable zc represents that the clause c
is not satisfied by the candidates. The ω is also initialized with many 2-sized clauses as below: for each clause c
in the 2QBF formula, we add clause (¬zc ∨ ¬l) for each ∀ literal l in c. It should be clear that this initialization
poses no constraints to all ∀ variables, since we can set all zc to false to satisfy all clauses in ω trivially.

For each counter example (assignment to all ∃ variables), we compute the set of 2QBF clauses that are not
satisfied by the counter example (call them residual clauses). Intuitively, the constraint should say: at least
one of the residual clauses should not be satisfied by the next proposed candidate, so that the current counter
example cannot counter it. That constraint is realized by adding to ω one clause (∨zc for all c in the residual
clauses). This clause guarantees that at least one of the residual clauses is not satisfied by the next candidates,
and transfers the constraints to related ∀ variables via the corresponding (¬zc ∨ ¬l) clauses in ω.

Asymptotic analysis of GNN-based heuristics v.s. MaxSAT-baseline To rigorously compare the
overhead of GNN-based heuristics with the MaxSAT-baseline, let us assume a 2QBF instance with N∀ ∀-
variables, N∃ ∃ variables, and M clauses. We also assume that on average, each clause has n∀ ∀-literals and n∃
∃-literals. Now we need to rank K candidates or counter-examples.

The time complexity of MaxSAT-baseline (on-the-fly formula simplification) is O(KMn∀), which is for each
candidate and each clause, check if the candidate satisfies the clause in n∀ steps.

We also assume that the second dimension of scoring matrix (Sm) is d. The time complexity of GNN-based
heuristics is equivalent to the 2 matrix multiplications of dimensions (K,N∀)× (N∀, d) and (K, d)× (d, 1),
which is O(KN∀d).

To compare the complexity, we can safely assume that both d and n∀ are small constants. However, N∀ (number
of ∀ variables in the formula) is often much smaller than M (number of clauses in a formula). Moreover, in
practice, matrix multiplications can be easily parallelized and accelerated on many kinds of hardware with
BLAS libraries. Of course, GNN-based heuristics needs the GNN-embeddings via message-passing, but that is
computed only once per formula, with the cost amortized.

GNN1 Candidate Ranking Score: i.e. based on a list of the numbers of satisfied clauses.

def n_clauses_list_2_ranking_scores(n_clauses_list):
n_clauses_min = min(n_clauses_list)
return [max(1, 10 - n_clauses + n_clauses_min)

for n_clauses in n_clauses_list]

GNN2 Candidate Ranking Score: i.e. based on a list of the numbers of solutions to the simplified SAT
formula.



def n_solutions_2_ranking_score(n_solutions):
if n_solutions <= 3: return 10.0 - n_solutions
if n_solutions <= 5: return 6.0
if n_solutions <= 8: return 5.0
if n_solutions <= 12: return 4.0
if n_solutions <= 16: return 3.0
if n_solutions <= 21: return 2.0
else: return 1.0

def n_solutions_list_2_ranking_scores(n_solutions_list):
return [n_solutions_2_ranking_score(n_solutions) for n_solutions in n_solutions_list]

GNN3 Counter-example Ranking Score: i.e. based on a list of the numbers of satisfied clauses.

def n_clauses_list_2_ranking_scores_counter(n_clauses_list):
n_clauses_max = max(n_clauses_list)
return [max(1, 10 - n_clauses_max + n_clauses)

for n_clauses in n_clauses_list]

GNN4 Counter-example ranking Score: i.e. adjusted from GNN3 ranking scores based on unsatisfiable
cores.

def unsat_core_2_ranking_scores_counter(core_index, n_clauses_list):
# core_index marks the index of scores that are in the unsatisfiable cores.
n_clauses_max = max(n_clauses_list)
scores = [max(1, 8 - n_clauses_max + n_clauses)

for n_clauses in n_clauses_list]
scores = numpy.array(scores)
scores[core_index] = 10
return scores.tolist

Procedure to determine which counter-examples associate with the unsatisfiable cores: Since
each counter-example will add a clause to the constraint SAT formula ω, determining the unsatisfiable cores
(the smallest subset of clauses that constraints the formula to be unsatisfiable) of ω will give us the sets of
counter-examples that directly associate with the unsatisfiable cores.

For satisfiable 2QBF formulas in the training dataset, we generate all clauses of ω from all counter-examples,
and then solve ω with hmucSAT (Nadel et al., 2013) for unsatisfiable cores. For unsatisfiable 2QBF formulas,
we again collect all clauses of ω from all counter-examples. In this case ω is satisfiable, and the solutions to
it are actually witnesses of unsatisfiability. To obtain unsatisfiable cores, we add the solutions back to ω as
additional constraints, until ω is unsatisfiable with the cores returned.
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