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Abstract

Semi-supervised learning (SSL) provides a powerful framework for leveraging
unlabeled data when labels are limited or expensive to obtain. SSL algorithms based
on deep neural networks have recently proven successful on standard benchmark
tasks. However, we argue that these benchmarks fail to address many issues that
SSL algorithms would face in real-world applications. After creating a unified
reimplementation of various widely-used SSL techniques, we test them in a suite
of experiments designed to address these issues. We find that the performance
of simple baselines which do not use unlabeled data is often underreported, SSL
methods differ in sensitivity to the amount of labeled and unlabeled data, and
performance can degrade substantially when the unlabeled dataset contains out-of-
distribution examples. To help guide SSL research towards real-world applicability,
we make our unified reimplemention and evaluation platform publicly available.3.

1 Introduction

It has repeatedly been shown that deep neural networks can achieve human- or super-human-level
performance on certain supervised learning problems by leveraging large collections of labeled data.
However, these successes come at a cost: Creating these large datasets typically requires a great deal
of human effort (to manually label examples), pain and/or risk (for medical datasets involving invasive
tests) or financial expense (to hire labelers or build the infrastructure needed for domain-specific
data collection). For many practical problems and applications, we lack the resources to create a
sufficiently large labeled dataset, which limits the wide-spread adoption of deep learning techniques.

An attractive approach towards addressing the lack of data is semi-supervised learning (SSL)
Chapelle et al. (2006). In contrast with supervised learning algorithms, which require labels for all
examples, SSL algorithms can improve their performance by also using unlabeled examples. SSL
algorithms generally provide a way of learning about the structure of the data from the unlabeled
examples, alleviating the need for labels. Some recent results Laine & Aila (2017); Tarvainen &
Valpola (2017); Miyato et al. (2017) have shown that in certain cases, SSL approaches the performance
of purely supervised learning, even when a substantial portion of the labels in a given dataset has
been discarded. These results are demonstrated by taking an existing classification dataset (typically
CIFAR-10 Krizhevsky (2009) or SVHN Netzer et al. (2011)), and treating the full dataset as unlabeled
data, and only a small portion of it as labeled data. The accuracy of a model trained with SSL with
this dataset split is then compared to that of a model trained on only the small labeled portion.

These recent successes raise a natural question: Are SSL approaches applicable in “real-world”
settings? In this paper, we argue that this de facto way of evaluating SSL techniques does not address
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this question in a satisfying way. Our goal is to more directly address this question by proposing a new
experimental methodology which we believe better measures applicability to real-world problems.
Some of our findings include:

• When given equal budget for tuning hyperparameters, the gap in performance between using SSL
and using only labeled data is smaller than typically reported.

• Further, a large classifier with carefully chosen regularization, trained with no unlabeled data, can
reach very good accuracy. This demonstrates the importance of evaluating different SSL algorithms
on the same underlying model.

• In some settings, pre-training a classifier on a different labeled dataset and then retraining on only
labeled data from the dataset of interest can outperform all SSL algorithms we studied.

• Performance of SSL techniques can degrade drastically when the unlabeled data contains a different
distribution of classes than the labeled data.

• Different approaches exhibit substantially different levels of sensitivity to the amount of labeled
and unlabeled data.

• Realistically small validation sets would preclude reliable comparison of different methods, models,
and hyperparameter settings.

Separately, as with many areas of machine learning, direct comparison of approaches is confounded
by the fact that minor changes to hyperparameters, model structure, training, etc. can have an
outsized impact on results. To mitigate this problem, we provide a unified and modular software
reimplementation of various state-of-the-art SSL approaches that includes our proposed evaluation
techniques.

The remainder of this paper is structured as follows: In section 2, we enumerate the ways in which
our proposed methodology improves over standard practice. In section 3, we give an overview
of modern SSL approaches for deep architectures, emphasizing those that we include in our study.
Following this discussion, we carry out extensive experiments (section 4) to better study the real-world
applicability of our own reimplementation of various SSL algorithms. We restrict our analysis to
image classification tasks as this is the most common domain for benchmarking deep learning models.
Finally, we conclude (section 5) with concrete recommendations for evaluating SSL techniques.

2 Improved Evaluation

In this work, we make several improvements to the conventional experimental procedures used to
evaluate SSL methods, which typically proceed as follows: First, take a common (typically image
classification) dataset used for supervised learning and throw away the labels for most of the dataset.
Then, treat the portion of the dataset whose labels were retained as a small labeled dataset D and
the remainder as an auxiliary unlabeled dataset DUL. Some (not necessarily standard) model is then
trained and accuracy is reported using the unmodified test set. The choice of dataset and number of
retained labels is somewhat standardized across different papers. Below, we enumerate ways that we
believe this procedure can be made more applicable to real-world settings.

P.1 A Shared Implementation. We introduce a shared implementation of the underlying architec-
tures used to compare all of the SSL methods. This is an improvement relative to prior work because
though the datasets used across different studies have largely become standardized over time, other
experimental details vary significantly. In some cases, different reimplementations of a simple 13-
layer convolutional network are used Laine & Aila (2017); Miyato et al. (2017); Tarvainen & Valpola
(2017), which results in variability in some implementation details (parameter initialization, data
preprocessing, data augmentation, regularization, etc.). Further, the training procedure (optimizer,
number of training steps, learning rate decay schedule, etc.) is not standardized. These differences
prevent direct comparison between approaches. All in all, these issues are not unique to SSL studies;
they reflect a larger reproducibility crisis in machine learning research Ke et al. (2017); Henderson
et al. (2018); Fedus et al. (2018); Lucic et al. (2017); Melis et al. (2018).

P.2 High-Quality Supervised Baseline. The goal of SSL is to obtain better performance using the
combination ofD andDUL than what would be obtained withD alone. A natural baseline to compare
against is the same underlying model (with modified hyperparameters) trained in a fully-supervised
manner using only D. While frequently reported, this baseline is occasionally omitted. Moreover, it
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is not always apparent whether the best-case performance has been eked out of the fully-supervised
model (e.g. Laine & Aila (2017) and Tarvainen & Valpola (2017) both report a fully supervised
baseline with ostensibly the same model but obtain accuracies that differ between the two papers
by up to 15%). To ensure that our supervised baseline is high-quality, we spent 1000 trials of
hyperparameter optimization to tune both our baseline as well as all the SSL methods.

P.3 Comparison to Transfer Learning. In practice a common way to deal with limited data is to
“transfer” a model trained on a separate, but similar, large labeled dataset Donahue et al. (2014);
Yosinski et al. (2014); Dai & Le (2015). This is typically achieved by initializing the parameters
of a new model with those from the original model, and “fine-tuning” this new model using the
small dataset. While this approach is only feasible when an applicable source dataset is available, it
nevertheless provides a powerful, widely-used, and rarely reported baseline to compare against.

P.4 Considering Class Distribution Mismatch. Note that when taking an existing fully-labeled
dataset and discarding labels, all members of DUL come from the same classes as those in D. In
contrast, consider the following example: Say you are trying to train a model to distinguish between
ten different faces, but you only have a few images for each of these ten faces. As a result, you
augment your dataset with a large unlabeled dataset of images of random people’s faces. In this case,
it is extremely unlikely that any of the images in DUL will be one of the ten people the model is
trained to classify. Standard evaluation of SSL algorithms neglects to consider this possibility. This
issue was indirectly addressed e.g. in (Laine & Aila, 2017), where labeled data from CIFAR-10 (a
natural image classification dataset with ten classes) was augmented with unlabeled data from Tiny
Images (a huge collection of images scraped from the internet). It also shares some characteristics
with the related field of “domain adaptation”, where the data distribution for test samples differs from
the training distribution Ben-David et al. (2010); Ganin et al. (2016). We explicitly study the effect of
differing class distributions between labeled and unlabeled data.

P.5 Varying the Amount of Labeled and Unlabeled Data. A somewhat common practice is to
vary the size of D by throwing away different amounts of the underlyling labeled dataset Salimans
et al. (2016); Pu et al. (2016); Sajjadi et al. (2016a); Tarvainen & Valpola (2017). Less common is to
vary the size of DUL in a systematic way, which could simulate two realistic scenarios: First, that
the unlabeled dataset is gigantic (e.g. using billions of unlabeled natural images on the Internet to
augment a natural image classification task); or second, that the unlabeled dataset is also relatively
small (e.g. in medical imaging, where both obtaining and labeling data is expensive).

P.6 Realistically Small Validation Sets. An unusual artefact of the way artificial SSL datasets
are created is that often the validation set (data used for tuning hyperparameters and not model
parameters) is significantly larger than the training set. For example, the standard SVHN Netzer et al.
(2011) dataset has a validation set of roughly 7,000 labeled examples. Many papers that evaluate
SSL methods on SVHN use only 1,000 labels from the training dataset but retain the full validation
set. The validation set is thus over seven times bigger than the training set. Of course, in real-world
applications, this large validation set would instead be used as the training set. This issue was pointed
out, but not addressed, in Rasmus et al. (2015). The issue with this approach is that any objective
values (e.g. accuracy) used for hyperparameter tuning would be significantly noisier across runs
due to the smaller sample size from a realistically small validation set. In these settings, extensive
hyperparameter tuning may be somewhat futile due to an excessively small collection of held-out
data to measure performance on. In many cases, even using cross-validation may be insufficient and
additionally incurs a substantial computational cost. The fact that small validation sets constrain
the ability to select models is discussed in Chapelle et al. (2006). We take this a step further and
directly analyze the relationship between the validation set size and variance in estimates of a model’s
accuracy.

3 Semi-Supervised Learning Methods

In supervised learning, we are given a training dataset of input-target pairs (x, y) ∈ D sampled
from an unknown joint distribution p(x, y). Our goal is to produce a prediction function fθ(x)
parametrized by θ which produces the correct target y for previously unseen samples from p(x). For
example, choosing θ might amount to optimizing a loss function which reflects the extent to which
fθ(x) = y for (x, y) ∈ D. In SSL we are additionally given a collection of unlabeled input datapoints
x ∈ DUL, sampled from p(x). We hope to leverage the data from DUL to produce a prediction
function which is more accurate than what would have been obtained by using D on its own.
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From a broad perspective, the goal of SSL is to use DUL to augment fθ(x) with information about
the structure of p(x). For example, DUL can provide hints about the shape of the data “manifold”
which can produce a better estimate of the decision boundary between different possible target values.
A depiction of this concept on a simple toy problem is shown in fig. 1, where the scarcity of labeled
data makes the decision boundary between two classes ambiguous but the additional unlabeled data
reveals clear structure which can be discovered by an effective SSL algorithm.

Figure 1: Behavior of the SSL approaches described in section 3 on
the “two moons” dataset. We omit “Mean Teacher” and “Temporal
Ensembling” (appendix A.1.2) because they behave like Π-Model (ap-
pendix A.1.1). Each approach was applied to a MLP with three hidden
layers, each with 10 ReLU units. When trained on only the labeled data
(large black and white dots), the decision boundary (dashed line) does
not follow the contours of the data “manifold”, as indicated by addi-
tional unlabeled data (small grey dots). In a simplified view, the goal
of SSL is to leverage the unlabeled data to produce a decision boundary
which better reflects the data’s underlying structure.

A comprehensive overview of SSL methods is
out of the scope of this paper; we refer inter-
ested readers to Zhu et al. (2003); Chapelle et al.
(2006). Instead, we focus on the class of meth-
ods which solely involve adding an additional
loss term to the training of a neural network,
and otherwise leave the training and model un-
changed from what would be used in the fully-
supervised setting. We limit our focus to these
approaches for the pragmatic reasons that they
are simple to describe and implement and that
they are currently the state-of-the-art for SSL
on image classification datasets. Overall, the
methods we consider fall into two classes: Con-
sistency regularization, which enforces that re-
alistic perturbations of data points x ∈ DUL
should not significantly change the output of
fθ(x); and entropy minimization, which encour-

ages more confident predictions on unlabeled data. We now describe these methods in broad terms.
See appendix A for more detail, and additional references to other SSL methods.

Π-Model: The simplest setting in which to apply consistency regularization is when the prediction
function fθ(x) is itself stochastic, i.e. it can produce different outputs for the same input x. This is
quite common in practice during training when fθ(x) is a neural network due to common regular-
ization techniques such as data augmentation, dropout, and adding noise. Π-Model Laine & Aila
(2017); Sajjadi et al. (2016b) adds a loss term which encourages the distance between a network’s
output for different passes of x ∈ DUL through the network to be small.

Mean Teacher: A difficulty with the Π-model approach is that it relies on a potentially unstable
“target” prediction, namely the second stochastic network prediction which can rapidly change over
the course of training. As a result, Tarvainen & Valpola (2017) proposed to obtain a more stable target
output f̄θ(x) for x ∈ DUL by setting the target to prections made by exponential moving averages of
parameters from previous training steps.

Virtual Adversarial Training: Instead of relying on the built-in stochasticity of fθ(x), Virtual
Adversarial Training (VAT) Miyato et al. (2017) directly approximates a tiny perturbation radv to add
to x which would most significantly affect the output of the prediction function.

Entropy Minimization (EntMin): EntMin Grandvalet & Bengio (2005) adds a loss term applied
that encourages the network to make “confident” (low-entropy) predictions for all unlabeled examples,
regardless of their class.

Pseudo-Labeling: Pseudo-labeling Lee (2013) proceeds by producing “pseudo-labels” for DUL
using the prediction function itself over the course of training. Pseudo-labels which have a cor-
responding class probability which is larger than a predefined threshold are used as targets for a
standard supervised loss function applied to DUL.

4 Experiments

In this section we cover issues with the evaluation of SSL techniques. We first address P.1 and create
a unified reimplementation of the methods outlined in section 3 using a common model architecture
and training procedure. Our goal is not to produce state-of-the-art results, but instead to provide a
rigorous comparative analysis in a common framework. Further, because our model architecture and
training hyperparameters differ from those used to test SSL methods in the past, our results are not
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Table 1: Test error rates obtained by various SSL approaches on the standard benchmarks of CIFAR-10 with all but 4,000 labels removed and
SVHN with all but 1,000 labels removed, using our proposed unified reimplementation. “Supervised” refers to using only 4,000 and 1,000
labeled datapoints from CIFAR-10 and SVHN respectively without any unlabeled data. VAT and EntMin refers to Virtual Adversarial Training
and Entropy Minimization respectively (see section 3).

Dataset # Labels Supervised Π-Model Mean Teacher VAT VAT + EntMin Pseudo-Label

CIFAR-10 4000 20.26± .38% 16.37± .63% 15.87± .28% 13.86± .27% 13.13± .39% 17.78± .57%
SVHN 1000 12.83± .47% 7.19± .27% 5.65± .47% 5.63± .20% 5.35± .19% 7.62± .29%

directly comparable to past work and should therefore be considered in isolation (see appendix D for
a full comparison). We use our reimplementation as a consistent testbed on which we carry out a
series of experiments, each of which individually focusses on a single issue from section 2.

4.1 Reproduction

For our reimplementation, we selected a standard model that is modern, widely used, and would be
a reasonable choice for a practitioner working on image classification. This avoids the possibility
of using an architecture which is custom-tailored to work well with one particular SSL technique.
We chose a Wide ResNet Zagoruyko & Komodakis (2016), due to their widespread adoption and
availability. Specifically, we used “WRN-28-2”, i.e. ResNet with depth 28 and width 2, including
the standard batch normalization Ioffe & Szegedy (2015) and leaky ReLU nonlinearities Maas et al.
(2013). We did not deviate from the standard specification for WRN-28-2 – our model was virtually
identical to the implementation in the tensorflow/models repository4 – so we refer to Zagoruyko
& Komodakis (2016) for model specifics. For training, we chose the ubiquitous Adam optimizer
Kingma & Ba (2014). For all datasets, we followed standard procedures for regularization, data
augmentation, and preprocessing; details are in appendix B.

Given the model, we implemented each of the SSL approaches in section 3. We attempted to closely
follow existing codebases whenever authors made them available. To ensure that all of the techniques
we are studying are given fair and equal treatment and that we are reporting the best-case performance
under our model, we carried out a large-scale hyperparameter optimization. For every SSL technique
in addition to a “fully-supervised” (not utilizing unlabeled data) baseline, we ran 1000 trials of
Gaussian Process-based black box optimization using Google Cloud ML Engine’s hyperparameter
tuning service Golovin et al. (2017). We optimized over hyperparameters specific to each SSL
algorithm in addition to those shared across approaches.

We tested each SSL approach on the widely-reported image classification benchmarks of SVHN
Netzer et al. (2011) with all but 1000 labels discarded and CIFAR-10 Krizhevsky (2009) with all but
4,000 labels discarded. This leaves 41,000 and 64,932 unlabeled images for CIFAR-10 and SVHN
respectively when using standard validation set sizes (see appendix B). We optimized hyperparameters
to minimize classification error on the standard validation set from each dataset, as is standard practice
(an approach we evaluate critically in section 4.6). Black-box hyperparameter optimization can
produce unintuitive hyperparameter settings which vary unnecessarily between different datasets
and SSL techniques. We therefore audited the best solutions found for each dataset/SSL approach
combination and hand-designed a simpler, unified set of hyperparameters whose performance did
not drastically differ from the best performance found by the hyperparameter tuning service. After
unification, the only hyperparameters which varied across different SSL algorithms were the learning
rate, consistency coefficient, and any hyperparameters unique to a given algorithm (e.g. VAT’s ε
hyperparameter). An enumeration of these hyperparameter settings can be found in appendix C.

We report the test error at the point of lowest validation error for the hyperparameter settings we
chose in table 1. We use this hyperparameter setting without modification in all of our experiments.

4.2 Fully-Supervised Baselines

By using the same budget of hyperparameter optimization trials for our fully-supervised baselines,
we believe we have successfully addressed item P.2. Indeed, we find the gap between the fully-
supervised baseline and those obtained with SSL is smaller in our study than what is generally
reported in the literature. At the extreme, recent theoretical results show that for some models

4https://github.com/tensorflow/models/
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there are no SSL methods which are guaranteed to improve over a fully-supervised baseline Krijthe
& Loog (2016).

We can push this line of enquiry even further: Can we design a model with a regularization, data
augmentation, and training scheme which can match the performance of SSL techniques without
using any unlabeled data? Of course, comparing the performance of this model to SSL approaches
with different models is unfair; however, we want to understand the upper-bound of fully-supervised
performance as a benchmark for future work.

After extensive experimentation, we chose the large Shake-Shake model of Gastaldi (2017) due to
its powerful regularization capabilities. We used a standard data-augmentation scheme consisting
of random horizontal flips and random crops after zero-padding by 4 pixels on each side He et al.
(2016), as well as cutout regularization with a patch length of 16 pixels DeVries & Taylor (2017).
Training and regularization was as in Gastaldi (2017), with a learning rate of 0.025 and weight decay
factor of 0.0025. On 4,000 labeled data points from CIFAR-10, this model obtained a test error of
13.4%, averaged over 5 runs. This result emphasizes the importance of the underlying model in the
evaluation of SSL algorithms, and reinforces our point that different algorithms must be evaluated
using the same model to avoid conflating comparison.

4.3 Transfer Learning

Further to the point of item P.2, we also studied the technique of transfer learning using a pre-
trained classifier, which is frequently used in limited-data settings but often neglected in SSL
studies. We trained our standard WRN-28-2 model on ImageNet Deng et al. (2009) downsampled
to 32x32 Chrabaszcz et al. (2017) (the native image size of CIFAR-10). We used the same training
hyperparameters as used for the supervised baselines reported in section 4.1. Then, we fine-tuned
the model using 4,000 labeled data points from CIFAR-10. The resulting model obtained an error
rate of 12.0% on the test set. This is a lower error rate than any SSL technique achieved using
this network, indicating that transfer learning may be a preferable alternative when a labeled
dataset suitable for transfer is available.

Note that ImageNet and CIFAR-10 have many classes in common, suggesting that this result may
reflect the best-case performance of transfer learning. In preliminary experiments, we were unable to
achieve convincing results when replicating this transfer learning setup on SVHN. This suggests that
the success of transfer learning may heavily depend on how closely related the two datasets are. More
concretely, it primarily demonstrates that the transfer learning on a separate, related, and labeled
dataset can provide the network with a better learning signal than SSL can using unlabeled data. We
are interested in exploring the combination of transfer learning and SSL in future work.

4.4 Class Distribution Mismatch

Now we examine the case where labeled and unlabeled data come from the same underlying distribu-
tion (e.g. natural images), but the unlabeled data contains classes not present in the labeled data. This
setting violates the strict definition of semi-supervised learning given in section 3, but as outlined in
item P.4 it nevertheless represents a common use-case for SSL. To test this, we synthetically vary the
class overlap in our common test setting of CIFAR-10. Specifically, we perform 6-class classification
on CIFAR-10’s animal classes (bird, cat, deer, dog, frog, horse). The unlabeled data comes from
four classes — we vary how many of those four are among the six labeled classes to modulate class
distribution mismatch. We also compare to a fully supervised model trained using no unlabeled data.
As before, we use 400 labels per class for CIFAR-10, resulting in 2400 labeled examples.

Our results are shown in fig. 2. We demonstrate the surprising result that adding unlabeled
data from a mismatched set of classes can actually hurt performance compared to not using
any unlabeled data at all (points above the black dotted line in fig. 2). This implies that it may be
preferable to pay a larger cost to obtain labeled data than to obtain unlabeled data if the unlabeled
data is sufficiently unrelated to the core learning task. However, we did not re-tune hyperparameters
these experiments; it is possible that by doing so the gap could narrow.
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Figure 2: Test error for each SSL technique on CIFAR-10 (six ani-
mal classes) with varying overlap between classes in the labeled and
unlabeled data. For example, in “25%”, one of the four classes in
the unlabeled data is not present in the labeled data. “Supervised”
refers to using no unlabeled data. Shaded regions indicate standard
deviation over five trials.
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Figure 3: Test error for each SSL technique on SVHN with 1,000
labels and varying amounts of unlabeled images from SVHN-extra.
Shaded regions indicate standard deviation over five trials. X-axis
is shown on a logarithmic scale.
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Figure 4: Test error for each SSL technique on SVHN and CIFAR-10 as the amount of labeled data varies. Shaded regions indicate standard
deviation over five trials. X-axis is shown on a logarithmic scale.

4.5 Varying Data Amounts

Many SSL techniques are tested only in the core settings we have studied so far, namely CIFAR-10
with 4,000 labels and SVHN with 1,000 labels. However, we argue that varying the amount of labeled
data tests how performance degrades in the very-limited-label regime, and also at which point the
approach can recover the performance of training with all of the labels in the dataset. We therefore
ran experiments on both SVHN and CIFAR with different labeled data amounts; the results are shown
in fig. 4. In general, the performance of all of the SSL techniques tends to converge as the number
of labels grows. On SVHN, VAT exhibits impressively consistent performance across labeled data
amounts, where in contrast the performance of Π-Model is increasingly poor as the number of labels
decreases. As elsewhere, we emphasize that these results only apply to our specific architecture and
hyperparameter settings and may not provide general insight into each algorithms’ behavior.

Another possibility is to vary the amount of unlabeled data. However, using the CIFAR-10 and SVHN
datasets in isolation places an upper limit on the amount of unlabeled data available. Fortunately,
SVHN is distributed with the “SVHN-extra” dataset, which adds 531,131 additional digit images and
which was previously used as unlabeled data in Tarvainen & Valpola (2017). Similarly, the “Tiny
Images” dataset can augment CIFAR-10 with eighty million additional unlabeled images as done in
Laine & Aila (2017), however it also introduces a class distribution mismatch between labeled and
unlabeled data because its images are not necessarily from the classes covered by CIFAR-10. As a
result, we do not consider Tiny Images for auxiliary unlabeled data in this paper.

We evaluated the performance of each SSL technique on SVHN with 1,000 labels and varying
amounts of unlabeled data from SVHN-extra, which resulted in the test errors shown in fig. 3.
As expected, increasing the amount of unlabeled data tends to improve the performance of SSL
techniques. However, we found that performance levelled off consistently across algorithms once
80,000 unlabeled examples were available. Furthermore, performance seems to degrade slightly for
Pseudo-Labeling and Π-Model as the amount of unlabeled data increases. More broadly, we find
surprisingly different levels of sensitivity to varying data amounts across SSL techniques.
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4.6 Small Validation Sets

In all of the experiments above (and in recent experiments in the literature that we are aware of),
hyperparameters are tuned on a labeled validation set which is significantly larger than the labeled
portion of the training set. We measure the extent to which this provides SSL algorithms with an
unrealistic advantage compared to real-world scenarios where the validation set would be smaller.
We can derive a theoretical estimate for the number of validation samples required to confidently
differentiate between the performance of different approaches using Hoeffding’s inequality Hoeffding
(1963):

P(|V̄ − E[V ]| < p) > 1− 2 exp(−2np2) (1)
where in our case V̄ is the empirical estimate of the validation error, E[V ] is its hypothetical true
value, p is the desired maximum deviation between our estimate and the true value, and n is the
number of examples in the validation set. In this analysis, we are treating validation error as the
average of independent binary indicator variables denoting whether a given example in the validation
set is classified correctly or not. As an example, if we want to be 95% confident that our estimate of
the validation error differs by less than 1% absolute of the true value, we would need nearly 20,000
validation examples. This is a disheartening estimate due to the fact that the difference in test error
achieved by different SSL algorithms reported in table 1 is often close to or smaller than 1%, but
20,000 is many times more samples than are provided in the training sets.
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Figure 5: Average validation error over 10 randomly-sampled nonover-
lapping validation sets of varying size. For each SSL approach, we
re-evaluated an identical model on each randomly-sampled validation
set. The mean and standard deviation of the validation error over the
10 validation sets are shown as lines and shaded regions respectively.
Models were trained on SVHN with 1,000 labels. Validation set sizes
are listed relative to the training size (e.g. 10% indicates a size-100
validation set). X-axis is shown on a logarithmic scale.

This theoretical analysis may be unrealistic due
to the assumption that the validation accuracy is
the average of independent variables. To mea-
sure this phenomenon empirically, we took base-
line models trained with each SSL approach on
SVHN with 1,000 labels and evaluated them on
validation sets with varying sizes. These syn-
thetic small validation sets were sampled ran-
domly and without overlap from the full SVHN
validation set. We show the mean and standard
deviation of validation error over 10 randomly-
sampled validation sets for each method in fig. 5.
For validation sets of the same size (100%) as
the training set, some differentiation between
the approaches is possible. However, for a
realistically-sized validation set (10% of the
training set size), differentiating between the
performance of the models is not feasible.

This suggests that SSL methods which rely on heavy hyperparameter tuning on a large valida-
tion set may have limited real-world applicability. Cross-validation can help with this problem, but
the reduction of variance may still be insufficient and its use would incur an N-fold computational
increase.

5 Conclusions and Recommendations

Our experiments provide strong evidence that standard evaluation practice for SSL is unrealistic. What
changes to evaluation should be made to better reflect real-world applications? Our recommendations
for evaluating SSL algorithms are as follows:

• Use the exact same underlying model when comparing SSL approaches. Differences in model
structure or even implementation details can greatly impact results.

• Report well-tuned fully-supervised and transfer learning performance where applicable as baselines.
The goal of SSL should be to significantly outperform the fully-supervised settings.

• Report results where the class distribution mismatch systematically varies. We showed that the
SSL techniques we studied all suffered when the unlabeled data came from different classes than the
labeled data — a realistic scenario that to our knowledge is drastically understudied.

• Vary both the amount of labeled and unlabeled data when reporting performance. An ideal
SSL algorithm is effective even with very little labeled data and benefits from additional unlabeled
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data. Specifically, we recommend combining SVHN with SVHN-Extra to test performance in the
large-unlabeled-data regime.

• Take care not to over-tweak hyperparameters on an unrealistically large validation set. A SSL
method which requires significant tuning on a per-model or per-task basis in order to perform well
will not be useable when validation sets are realistically small.

Our discoveries also hint towards settings where SSL is most likely the right choice for practitioners:

• When there are no high-quality labeled datasets from similar domains to use for fine-tuning.

• When the labeled data is collected by sampling i.i.d. from the pool of the unlabeled data, rather
than coming from a (slightly) different distribution.

• When the labeled dataset is large enough to accurately estimate validation accuracy, which is
necessary when doing model selection and tuning hyperparameters.

SSL has seen a great streak of successes recently. We hope that our results and publicly-available
unified implementation help push these successes towards the real world.
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A Semi-supervised learning methods, in more detail

There have been a wide variety of proposed SSL methods, including “transductive” Gammerman
et al. (1998) variants of k-nearest neighbors Joachims (2003) and support vector machines Joachims
(1999), graph-based methods Zhu et al. (2003); Bengio et al. (2006), and algorithms based on learning
features (frequently via generative modeling) from unlabeled data Belkin & Niyogi (2002); Lasserre
et al. (2006); Salakhutdinov & Hinton (2007); Coates & Ng (2011); Goodfellow et al. (2011); Kingma
et al. (2014); Pu et al. (2016); Odena (2016); Salimans et al. (2016).

A comprehensive overview is out of the scope of this paper; we instead refer interested readers to
Zhu et al. (2003); Chapelle et al. (2006).

We now describe the methods we analyze in this paper (as described in section 3) in more detail.

A.1 Consistency Regularization

Consistency regularization describes a class of methods with following intuitive goal: Realistic
perturbations x → x̂ of data points x ∈ DUL should not significantly change the output of fθ(x).
Generally, this involves minimizing d(fθ(x), fθ(x̂)) where d(·, ·) measures a distance between the
prediction function’s outputs, e.g. mean-squared error or Kullback-Leibler divergence. Typically the
gradient through this consistency term is only backpropagated through fθ(x̂). In the toy example of
fig. 1, this would ideally result in the classifier effectively separating the two class clusters due to
the fact that their members are all close together. Consistency regularization can be seen as a way of
leveraging the unlabeled data to find a smooth manifold on which the dataset lies Belkin et al. (2006).
This simple principle has produced a series of approaches which are currently state-of-the-art for
SSL.

A.1.1 Stochastic Perturbations/Π-Model

The simplest setting in which to apply consistency regularization is when the prediction function
fθ(x) is itself stochastic, i.e. it can produce different outputs for the same input x. This is common
when fθ(x) is a neural network due to common regularization techniques such as data augmentation,
dropout, and adding noise. These regularization techniques themselves are typically designed in such
a way that they ideally should not cause the model’s prediction to change, and so are a natural fit for
consistency regularization.

The straightforward application of consistency regularization is thus minimizing d(fθ(x), fθ(x̂))
for x ∈ DUL where in this case d(·, ·) is chosen to be mean squared error. This distance term
is added to the classification loss as a regularizer, scaled by a weighting hyperparameter. This
idea was simultaneously proposed in Sajjadi et al. (2016b) and Laine & Aila (2017), referred to as
“Regularization With Stochastic Transformations and Perturbations” and the “Π-Model” respectively.
We adopt the latter name for its conciseness. In fig. 1, the Π-Model successfully finds the correct
decision boundary.

A.1.2 Temporal Ensembling/Mean Teacher

A difficulty with the Π-model approach is that it relies on a potentially unstable “target” prediction,
namely the second stochastic network prediction which can rapidly change over the course of training.
As a result, Tarvainen & Valpola (2017) and Laine & Aila (2017) proposed two methods for obtaining
a more stable target output f̄θ(x) for x ∈ DUL. “Temporal Ensembling” Laine & Aila (2017) uses
an exponentially accumulated average of outputs of fθ(x) for the consistency target. Inspired by this
approach, “Mean Teacher” Tarvainen & Valpola (2017) instead proposes to use a prediction function
parametrized by an exponentially accumulated average of θ over training. As with the Π-model, the
distance term d(fθ(x), f̄θ(x)) is added as a regularization term with a weighting hyperparameter. In
practice, it was found that the Mean Teacher approach outperformed Temporal Ensembling Tarvainen
& Valpola (2017), so we will focus on it in our later experiments.

A.1.3 Virtual Adversarial Training

Instead of relying on the built-in stochasticity of fθ(x), Virtual Adversarial Training (VAT) Miyato
et al. (2017) directly approximates a tiny perturbation radv to add to x which would most significantly
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affect the output of the prediction function. An approxination to this perturbation can be computed
efficiently as

r ∼ N

(
0,

ξ√
dim(x)

I

)
(2)

g = ∇rd(fθ(x), fθ(x+ r)) (3)

radv = ε
g

||g||
(4)

where ξ and ε are scalar hyperparameters. Consistency regularization is then applied to minimize
d(fθ(x), fθ(x + radv)) with respect to θ, effectively using the “clean” output as a target given
an adversarially perturbed input. VAT is inspired by adversarial examples Szegedy et al. (2014);
Goodfellow et al. (2015), which are natural datapoints x which have a virtually imperceptible
perturbation added to them which causes a trained model to misclassify the datapoint. Like the
Π-Model, the perturbations caused by VAT find the correct decision boundary in fig. 1.

A.2 Entropy-Based

A simple loss term which can be applied to unlabeled data is to encourage the network to make
“confident” (low-entropy) predictions for all examples, regardless of the actual class predicted.
Assuming a categorical output space with K possible classes (e.g. a K-dimensional softmax output),
this gives rise to the “entropy minimization” term Grandvalet & Bengio (2005):

−
K∑
k=1

fθ(x)k log fθ(x)k (5)

Ideally, entropy minimization will discourage the decision boundary from passing near data points
where it would otherwise be forced to produce a low-confidence prediction Grandvalet & Bengio
(2005). However, given a high-capacity model, another valid low-entropy solution is simply to create
a decision boundary which has overfit to locally avoid a small number of data points, which is what
appears to have happened in the synthetic example of fig. 1 (see appendix E for further discussion).
On its own, entropy minimization has not been shown to produce competitive results compared to the
other methods described here Sajjadi et al. (2016a). However, entropy minimization was combined
with VAT to obtain state-of-the-art results by (Miyato et al., 2017). An alternative approach which
is applicable to multi-label classification was proposed by (Sajjadi et al., 2016a), but it performed
similarly to entropy minimization on standard “one-hot” classification tasks. Interestingly, entropy
maximization was also proposed as a regularization strategy for neural networks by (Pereyra et al.,
2017).

A.3 Pseudo-Labeling

Pseudo-labeling Lee (2013) is a simple heuristic which is widely used in practice, likely because of its
simplicity and generality – all that it requires is that the model provides a probability value for each of
the possible labels. It proceeds by producing “pseudo-labels” for DUL using the prediction function
itself over the course of training. Pseudo-labels which have a corresponding class probability which
is larger than a predefined threshold are used as targets for a standard supervised loss function applied
to DUL. While intuitive, it can nevertheless produce incorrect results when the prediction function
produces unhelpful targets for DUL, as shown in fig. 1. Note that pseudo-labeling is quite similar
to entropy regularization, in the sense that it encourages the model to produce higher-confidence
(lower-entropy) predictions for data in DUL Lee (2013). However, it differs in that it only enforces
this for data points which already had a low-entropy prediction due to the confidence thresholding.
Pseudo-labeling is also closely related to self-training Rosenberg et al. (2005); McLachlan (1975),
which differs only in the heuristics used to decide which pseudo-labels to retain.

B Dataset details

Overall, we followed standard data normalization and augmentation practice. For SVHN, we
converted image data to floating point values in the range [-1, 1]. For data augmentation, we solely
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used random translation by up to 2 pixels. We used the standard train/validation split, with 65,932
images for training and 7,325 for validation.

For any model which was to be used to classify CIFAR-10 (e.g. including the base ImageNet model
for the transfer learning experiment in section 4.3), we applied global contrast normalization and ZCA-
normalized the inputs using statistics calculated on the CIFAR-10 training set. ZCA normalization is
a widely-used and surprisingly important preprocessing step for CIFAR-10. Data augmentation on
CIFAR-10 included random horizontal flipping, random translation by up to 2 pixels, and Gaussian
input noise with standard deviation 0.15. We used the standard train/validation split, with 45,000
images for training and 5,000 for validation.
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Table 2: Hyperparameter settings used in our experiments. All hyperparameters were tuned via large-scale hyperparameter optimization and
then distilled to sensible and unified defaults by hand. Adam’s β1, β2, and ε parameters were left to the defaults suggested by Kingma &
Ba (2014). *Following Tarvainen & Valpola (2017), we ramped up the consistency coefficient starting from 0 to its maximum value using a
sigmoid schedule so that it achieved its maximum value at 200,000 iterations. **We found that CIFAR-10 and SVHN required different values
for ε in VAT (6.0 and 1.0 respectively), likely due to the difference in how the input is normalized in each dataset.

Shared

L1 regularization coefficient 0.001
L2 regularization coefficient 0.0001
Learning decayed by a factor of 0.2
at training iteration 400,000
Consistency coefficient rampup* 200,000

Supervised

Initial learning rate 0.003

Π-Model

Initial learning rate 0.0003
Max consistency coefficient 20

Mean Teacher

Initial learning rate 0.0004
Max consistency coefficient 8
Exponential moving average decay 0.95

VAT

Initial learning rate 0.003
Max consistency coefficient 0.3
VAT ε 6.0 or 1.0**
VAT ξ 10−6

VAT + EM (as for VAT)

Entropy penalty multiplier 0.06

Pseudo-Label

Initial learning rate 0.003
Max consistency coefficient 1.0
Pseudo-label threshold 0.95

C Hyperparameters

In our hyperparameter search, for each SSL method, we always separately optimized algorithm-
agnostic hyperparameters such as the learning rate, its decay schedule and weight decay coefficients.
In addition, we optimized to those hyperparameters specific to different SSL approaches separately
for each approach. In keeping with our argument in section 4.6, we attempted to find hyperparameter
settings which were performant across datasets and SSL approaches so that we could avoid unrealistic
tweaking. After hand-tuning, we used the hyperparameter settings summarized in table 2, which lists
those settings which were shared and common to all SSL approaches.

We trained all networks for 500,000 updates with a batch size of 100. We did not use any form of
early stopping, but instead continuously monitored validation set performance and report test error at
the point of lowest validation error. All models were trained with a single worker on a single GPU
(i.e. no asynchronous training).

D Comparison of our results with reported results in the literature

In table 1, we show the test errors found by our unified model. Our models were all tuned with 1000
hyperparamter trials, as described in section 4.1.

Our numbers cannot be directly compared to those previously reported due to a lack of a shared
underlying network architecture. For example, our model has roughly half as many parameters as
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Table 3: Test error rates obtained by various SSL approaches on the standard benchmarks of CIFAR-10 with all but 4,000 labels removed
and SVHN with all but 1,000 labels removed. Top: Reported results in the literature; Bottom: Using our proposed unified reimplementation.
“Supervised” refers to using only 4,000 and 1,000 labeled datapoints from CIFAR-10 and SVHN respectively without any unlabeled data.
Π-M, MT, VAT, PL, and EM refer to Π-Model, Mean Teacher, Virtual Adversarial Training, Pseudo-Labeling, and Entropy Minimization
respectively (see section 3). Note that the model used for results in the bottom has roughly half as many parameters as most models in the top
(see section 4.1).

CIFAR-10 SVHN
Method 4k Labels 1k Labels

Π-M Sajjadi et al. (2016b) 11.29% –
Π-M Laine & Aila (2017) 12.36% 4.82%
MT Tarvainen & Valpola (2017) 12.31% 3.95%
VAT Miyato et al. (2017) 11.36% 5.42%
VAT + EM Miyato et al. (2017) 10.55% 3.86%

Results above this line cannot be directly compared to those below

Supervised 20.26± 0.38% 12.83± 0.47%
Π-Model 16.37± 0.63% 7.19± 0.27%
Mean Teacher 15.87± 0.28% 5.65± 0.47%
VAT 13.86± 0.27% 5.63± 0.20%
VAT + EM 13.13± 0.39% 5.35± 0.19%
Pseudo-Label 17.78± 0.57% 7.62± 0.29%

the one used in Laine & Aila (2017); Miyato et al. (2017); Tarvainen & Valpola (2017), which may
partially explain its somewhat worse performance.

In table 3, we show how our numbers compare to what has been reported in the literature. Our
findings are generally consistent with these; namely, that all of these SSL methods improve (to a
varying degree) over the baseline. Further, Virtual Adversarial Training and Mean Teacher both
appear to work best, which is consistent with their shared state-of-the-art status.

17



E Decision boundaries found by Entropy Minimization cut through the
unlabeled data

Why does Entropy Minimization not find good decision boundaries in the “two moons” figure (fig. 1)?
Even though a decision boundary that avoids both clusters of unlabeled data would achieve low
loss, so does any decision boundary that’s extremely confident and “wiggles” around each individual
unlabeled data point. The neural network easily overfits to such a decision boundary simply by
increasing the magnitude of its output logits. Figure 6 shows how training changes the decision
contours.

Unlabeled

Class 1

Class 2

Unlabeled

Class 1

Class 2

Unlabeled

Class 1

Class 2

Figure 6: Predictions made by a model trained with Entropy Minimization, as made at initialization, and after 125 and 1000 training steps.
Points where the model predicts “1” or “2” are shown in red or blue, respectively. Color saturation corresponds to prediction confidence, and
the decision boundary is the white line. Notice that after 1000 steps of training the model is extremely confident at every point, which achieves
close to zero prediction entropy on unlabeled points.
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