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ABSTRACT

As for knowledge-based question answering, a fundamental problem is to relax
the assumption of answerable questions from simple questions to compound ques-
tions. Traditional approaches firstly detect topic entity mentioned in questions,
then traverse the knowledge graph to find relations as a multi-hop path to an-
swers, while we propose a novel approach to leverage simple-question answerers
to answer compound questions. Our model consists of two parts: (i) a novel
learning-to-decompose agent that learns a policy to decompose a compound ques-
tion into simple questions and (ii) three independent simple-question answerers
that classify the corresponding relations for each simple question. Experiments
demonstrate that our model learns complex rules of compositionality as stochastic
policy, which benefits simple neural networks to achieve state-of-the-art results on
WebQuestions and MetaQA. We analyze the interpretable decomposition process
as well as generated partitions.

1 INTRODUCTION

Knowledge-Based Question Answering (KBQA) is one of the most interesting approaches of an-
swering a question, which bridges a curated knowledge base of tremendous facts to answerable
questions. With question answering as a user-friendly interface, users can easily query a knowledge
base through natural language, i.e., in their own words. In the past few years, many systems (Berant
et al., 2013; Bao et al., 2014; Yih et al., 2015; Dong et al., 2015; Zhang et al., 2017; Hao et al., 2017)
have achieved remarkable improvements in various datasets, such as WebQuestions (Berant et al.,
2013), SimpleQuestions (Bordes et al., 2015) and MetaQA (Zhang et al., 2017).

However, most of them (Yih et al., 2014; Bordes et al., 2015; Dai et al., 2016; Yin et al., 2016; Yu
et al., 2017) assume that only simple questions are answerable. Simple questions are questions that
have only one relation from the topic entity to unknown tail entities (answers, usually substituted by
an interrogative word) while compound questions are questions that have multiple1 relations. For
example, ”Who are the daughters of Barack Obama?” is a simple question and ”Who is the mother
of the daughters of Barack Obama?” is a compound question which can be decomposed into two
simple questions.

In this paper, we aim to relax the assumption of answerable questions from simple questions to
compound questions. Figure 1 illustrates the process of answering compound questions. Intuitively,
to answer a compound question, traditional approaches firstly detect topic entity mentioned in the
question, as the starting point for traversing the knowledge graph, then find a chain of multiple (≤ 3)
relations as a multi-hop2 path to golden answers.

We propose a learning-to-decompose agent which assists simple-question answerers to solve com-
pound questions directly. Our agent learns a policy for decomposing compound question into simple
ones in a meaningful way, guided by the feedback from the downstream simple-question answerers.
The goal of the agent is to produce partitions and compute the compositional structure of questions

1We assume that the number of corresponding relations is at most three.
2We are aware of the term multi-hop question in the literature. We argue that compound question is a better

fit for the context of KBQA since multi-hop characterizes a path, not a question. As for document-based QA,
multi-hop also refers to routing over multiple evidence to answers.
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Figure 1: An example of answering compound questions. Given a question Q, we first identify the
topic entity e with entity linking. By relation detection, a movie-to-actor relation f1, an actor-to-
movie relation f2 and a movie-to-writer relation f3 forms a path to the answers Wi. Note that each
relation fi corresponds to a part of the question. If we decomposes the question in a different way,
we may find a movie-to-movie relation g as a shortcut, and g(e) = f2(f1(e)) = (f2 ◦ f1)(e) holds.
Our model discovered such composite rules. See section 4 for further discussion.

with maximum information utilization. The intuition is that encouraging the model to learn struc-
tural compositions of compound questions will bias the model toward better generalizations about
how the meaning of a question is encoded in terms of compositional structures on sequences of
words, leading to better performance on downstream question answering tasks.

We demonstrate that our agent captures the semantics of compound questions and generate inter-
pretable decomposition. Experimental results show that our novel approach achieves state-of-the-art
performance in two challenging datasets (WebQuestions and MetaQA), without re-designing com-
plex neural networks to answer compound questions.

2 RELATED WORK

2.1 KNOWLEDGE-BASED QUESTION ANSWERING

For combinational generalization (Battaglia et al., 2018) on the search space of knowledge graph,
many approaches (Yih et al., 2014; Yin et al., 2016; Zhang et al., 2017) tackle KBQA in a tandem
manner, i.e., topic entity linking followed by relation detection. An important line of research fo-
cused on directly parsing the semantics of natural language questions to structured queries (Cai &
Yates, 2013; Kwiatkowski et al., 2013; Yao & Van Durme, 2014; Yao et al., 2014; Bao et al., 2014;
Yih et al., 2014; 2015). An intermediate meaning representation or logical form is generated for
query construction. It often requires pre-defined rules or grammars (Berant et al., 2013) based on
hand-crafted features.

By contrast, another line of research puts more emphasis on representing natural language questions
instead of constructing knowledge graph queries. Employing CNNs (Dong et al., 2015; Yin et al.,
2016) or RNNs (Dai et al., 2016; Yu et al., 2017), variable-length questions are compressed into
their corresponding fix-length vector. Most approaches in this line focus on solving simple questions
because of the limited expression power of fix-length vector, consistent with observations (Sutskever
et al., 2014; Bahdanau et al., 2015) in Seq2Seq task such as Neural Machine Translation.

Closely related to the second line of research, our proposed model learns to decompose compound
question into simple questions, which eases the burden of learning vector representations for com-
pound question. Once the decomposition process is completed, a simple-question answerer directly
decodes the vector representation of simple questions to an inference chain of relations with the
desired order, which resolves the bottleneck of KBQA.
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2.2 REINFORCEMENT LEARNING FOR NATURAL LANGUAGE UNDERSTANDING

Many reinforcement learning approaches learn sentence representations in a bottom-up manner.
Yogatama et al. (2017) learn tree structures for the order of composing words into sentences using
reinforcement learning with Tree-LSTM (Tai et al., 2015; Zhu et al., 2015), while Zhang et al. (2018)
employ REINFORCE (Williams, 1992) to select useful words sequentially. Either in tree structure
or sequence, the vector representation is built up from the words, which benefits the downstream
natural language processing task such as text classification (Socher et al., 2013) and natural lan-
guage inference (Bowman et al., 2015). By contrast, from the top down, our proposed model learns
to decompose compound questions into simple questions, which helps to tackle the bottleneck of
KBQA piece by piece. See section 3 for more details.

Natural question understanding has attracted the attention of different communities. Iyyer et al.
(2017) introduce SequentialQA task that requires to parse the text to SQL which locates table cells
as answers. The questions in SequentialQA are decomposed from selected questions of WikiTable-
Questions dataset (Pasupat & Liang, 2015) by crowdsourced workers while we train an agent to
decompose questions using reinforcement learning. Talmor & Berant (2018) propose a ComplexWe-
bQuestion dataset that contains questions with compositional semantics while Bao et al. (2016) col-
lects a dataset called ComplexQuestions focusing on multi-constrained knowledge-based question
answering.

The closest idea to our work is Talmor & Berant (2018) which adopts a pointer network to decom-
pose questions and a reading comprehension model to retrieve answers from the Web. The main
difference is that they leverage explicit supervisions to guide the pointer network to correctly de-
compose complex web questions based on human logic (e.g., conjunction or composition) while we
allow the learning-to-decompose agent to discover good partition strategies that benefit downstream
task. Note that it is not necessarily consistent with human intuition or linguistic knowledge.

2.3 DEEP SEMANTIC ROLE LABELING

Without heavy feature engineering, semantic role labeling based on deep neural networks (Collobert
et al., 2011) focus on capturing dependencies between predicates and arguments by learning to
label semantic roles for each word. Zhou & Xu (2015) build an end-to-end system which takes
only original text information as input features, showing that deep neural networks can outperform
traditional approaches by a large margin without using any syntactic knowledge. Marcheggiani et al.
(2017) improve the role classifier by incorporating vector representations of both input sentences
and predicates. Tan et al. (2018) handle structural information and long-range dependencies with
self-attention mechanism.

This line of work concentrates on improving role classifier. It still requires rich supervisions for
training the role classifier at the token level. Our approach also requires to label an action for each
word, which is similar to role labeling. However, we train our approach at the sentence level which
omits word-by-word annotations. Our learning-to-decompose agent generates such annotations on
the fly by exploring the search space of strategies and increases the probability of good annotations
according to the feedback.

3 MODEL

Figure 2 illustrates an overview of our model and the data flow. Our model consists of two parts:
a learning-to-decompose agent that decomposes each input question into at most three partitions
and three identical simple-question answerers that map each partition to its corresponding relation
independently. We refer to the learning-to-decompose agent as the agent and three simple-question
answerers as the answerers in the rest of our paper for simplicity.

3.1 LEARNING-TO-DECOMPOSE AGENT

Our main idea is to best divide an input question into at most three partitions which each partition
contains the necessary information for the downstream simple-question answerer. Given an input
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Figure 2: An overview of our model and the flow of data. Two orange rounded rectangles correspond
to components of our model, a learning-to-decompose agent and three simple-question answerers.
The blue rectangles represent data in different forms. The solid line indicates the process of trans-
forming data points, while the dashed line indicates the feedback (loss or reward) received by our
model.

Figure 3: A zoom-in version of the lower half of figure 2. Our agent consists of two components: a
Memory Unit and an Action Unit. The Memory Unit observes current word at each time step t and
updates the state of its own memory. We use a feedforward neural network as policy network for the
Action Unit.

question of N words3 x = {x1,x2, . . . ,xN}, we assume that a sequence of words is essentially a
partially observable environment and we can only observe the corresponding vector representation
ot = xt ∈ RD at time step t. Figure 3 summarizes the process for generating decision of compound
question decomposition.

Memory Unit The agent has a Long Short-Term Memory (LSTM; Hochreiter & Schmidhuber
(1997)) cell unrolling for each time step to memorize input history.

it = σ(Wi[xt,ht−1] + bi) ft = σ(Wf [xt,ht−1] + bf )

gt = tanh(Wg[xt,ht−1] + bg) ot = σ(Wo[xt,ht−1] + bo)

ct = ft � ct−1 + it � gt ht = ot � tanh(ct)

(1)

where Wi, Wf , Wg , Wo ∈ RH×(D+H), bi, bf , bg , bo ∈ RH , and [·, ·] denotes the concatenation
of two vectors. σ(·) is the element-wise sigmoid activation function.

3Note that the length of sequences may vary from questions to questions. We handle such dynamic directly
without padding zeros. The similar situation exists in a game environment that allows early stopping.
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The state st ∈ R2H of the agent is defined as

st = [ct,ht] (2)

which maintained by the above memory cell (Eq. 1) unrolling for each time step. [·, ·] denotes the
concatenation of two vectors.

Action Unit The agent also has a stochastic policy network π(α|s;Wπ) where Wπ is the parameter
of the network. Specifically, we use a two-layer feedforward network that takes the agent’s state s
as its input:

π(α|s;Wπ) ∝ exp(W (2)
π (ReLU(W (1)

π s + b(1)π )) + b(2)π ) (3)

where W
(1)
π ∈ RH×2H , b(1)π ∈ RH , W (2)

π ∈ R3×H and b
(2)
π ∈ R3.

Following the learned policy, the agent decomposes a question of lengthN by generating a sequence
of actions αt ∈ {1st, 2nd, 3rd}, t = 1, 2, . . . , N . Words under the same decision (e.g. 1st) will be
appended into the same sub-sequence (e.g. the first partition).

Formally, x(k) = {x(k)
1 ,x

(k)
2 , . . . ,x

(k)
tk
}, k = 1, 2, 3 denotes the partitions of a question. Note that

in a partition, words are not necessarily consecutive4. The relative position of two words in original
question is preserved. t1 + t2 + t3 = N holds for every question.

Reward The episodic reward R will be +1 if the agent helps all the answerers to get the golden an-
swers after each episode, or −1 otherwise. There is another reward function R = Σ logP (Y ∗ | X)
that is widely used in the literature of using reinforcement learning for natural language processing
task (Bahdanau et al., 2017; Zhang et al., 2018). We choose the former as reward function for lower
variance.

Each unique rollout (sequence of actions) corresponds to unique compound question decomposition.
We do not assume that any question should be divided into exactly three parts. We allow our agent
to explore the search space of partition strategies and to increase the probability of good ones. The
goal of our agent is to learn partition strategies that benefits the answerers the most.

3.2 SIMPLE-QUESTION ANSWERERS

With the help of the learning-to-decompose agent, simple-question answerers can answer compound
questions. Once the question is decomposed into partitions as simple questions, each answerer takes
its partition x(k) = {x(k)

1 ,x
(k)
2 , . . . ,x

(k)
tk
} as input and classifies it as the corresponding relation in

knowledge graph.

For each partition x(k), we use LSTM network to construct simple-question representation directly.
The partition embedding is the last hidden state of LSTM network, denoted by x(k) ∈ R2H . We
again use a two-layer feedforward neural network to make prediction, i.e. estimate the likelihood of
golden relation r.

P (ŷ = r | x(k);Wp) ∝ exp(W (2)
p (ReLU(W (1)

p x(k) + b(1)p )) + b(2)p ) (4)

where W
(1)
p ∈ RH×2H , b(1)p ∈ RH , W (2)

p ∈ R3×H and b
(2)
p ∈ RC . C is the number of classes.

Each answerer only processes its corresponding partition and outputs a predicted relation. These
three modules share no parameters except the embedding layer because our agent will generates
conflict assignments for the same questions in different epoches. If all the answerers share same
parameters in different layers, data conflicts undermine the decision boundary and leads to unstable
training.

Note that we use a classification network for sequential inputs that is as simple as possible. In addi-
tion to facilitating the subsequent theoretical analysis, the simple-question answerers we proposed

4The subscripts of each partition are re-ordered for simplicity.
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are much simpler than good baselines for simple question answering over knowledge graph, with-
out modern architecture features such as bi-directional process, read-write memory (Bordes et al.,
2015), attention mechanism (Yin et al., 2016) or residual connection (Yu et al., 2017).

The main reason is that our agent learns to decompose input compound questions to the simplified
version which is answerable for such simple classifiers. This can be a strong evidence for validating
the agent’s ability on compound question decomposition.

3.3 TRAINING OUR MODEL

The agent and the answerers share the same embeddings. The agent can only observe word em-
beddings while the answerers are allowed to update them in the backward pass. We train three
simple-question answerers separately using Cross Entropy loss between the predicted relation and
the golden relation. These three answerers are independent of each other.

We do not use the pre-train trick for all the experiments since we have already observed consistent
convergence on different task settings. We reduce the variance of Monte-Carlo Policy Gradient
estimator by taking multiple (≤ 5) rollouts for each question and subtracting a baseline that estimates
the expected future reward given the observation at each time step.

The Baseline We follow Ranzato et al. (2016) which uses a linear regressor which takes the agent’s
memory state st as input and minimizes the mean squared loss for training. Such a loss signal is
used for updating the parameters of baseline only. The regressor is an unbiased estimator of expected
future rewards since it only depends on the agent’s memory states.

Our agent learns a optimal policy to decompose compound questions into simple ones using Monte-
Carlo Policy Gradient (MCPG) method. The partitions of question is then feeded to corresponding
simple-question answerers for policy evaluation. The agent takes the final episodic reward in return.

4 EXPERIMENTS

The goal of our experiments is to evaluate our hypothesis that our model discovers useful question
partitions and composition orders that benefit simple-question answerers to tackle compound ques-
tion answering. Our experiments are three-fold. First, we trained the proposed model to master
the order of arithmetic operators (e.g., + − ×÷) on an artificial dataset. Second, we evaluate our
method on the standard benchmark dataset MetaQA (Zhang et al., 2017). Finally, we discuss some
interesting properties of our agent by case study.

4.1 MASTERING ARITHMETIC SKILLS

The agent’s ability of compound question decomposition can be viewed as the ability of priority
assignment. To validate the decomposition ability of our proposed model, we train our model to
master the order of arithmetic operations. We generate an artificial dataset of complex algebraic
expressions. (e.g. 1 + 2 − 3 × 4 ÷ 5 =? or 1 + (2 − 3) × 4 ÷ 5). The algebraic expression is
essentially a question in math language which the corresponding answer is simply a real number.

Specifically, the complex algebraic expression is a sequence of arithmetic operators including +,
−, ×, ÷, ( and ). We randomly sample a symbol sequence of length N , with restriction of the
legality of parentheses. The number of parentheses is P (≤ 2). The number of symbols surrounding
by parentheses is Q. The position of parentheses is randomly selected to increase the diversity of
expression patterns. For example, (+×)+(÷) and +×(+×)−÷ are data points (1+2×3)+(4÷5)
and 1 + 2× (3 + 4× 5)− 6÷ 7 with N = 8.

This task aims to test the learning-to-decompose agent whether it can assign a feasible order of
arithmetic operations. We require the agent to assign higher priority for operations surrounding by
parentheses and lower priority for the rest of operations. We also require that our agent can learn a
policy from short expressions (N ≤ 8), which generalizes to long ones (13 ≤ N ≤ 16).

We use 100-dimensional (D = 100) embeddings for symbols with Glorot initialization (Glorot &
Bengio, 2010). The dimension of hidden state and cell state of memory unit H is 128. We use
the RMSProp optimizer (Tieleman & Hinton, 2012) to train all the networks with the parameters
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recommended in the original paper except the learning rate α. The learning rate for the agent and
the answerers is 0.00001 while the learning rate for the baseline is 0.0001. We test the performance
in different settings. Table 1 summarizes the experiment results.

Table 1: Agent Performance under Different Settings.
Train Test Test ACC

N = 5, P = 0, Q = 0 N = 20, P = 0, Q = 0 99.21
N = 8, P = 1, Q = 3 N = 13, P = 1, Q = 3 93.37
N = 8, P = 1, Q = 3 N = 13, P = 1, Q = 7 66.42

The first line indicates that our agent learns an arithmetic skill that multiplication and division have
higher priority than addition and subtraction. The second line indicates that our agent learns to
discover the higher-priority expression between parentheses. The third line, compared to the second
line, indicates that increasing the distance between two parentheses could harm the performance. We
argue that this is because of the Long Short-Term Memory Unit of our agent suffers when carrying
the information of left parenthesis for such a long distance.

4.2 KBQA BENCHMARK

We evaluate our proposed model on the test set of two challenging KBQA research dataset, i.e.,
WebQuestions (Berant et al., 2013) and MetaQA (Zhang et al., 2017). Each question in both datasets
is labeled with the golden topic entity and the inference chain of relations. The statistics of MetaQA
dataset is shown in table 2. The number of compound questions in MetaQA is roughly twice that of
simple questions. The max length of training questions is 16. The size of vocabulary in questions is
39,568.

Table 2: Data Statistics on MetaQA Dataset.
1-hop 2-hop 3-hop Total

Train 96,106 118,980 114,196 329,282
Dev 9,992 14,872 14,274 39,138
Test 9,947 14,872 14,274 39,093

The coupled knowledge graph contains 43,234 entities and 9 relations. We also augmented the
relation set with the inversed relations, as well as a ”NO OP” relation as placeholder. The total
number of relations we used is 14 since some inversed relations are meaningless.

WebQuestions contains 2,834 questions for training, 944 questions for validation and 2,032 ques-
tions for testing respectively. We use 602 relations for the relation classification task. The number
of compound questions in WebQuestions is roughly equal to that of simple questions. Note that a
compound question in WebQuestions is decomposed into two partitions since the maximum number
of corresponding relations is two.

One can either assume topic entity of each question is linked or use a simple string matching heuristic
like character trigrams matching to link topic entity to knowledge graph directly. We use the former
setting while the performance of the latter is reasonable good. We tend to evaluate the relation
detection performance directly.

For both datasets, we use 100-dimensional (D = 100) word embeddings with Glorot initialization
(Glorot & Bengio, 2010). The dimension of hidden state and cell state of memory unit H is 128.
We use the RMSProp optimizer (Tieleman & Hinton, 2012) to train the agent with the parameters
recommended in the original paper except the learning rate. We train the rest of our model using
Adam (Kingma & Ba, 2015) with default parameters. The learning rate for all the modules is 0.0001
no matter the optimizer it is. We use four samples for Monte-Carlo Policy Gradient estimator of
REINFORCE. The metric for relation detection is overall accuracy that only cumulates itself if all
relations of a compound question are correct.

Table 3 presents our results on MetaQA dataset. The last column for total accuracy is the most rep-
resentative for our model’s performance since the only assumption we made about input questions
is the number of corresponding relations is at most three.
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Table 3: Accuracy on MetaQA test set.
Model 1-hop 2-hop 3-hop Total
KV-MemNN 95.8 25.1 10.1 37.6
Bordes, Chopra, and Weston’s QA system 95.7 81.8 28.4 65.8
VRN (Zhang et al., 2017) 97.5 89.9 62.5 81.8
Ours 98.1 90.8 83.4 90.0

Table 4: Accuracy on WebQuestions relation detection.
Model Accuracy
HR-BiLSTM (Yu et al., 2017) 82.53
HR-BiLSTM w/o relation name 81.69
HR-BiLSTM w/o relation words 79.68
Ours 81.74

Table 4 presents our results on WebQuestions Dataset. Note that there are 5% of relations in test set
that have never seen in the training samples. To address this issue, recent advances (Yu et al., 2017)
on this dataset focus on leveraging information of the name of Freebase relation while we are only
using question information for classification.

4.3 ABLATION STUDY

We assume that the compound question can be decomposed into at most three simple questions. In
practice, this generalized assumption of answerable questions is not necessary. One example is that
WebQuestions only contains compound questions corresponding to two but not three relations. It
indicates that people tend to ask less complicated questions more often. So we conduct an ablation
study for the hyperparameters of this central assumption in our paper.

We assume that all the questions in MetaQA dataset contain at most two corresponding relations.
We run the same code with the same hyperparameters except we only use two simple-question
answerers. The purpose of the evaluation is to prove that our model improves performance on 1-hop
and 2-hop questions by giving up the ability to answer three-hop questions. Table 5 presents our
results on ablation test. We can draw a conclusion that there exists a trade-off between answering
more complex questions and achieving better performance by limiting the size of search space.

4.4 CASE STUDY

Figure 4 illustrates a continuous example of figure 1 for the case study, which is generated by our
learning-to-decompose agent. Assuming the topic entity e is detected and replaced by a place-
holder, the agent may discover two different structures of the question that is consistent with
human intuition. Since the knowledge graph does not have a movie-to-movie relation named
”share actor with”, the lower partition can not help the answerers classify relations correctly. How-
ever, the upper partition will be rewarded. As a result, our agent optimizes its strategies such that it
can decompose the original question in the way that benefits the downstream answerers the most.

We observe the fact that our model understands the concept of ”share” as the behavior ”take the
inversed relation”. That is, ”share actors” in a question is decomposed to ”share” and ”actors” in
two partitions. The corresponding formulation is g(e) = f2(f1(e)) = (f2 ◦ f1)(e). We observe the
same phenomenon on ”share directors”. We believe it is a set of strong evidence for supporting our
main claims.

5 DISCUSSION

Understanding compound questions, in terms of The Principle of Semantic Compositionality (Pel-
letier, 1994), require one to decompose the meaning of a whole into the meaning of parts. While
previous works focus on leveraging knowledge graph for generating a feasible path to answers, we
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Table 5: Ablation study for accuracy on MetaQA test set.
Model 1-hop 2-hop Total
Ours (Three Answerers) 98.1 90.8 93.7
Ours (Two Answerers) 99.2 93.1 95.5

Figure 4: A continuous example of figure 1. The hollow circle indicates the corresponding action
the agent takes for each time step. The upper half is the actual prediction while the lower half is a
potential partition. Since we do not allow a word to join two partitions, the agent learns to separate
”share” and ”actors” into different partitions to maximize information utilization.

propose a novel approach making full use of question semantics efficiently, in terms of the Principle
of Semantic Compositionality.

In other words, it is counterintuitive that compressing the whole meaning of a variable-length sen-
tence to a fixed-length vector, which leaves the burden to the downstream relation classifier. In
contrast, we assume that a compound question can be decomposed into three simple questions at
most. Our model generates partitions by a learned policy given a question. The vector representa-
tions of each partition are then fed into the downstream relation classifier.

While previous works focus on leveraging knowledge graph for generating a feasible path to an-
swers, we propose a novel approach making full use of question semantics efficiently, in terms of
the Principle of Semantic Compositionality.

Our learning-to-decompose agent can also serve as a plug-and-play module for other question an-
swering task that requires to understand compound questions. This paper is an example of how to
help the simple-question answerers to understand compound questions. The answerable question
assumption must be relaxed in order to generalize question answering.
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