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ABSTRACT

Deep metric learning (DML) has received much attention in deep learning due to
its wide applications in computer vision. Previous studies have focused on de-
signing complicated losses and hard example mining methods, which are mostly
heuristic and lack of theoretical understanding. In this paper, we cast DML as a
simple pairwise binary classification problem that classifies a pair of examples
as similar or dissimilar. It identifies the most critical issue in this problem—
imbalanced data pairs. To tackle this issue, we propose a simple and effective
framework to sample pairs in a batch of data for updating the model. The key
to this framework is to define a robust loss for all pairs over a mini-batch of data,
which is formulated by distributionally robust optimization. The flexibility in con-
structing the uncertainty decision set of the dual variable allows us to recover
state-of-the-art complicated losses and also to induce novel variants. Empirical
studies on several benchmark data sets demonstrate that our simple and effective
method outperforms the state-of-the-art results.

1 INTRODUCTION

Metric Learning aims to learn a metric to measure the distance between examples that captures
certain notion of human-defined similarity between examples. Deep metric learning (DML) has
emerged as an effective approach for learning a metric by training a deep neural network. Simply
speaking, a deep neural network can induce new feature embedding of examples and it is trained
in such a way that the Euclidean distance between the induced feature embeddings of two similar
examples shall be small and that between the induced feature embeddings of two dissimilar pairs
shall be large. DML has been widely used in many tasks such as face recognition (Fan et al. (2017)),
image retrieval (Chen & Deng (2019)), and classification (Qian et al. (2015); Li et al. (2019)).

However, unlike training a deep neural network by minimizing the classification error, training a
deep neural network for metric learning is notoriously more difficult (Qian et al. (2018); Wang et al.
(2017)). Many studies have attempted to address this challenge by focusing on several issues. The
first issue is how to define a loss function over pairs of examples. A variety of loss functions have
been proposed such as contrastive loss (Hadsell et al. (2006)), binomial deviance loss (Yi et al.),
margin loss (Wu et al. (2017)), lifted-structure (LS) loss (Oh Song et al. (2016)), N-pair loss (Sohn
(2016)), triplet loss (Schroff et al. (2015)), multi-similarity (MS) loss (Wang et al. (2019). The
major difference between these pair-based losses lies at how the pairs interact with each other in
a mini-batch. In simple pairwise loss such as binomial deviance loss, contrastive loss, and margin
loss, pairs are regarded as independent of each other. In triplet loss, a positive pair only interacts
with one negative pair. In N-pair loss, a positive pair interacts with all negative pairs. In LS loss and
MS loss, a positive pair interacts with all positive pairs and all negative pairs. The trend is that the
loss functions become increasingly complicated but are difficult to understand.

In parallel with the loss function, how to select informative pairs to construct the loss function has
also received great attention. Traditional approaches that construct pairs or triplets over all examples
before training suffer from prohibitive O(N2) or O(N3) sample complexity, where N is the total
number of examples. To tackle this issue, constructing pairs within a mini-batch is widely used in
practice. Although it helps mitigate the computational and storage burden, slow convergence and
model degeneration with inferior performance still commonly exist when using all pairs in a mini-
batch to update the model. To combat this issue, various pair mining methods have been proposed
to complement the design of loss function, such as hard (semi-hard) mining for triplet loss (Schroff
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et al. (2015)), distance weighted sampling (DWS) for margin loss (Wu et al. (2017)), MS sampling
for MS loss (Wang et al. (2019)). These sampling methods usually keep all positive (similar) pairs
and select roughly the same order of negative (dissimilar) pairs according to some criterion.

Regardless of these great efforts, existing studies either fail to explain the most fundamental problem
in DML or fail to propose most effective approach towards addressing the fundamental challenge. It
is evident that the loss functions become more and more complicated. But it is still unclear why these
complicated losses are effective and how does the pair mining methods affect the overall loss within
a mini-batch. In this paper, we propose a novel effective solution to DML and bring new insights
from the perspective of learning theory that can guide the discovery of new methods. Our philosophy
is simple: casting the problem of DML into a simple pairwise classification problem and focusing on
addressing the most critical issue, i.e., the sheer imbalance between positive pairs and negative pairs.
To this end, we employ simple pairwise loss functions (e.g., margin loss, binomial deviance loss)
and propose a flexible distributionally robust optimization (DRO) framework for defining a robust
loss over pairs within a mini-batch. The idea of DRO is to assign different weights to different pairs
that are optimized by maximizing the weighted loss over an uncertainty set for the distributional
variable. The model is updated by stochastic gradient descent with stochastic gradients computed
based on the sampled pairs according to the found optimal distributional variable.

The DRO framework allows us to (i) connect to advanced learning theories that already exhibit their
power for imbalanced data, hence providing theoretical explanation for the proposed framework; (ii)
to unify pair sampling and loss-based methods to provide a unified perspective for existing solutions;
(iii) to induce simple and effective methods for DML, leading to state-of-the-art performance on
several benchmark datasets. The contributions of our work are summarized as follows:
• We propose a general solution framework for DML, i.e., by defining a robust overall loss based on

the DRO formulation and updating the model based on pairs sampled according to the optimized
sampling probabilities. We provide theoretical justification of the proposed framework from the
perspective of advanced learning theories.

• We show that the general DRO framework can recover existing methods based on complicated
pair-based losses: LS loss and MS loss by specifying different uncertainty sets for the distribu-
tional variable in DRO. It verifies that our method is general and brings a unified perspective
regarding pair sampling and complicated loss over all pairs within a batch.

• We also propose simple solutions under the general DRO framework for tackling DML. Exper-
imental results show that our proposed variants of DRO framework outperform state-of-the-art
methods on several benchmark datasets.

2 RELATED WORK

Loss Design. The loss function is usually defined over the similarities or distances between the
induced feature embeddings of pairs. There are simple pairwise losses that simply regard DML as
binary classification problem using averaged loss over pairs, e.g., contrastive loss, binomial loss,
margin loss. It is notable that the binomial loss proposed in (Yi et al.) assigns asymmetric weights
for positive and negative pairs, which can mitigate the issue of imbalance to certain degree. The
principal of the newly designed complicated pair-based losses can be summarized as heuristically
discovering specific kinds of relevant information between groups of pairs to boost the training. The
key difference between these complicated losses lies at how to group the pairs. N-pair loss put one
positive pair and all negative pairs together, Lifted-structure loss and MS-loss group all positive pairs
together and all negative pairs together for each example. In contrast, our DRO framework employs
simple pairwise loss but induce complicated overall loss in a systematic and interpretable way.

Pair Mining/Pair Weighting. Wu et al. (2017) points out that pair mining plays an important role
in distance metric learning. Different pair mining methods have been proposed, including semi-
hard sampling for triplet loss, distance weighted sampling (DWS) for margin loss, MS mining for
MS losses. These pair mining methods aim to select the hard positive and negative pairs for each
anchor. For instance, Schroff et al. (2015) selects the hard negative pairs whose distance is smaller
than that between the positive pairs in triplets, Shi et al. (2016) selects the hardest positive pair
whose distance is smaller than that of the nearest negative pair in a batch, and MS mining (Wang
et al. (2019)) selects hard negative pairs whose distance is smaller than the largest distance between
positive pairs and hard positive pairs whose distance is larger than the smallest distance between
negative pairs at the same time. DWS method keeps all positive pairs but samples negative pairs
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according to their distance distribution within a batch. The proposed DRO framework induce a
pair sampling method by using the optimal distributional variables that defines the robust loss over
pairs within a mini-batch. As a result, the sampling probabilities induced by our DRO framework is
automatically adaptive to the pair-based losses. There are other works that study the problem from
the perspective of pair weighting instead of pair sampling. For example, Yu et al. (2018) heuristically
design exponential weights for the different pairs in a triplet, which is a special case of our DRO
framework. Details are provided in the supplementary. However, since the quality of anchors varies
very much, it may not be reasonable to sample the same number of pairs from all anchors.

Imbalance Data Classification. There are many studies in machine learning which have tackled the
imbalanced issue. Commonly used tricks include over-sampling, under-sampling and cost-sensitive
learning. However, these approaches do not take the differences between examples into account.
Other effective approaches grounded on advanced learning theories include minimizing maximal
losses (Shalev-Shwartz & Wexler, 2016), minimizing top-k losses (Fan et al., 2017) and minimiz-
ing variance-regularized losses (Namkoong & Duchi, 2017). However, these approaches are not
efficient for deep learning with big data, which is a severe issue in DML. In contrast, the proposed
DRO formulation is defined over a mini-batch of examples, which inherits the theoretical explana-
tion from the literature and is much more efficient for DML. In addition, the induced loss by our
DRO formulation include maximal loss, top-k loss and variance-regularized loss as special cases by
specifying different uncertainty sets of the distributional variable.

3 DML AS A DRO-BASED BINARY CLASSIFICATION PROBLEM

In this section, we will first present a general framework for DML based on DRO with theoretical
justification. We will then discuss three simple variants of the proposed framework and also show
how the proposed framework recover existing complicated losses for DML.

Preliminaries. Let x ∈ RD denote an input data (e.g., image) and f(·; θ) : RD → Rd denote
the feature embedding function defined by a deep neural network parameterized by θ. The cen-
tral task in DML is to update the model parameter θ by leveraging pairs of similar and dissimilar
examples. Following most existing works, at each iteration we will sample a mini-batch of exam-
ples denoted by {x1, ...,xB}. We can construct B2 pairs between these examples 1, and let yij
denote the label of pairs, i.e., yij = 1 if the pair is similar (positive), and yij = 0 if the pair is
dissimilar (negative). The label of pairs can be either defined by users or derived from the class
label of individual examples. Existing works of DML follow the same paradigm for learning the
deep neural network i.e., a loss function F (θ) is first defined over the pairs within a mini-batch and
the model parameter θ is updated by gradient-based methods. Various gradient-based methods can
be used, including stochastic gradient descent (SGD), stochastic momentum methods and adaptive
gradient methods (e.g. Adam). Taking SGD as an example, the model parameter θ can be updated
by θ ← θ − η∇F (θ), where η denotes the learning rate. The focus here is to how to define the loss
function F (θ) over all pairs within a mini-batch. As mentioned earlier, we will cast the problem as
simple binary classification problem, i.e., classifying a pair into positive or negative. To this end, we
use lij(θ) = l(f(xi; θ), f(xj ; θ), yij) denote the pairwise classification loss between xi and xj in
the embedding space (e.g., margin loss Wu et al. (2017), binomial loss Yi et al.). A naive approach
for DML is to use the averaged loss over all pairs, i.e., Favg(θ) = 1

B2

∑B
i=1

∑B
j=1 lij(θ). However,

this approach will suffer from the severe imbalanced issue, i.e., most pairs are negative pairs. The
gradient of Favg will be dominated by that of negative pairs.

3.1 GENERAL DRO-BASED FRAMEWORK

To address the imbalanced pair issue, we propose a general DRO formulation to compute a robust
loss. The formulation of our DRO-based loss over all pairs within a mini-batch is given below:

F (θ) = max
p∈U
{g(θ,p) :=

B∑
i=1

B∑
j=1

pij lij(θ)}, (1)

where p ∈ RB2

+ is a non-negative vector with each element pij representing a weight for an individ-
ual pair. U ⊆ RB2

denotes the decision set of p, which encodes some prior knowledge about p. In

1For simplicity, we consider all pairs including self-pair.
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the literature of DRO Namkoong & Duchi (2017), p is interpreted as a probability vector such that∑
ij pij = 1 called the distributional variable and U denotes the uncertainty set that specifies how

p deviates from the uniform probabilities (1/B2, . . . , 1/B2). In next subsection, we will propose
simple variants of the above general framework by specifying different constraints or regularizations
for p. Below, we will provide some theoretical evidences to justify the above framework.

To theoretically justify the above loss, we connect (1) to exiting works in machine learning by
considering three different uncertainty sets for p. First, we can consider a simple constraint U =
∆ = {pij ≥ 0,

∑
ij pij = 1}. As a result, F (θ) = maxij lij(θ) becomes the maximal loss

over all pairs. Shalev-Shwartz & Wexler (2016) shows that minimizing maximum loss is robust to
imbalanced data distributions and also derives better generalization error for imbalanced data with a
rare class. However, the maximal loss is more sensitive to outliers (Zhu et al., 2019). To address this
issue, top-K loss (Fan et al., 2017) and variance-regularized loss (Namkoong & Duchi, 2017) are
proposed, which can be induced by the above DRO framework. If we set U = {

∑
ij pij = 1, 0 ≤

pij ≤ 1/K}, F will become the top-K loss F (θ) = 1
K

∑K
i=1 l[i](θ), where l[i](θ) denotes the i-th

largest loss over all pairs. If we set Uφ = {p ∈ ∆, Dφ(p‖1/B2) ≤ ρ
B2 }, where Dφ(p‖p′) =∫

φ( dpdp′ )dp
′ is the φ-divergence between two distributions p and p′ with φ(t) = 1

2 (t−1)2, then the
DRO-based loss becomes the variance-regularized loss under certain condition about the variance
of the random loss, i.e., for a set of i.i.d random losses {`1, ..., `n}(n = B2) we could have

sup
p∈Uφ

n∑
i=1

pi`i =
1

n

n∑
i=1

`i +

√
2ρVarn(`)

n
,

where Varn(`) denotes the empirical variance of `1, ..., `n. We can see that the second term in R.H.S
of the above equation involves the variance, which can play a role of regularization. The variance-
regularized loss has been justified from advanced learning theory by Namkoong & Duchi (2017),
and its promising performance for imbalanced data has been observed as well.

Before ending this subsection, we will discuss how to update the model parameter θ based on the ro-
bust lossF (θ) defined by (1). A simple approach is to find an optimal distributional variable p∗ to (1)
and then update θ according to the subgradient of weighted loss by ∂θg(θ,p∗) =

∑
ij p
∗
ij∇lij(θ),

which is justified by the following lemma.
Lemma 1 Assume that g is proper, lower-semicontinuous in θ and level-bounded in p locally uni-
formly in θ. Then the subgradient ∂F (θ) ⊂

⋃
p∗∈P∗(θ) ∂θg(θ,p∗), where P ∗(θ) denotes the optimal

solution set of the maximization problem in (1). Furthermore, when lij(θ) is smooth in θ and P ∗(θ)
is a singleton, i.e., p∗ = arg maxp g(θ,p) is unique, we have ∂F (θ) = ∂θg(θ, p∗).

Remark 1 The above lemma can be proved by Theorem 10.13 in Rockafellar & Wets (2009). It
shows that even if we may not directly compute ∂F (θ), our framework can at least obtain its superset
∂θg(θ,p∗). Particularly, if we have additional conditions, i.e., lij(θ) is smooth in θ and the optimal
solution p∗ is unique (considering our regularized formulation below), it theoretically guarantees
that our framework exactly computes ∂F (θ).

3.2 PROPOSED THREE VARIANTS OF OUR FRAMEWORK

In this subsection, we present three variants of our general framework. In order to contrast to other
variants recovering existing complicated losses presented in next subsection, we introduce some
notations and make some simplifications. For each example xi that serves as an anchor data, let
Pi = {j|yij = 1, j ∈ [B]} and Ni = {j|yij = 0, j ∈ [B]} denote the index sets of positive and
negative pairs, respectively. Let P =

⋃B
i=1 Pi and N =

⋃B
i=1Ni. We denote the cardinality of a

set by P = |P|. For simplicity, we let Pi = |Pi|, Ni = |Ni|, P = |P| and N = |N |. Since zero
losses usually do not contribute to the computation of the subgradient for updating the model, we
can simply eliminate those examples for consideration.

The first variant is to simply select the top-K pairs with K-largest losses, which is equivalent to the
following DRO formulation:

DRO-TopK: max
p

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ), s.t.
B∑
i=1

∑
j∈Pi∪Ni

pij = 1, 0 ≤ pij ≤ 1/K,
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where K is a hyper-parameter. The gradient of the robust loss can be simply computed by sorting
the pairwise losses and computing the average of top-K losses.

The second variant is a variant of the variance-regularized loss. Instead of specifying the uncertainty
set Uφ, we use a regularization term for the ease of computation, which is defined by

DRO-KL: max
p∈RP+N

+

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ)− γDKL(p|| 1

P +N
), s.t.

B∑
i=1

∑
j∈Pi∪Ni

pij = 1,

where γ > 0 is a hyper-parameter and DKL denotes the KL divergence between two probabilities.
The optimal solution to p can be easily computed following Namkoong & Duchi (2016). It is notable
that the optimal solution p∗ is not necessarily sparse. Hence, computing

∑
ij p
∗
ij∇lij(θ) needs to

compute the gradient of pairwise loss for all pairs, which could be prohibitive in practice when the
mini-batch size is large. To alleviate this issue, we can simply sample a subset of pairs according to
probabilities in p∗ and the compute the averaged gradient of these sampled pairs.

The third variant of our DRO framework is explicitly balancing the number of positive pairs and
negative pairs by choosing top K/2 pairs for each class, which is denoted by DRO-TopK-PN:

DRO-TopK-PN: max
p∈{0,1}P+N

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ), s.t.
B∑
i=1

∑
j∈Pi

pij ≤
K

2
,

B∑
i=1

∑
j∈Ni

pij ≤
K

2
.

For implementation, we can simply select K/2 positive pairs with largest losses and K/2 negative
pairs with largest loss respectively, and compute averaged gradient of the pairwise losses of the
selected pairs for updating the model parameter.

3.3 RECOVERING THE METHOD BASED ON SOTA PAIR-BASED LOSS

Next we show that proposed framework can recover the method based on SOTA complicated losses.
With the induced feature vector f(x; θ) normalized to have unit norm, we define the similarity of two
samples as Sij := 〈f(xi; θ), f(xj ; θ)〉, where 〈·, ·〉 denotes dot product. Specifically, we consider
two SOTA loss functions, LS and MS loss, which are defined below:

LMS =
1

n

n∑
i=1

{ 1

α
log[1 +

∑
k∈Pi

e−α(Sik−λ)] +
1

β
log[1 +

∑
k∈Ni

eβ(Sik−λ)]} (2)

LLS =

n∑
i=1

[log
∑
k∈Pi

eλ−Sik + log
∑
k∈Ni

eSik−λ]+. (3)

where α, β, λ are hyper-parameters of these losses.

The key to our argument is that the gradient computed based on these losses can be exactly computed
according to our DRO framework by choosing appropriate constrained set U and setting the pairwise
loss as the margin loss. To this end, we first show the gradient based on the LS loss, which can be
computed by (Wang et al., 2019):

∂L(S)

∂θ
=
∂L(S)

∂S
· ∂S
∂θ

=

B∑
i=1

B∑
j=1

∂L(S)

∂Sij
· ∂Sij
∂θ

(4)

which can be alternatively written as
∂L(S)

∂θ
=

B∑
i=1

( ∑
j∈Ni

w−ij
∂Sij
∂θ
−
∑
j∈Pi

w+
ij

Sij
∂θ

)
. (5)

It can be shown that for LS loss, derivations are provided in the supplementary, we have

w+
ij =

eλ−Sij

B∑
k∈Pi

eλ−Sik
=

1
B∑

k∈Pi
eSij−Sik

, w−ij =
eSij−λ

B∑
k∈Ni

eSik−λ
=

1
B∑

k∈Ni
eSik−Sij

.
(6)

To recover the gradient of the LS loss under our DRO framework, we employ the pairwise margin
loss for lij(θ), i.e., lij(θ) = [m + yij(λ − Sij)]+, where m and λ are two hyper-parameters and
[a]+ = max{0, a}. Assume that the margin parameter m is sufficiently large such that lij(θ) > 0
for all pairs. The key to deriving the same gradient of the LS loss under our framework is to group
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distributional variables in p for the positive and negative pairs according to the anchor data. Let
p+
i ∈ RPi and p−i ∈ RNi denote the corresponding vectors of positive and negative pairs for the

anchor xi, respectively. Let us consider the following DRO formulation:

F (θ) = max
p∈RP+N

+

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ)−
B∑
i=1

(
γ+i DKL(p+

i ||
1
Pi

) + γ−i DKL(p−i ||
1
Ni

)
)

s.t.
∑
j∈Pi

pij = 1,
∑
k∈Ni

pik = 1, for i ∈ [B],

(7)

where γ+i ≥ 0 and γ−i ≥ 0 for i ∈ [B] are hyper-parameters. we can easily derive the closed-form
solution for p∗, i.e., p+∗ij = 1∑

k∈Pi
e(Sij−Sik)/γ

+
i

, and p−∗ij = 1∑
k∈Ni

e(Sik−Sij)/γ
−
i

. Then computing the

gradient of the robust loss with respect to θ by using the above optimal p∗, we have:

∂F (θ) =

B∑
i=1

( ∑
j∈Ni

p−∗ij
∂Sij
∂θ
−
∑
j∈Pi

p+∗ij
∂Sij
∂θ

)
which exactly recover the gradient in (6) by setting γ+i = γ−i = 1.

Finally, we can recover the gradient based on the MS loss in a very similar way. The difference is
to add a pseudo positive pair and pseudo negative pair with 0 loss for each anchor xi, and augment
each p+

i and p−i by one additional dimension. The details are provided in the supplementary.

4 EXPERIMENTS

Our methods was implemented by Pytorch and using BN-Inception network (Ioffe & Szegedy
(2015)) pre-trained on ImageNet ILSVRC (Russakovsky et al. (2015)) to fairly compare with other
works. The same as (Wang et al. (2019)), a FC layer on the top of the model structure following
the global pooling layer was added with randomly initialization for our task. Adam Optimizer with
1e−5 learning rate was used for all our experiments.

We verify our DRO framework on image retrieval task with three standard datasets, Cub-200-2011,
Cars-196 and In-Shop. These three datasets are split according to the standard protocol. For Cub-
200-2011, the first 100 classes with 5864 images are used for training, and the the other 100 classes
with 5924 images are saved for testing. Cars-196 consists of 196 car models with 16,185 images.
We use the first 98 classes with 8054 images for training and the remaining 98 classes with 8,131
images for testing. For In-Shop, 997 classes with 25882 images are used for training. The test set
is further partitioned to a query set with 14218 images of 3985 classes, and a gallery set containing
3985 classes with 12612 images. Batches are constructed with the following rule: we first sample
a certain number of classes and then randomly sample M instances for each class. The standard
recall@k evaluation metric is used in all our experiments, where k = {1, 2, 4, 8, 16, 32} on Cub-
200-2011 and Car-196, and k = {1, 10, 20, 30, 40, 50} on In-Shop. We apply margin loss (LM ) and
binomial loss (LB , Yi et al.) as base losses for our DRO framework. m is the margin in LM . λ is
the threshold for both LM and LB . α and β are hyperparameters in LB .

4.1 QUANTITATIVE RESULTS

In this experiment, we compare our DRO framework with other SOTA baselines on Cub-200-2011,
Cars-196 and In-Shop, which includes Wang et al. (2019); Yu et al. (2018); Kim et al. (2018); Opitz
et al. (2018); Ge (2018); Harwood et al. (2017); Wu et al. (2017); Oh Song et al. (2017). Among
them, mining-based methods are Clusetring, HDC, Margin, Smart Mining and HDL. ABIER and
ABE are ensemble methods. HAP2S E and MS are sampling-based methods, which are highly
related to our methods. For our DRO framework, we test all three variants which are proposed
in section 3. We apply two loss functions, margin loss and binomial loss, respectively. Since
DRO p-sampling works on all pairs in a batch, the binomial variant may not directly apply to p-
sampling. Thus, it makes totally five variants of our DRO framework, denoted by DRO-TopKM ,
DRO-TopKB , DRO-TopK-PNM , DRO-TopK-PNB and DRO-KLM , where the subscript M and
B represent the variants of our framework using margin loss and binomial loss, respectively. We
set embedding space dimension d = 1024. The batchsize is set B = 80 on Cub-200-2011 and
Cars-196, B = 640 on In-Shop. γ is tuned from the range = {0.1 : 0.2 : 0.9} on all three
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Table 1: Recall@k on Cub-200-2011 and Cars-196

Cub-200-2011 Cars-196
Recall@k(%) 1 2 4 8 16 32 1 2 4 8 16 32

Clusetring(Oh Song et al. (2017)) 48.2 61.4 71.8 81.9 - - 58.1 70.6 80.3 87.8 - -
HDC(Oh Song et al. (2017)) 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4

Margin(Wu et al. (2017)) 63.6 74.4 83.1 90.0 94.2 - 79.6 86.5 91.9 95.1 97.3 -
Smart Mining(Harwood et al. (2017)) 49.8 62.3 74.1 83.3 - - 64.7 76.2 84.2 90.2 - -

HDL(Ge (2018)) 57.1 68.8 78.7 86.5 92.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0
ABIER(Opitz et al. (2018)) 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7

ABE(Kim et al. (2018)) 60.6 71.5 79.8 87.4 - - 85.2 90.5 94.0 96.1 - -
HAP2S E(Yu et al. (2018)) 56.1 68.3 79.2 86.9 - - 74.1 83.5 89.9 94.1 - -

MS(Wang et al. (2019)) 65.7 77.0 86.3 91.3 94.8 97.0 84.1 90.4 94.0 96.5 98.0 98.9
DRO-TopKM (Ours) 67.4 77.7 85.9 91.6 95.0 97.3 86.0 91.7 95.0 97.3 98.5 99.2
DRO-TopKB(Ours) 68.1 78.4 86.0 91.4 95.1 97.6 85.4 91.0 94.2 96.5 98.0 99.0

DRO-TopK-PNM (Ours) 67.3 77.6 85.7 91.2 95.0 97.7 86.1 91.7 95.1 97.1 98.4 99.1
DRO-TopK-PNB(Ours) 67.6 77.9 86.0 91.8 95.2 97.7 86.2 91.7 95.8 97.4 98.6 99.3

DRO-KLM (Ours) 67.7 78.0 86.1 91.8 95.6 97.8 86.4 91.9 95.4 97.5 98.7 99.3

datasets and K is tuned from {160, 200, 240, 280} on Cub-200-2011 and Cars-196, and selected
from {640, 960, 1280, 1600, 1920} on In-Shop.

Table 1 and 3 report the experiment results. We mark the best performer in bold in the corresponding
evaluation measure on each column. For our framework, particularly, we mark those who outper-
form all other SOTA methods in bold. We can see that our five variants outperform other SOTA
methods on recall@1 on all three datasets. Particularly on Cars-196, our five variants outperforms
other SOTA methods on all recall@k measures. On Cub-200-2011, DRO-TopKB achieves a higher
recall@1 (improving 2.4 in recall@1) than the best SOTA, MS. On Cars-196, DRO-KLM has the best
performance, which improves 2.3 and 1.2 in recall@1 compared to the best non-ensemble SOTA,
MS, and the best ensemble SOTA, ABE. On In-Shop, DRO-TopK-PNM improves 1.6 in recall@1
compared to the best results among SOTA, MS. The above results verify 1) the effectiveness of our
DRO sampling methods and 2) the flexibility of our DRO framework to adopt different losses.

4.2 ABLATION STUDY

4.2.1 COMPARISON WITH LS LOSS AND MS LOSS

Table 2: Recover of MS loss and LS loss on Cub-200-2011 and Cars-196

Cub-200-2011 Cars-196
Recall@K(%) 1 2 4 8 16 32 1 2 4 8 16 32

MS 55.6 67.7 77.4 86.3 92.1 95.8 73.2 81.5 87.6 92.6 - -
LS 56.8 67.9 77.5 85.6 91.2 95.2 69.7 79.3 86.2 91.1 - -

DRO-KL-G-γ = 1 56.4 68.3 78.9 86.3 91.7 95.8 70.5 79.8 86.6 91.6 94.9 97.1
DRO-KL-G-γ = 0.1 56.8 68.7 79.0 86.6 92.1 95.9 72.5 81.9 88.1 92.3 95.4 97.3

DRO-KL-G-γ = 0.01 57.0 69.4 79.9 87.0 92.3 95.9 73.1 82.2 88.8 93.4 96.2 98.0
DRO-KL-G-γ = 0.001 56.7 68.5 79.0 87.3 92.6 96.0 75.0 83.4 89.5 93.7 96.6 98.3

In Section 3.3, we theoretically show that LS loss and MS loss can be viewed as special cases of
our DRO framework. In this experiment, we aim to empirically demonstrate that our framework is
general enough and recovers LS loss. Specifically, we would show 1) when γ = 1, our framework
performs similarly to LS loss, as stated in Section 3.3, 2) our framework can be seen as a generalized
LS loss by treating γ as a hyper-parameter, and 3) our generalized LS loss outperforms MS loss, even
though the performance of the ordinary LS loss is inferior to that of MS loss.

We adopt the set up of embedding dimension and batchsize in the ablation study of Wang et al.
(2019), i.e., d = 64 and B = 80. Therefore, we report the existing results of MS and LS loss
presented in Wang et al. (2019) on Cars-196. For Cub-200-2011 and In-Shop, we implement MS
and LS loss according to Wang et al. (2019). Following Wang et al. (2019), we set α = 2, β = 50
for MS loss. For our DRO framework, we apply grouping to p by equation (7), and denote this
variant of DRO framework as DRO-KL-G. We set γ+i = γ−i = γ = {1, 0.1, 0.01, 0.001}, i ∈ [B]
for DRO-KL-G , m = 0.2 for the margin loss, and λ = 0.5 for all three losses (MS, LS and margin
loss). As the pairs with zero loss will not contribute to the updates of model but affect the calculation
of p in DRO framework, we remove the pairs with zero loss to further promotes training.

Table 2 and 3 show experiment results on Cub-200-2011, Cars-196 and In-Shop, respectively. As
can be seen, the performance of MS loss is better than LS loss on three datasets, particularly on Cars-
196, which also verifies the results of ablation study in Wang et al. (2019). When γ = 1, our method
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performs similarly to LS loss, which verifies that our method recovers LS loss. Furthermore, when
we treat γ as a hyper-parameter (especially γ = 0.001) and regard our framework as generalized
LS loss, our method obtain improved performance compared to the ordinary LS loss. Lastly, even if
MS loss exploits pseudo positive and negative pairs, our generalized LS loss outperforms MS loss.
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Figure 1: Recall vs Imbalance Ratio

Table 3: Recall@k on In-Shop
Recall@K 1 10 20 30 40 50

FashionNet(Liu et al. (2016)) 53.7 73.0 76.0 77.0 79.0 80.0
HDC(Oh Song et al. (2017)) 62.1 84.9 89.0 91.2 92.3 93.1

HDL(Ge (2018)) 80.9 94.3 95.8 97.2 97.4 97.8
ABIER(Opitz et al. (2018)) 83.1 95.1 96.9 97.5 97.8 98.0

ABE(Yu et al. (2018)) 87.3 96.7 97.9 98.2 98.5 98.7
MS(Wang et al. (2019)) 89.7 97.9 98.5 98.8 99.1 99.2

DRO-TopKM (Ours) 91.0 98.1 98.7 99.0 99.1 99.2
DRO-TopKB(Ours) 90.7 97.7 98.4 98.8 99.0 99.1

DRO-TopK-PNM (Ours) 91.3 98.0 98.7 98.9 99.1 99.2
DRO-TopK-PNB(Ours) 91.1 98.1 98.6 98.8 99.0 99.2

DRO-KLM (Ours) 90.8 98.0 98.6 99.0 99.1 99.2

Table 4: Recover of MS loss and LS loss on In-Shop
Recall@K(%) 1 10 20 30 40 50

MS 79.8 94.9 96.8 97.6 97.9 98.3
LS 82.6 94.1 95.6 96.4 96.9 97.4

DRO-KL-G-γ = 1 84.8 95.9 97.3 97.9 98.2 98.5
DRO-KL-G-γ = 0.1 85.1 96.1 97.5 98.0 98.3 98.5

DRO-KL-G-γ = 0.01 85.8 96.2 97.9 97.8 98.2 98.4
DRO-KL-G-γ = 0.001 85.7 96.1 97.4 97.9 98.2 98.5

4.2.2 CAPACITY TO HANDLE PAIR IMBALANCE.
In this experiment, we compare our DRO framework with different sampling methods, i.e., semi-
hard (SH) and DWS, in terms of sensitivity to the imbalance ratio. By setting different batch-
sizes B ∈ {80, 160, 320, 480, 640}, we have different positive-negative pair ratios |P| : |N | ∈
{0.053, 0.026, 0.012, 0.008, 0.006}. For all methods, we apply margin loss and set M = 5 for each
class and embedding space dimension d = 1024. SH mining is originally designed for triplet loss.
Since there is no straightforward choice for the positive pair, we use λ as the upper bound to sim-
ulate the similarity of the positive pair in triplet loss. For DWS, we follow the parameter setting in
the original paper (Wu et al. (2017)). We apply margin loss in the proposed three variants our DRO
framework, which are denoted by DRO-TopKM , DRO-TopK-PNM and DRO-KLM , respectively.
We set K = 2 ∗ B both for DRO-TopKM , DRO-TopK-PNM . We evaluate recall@1 of all methods
and report results in Figure 1.

Figure 1 shows that the DWS has better performance when the positive-negative pair ratio is rel-
atively large, and encounters a sharp decrease in recall@1 when the ratio decreases. Other four
methods obtain better performance when the positive-negative ratio increases. Among them, DRO-
TopKM and DRO-KLM have similar performance, with SH on all positive-negative pair ratios, while
they perform slightly better than SH when the positive-negative ratios are small. DRO-TopK-PNM
constantly outperforms all other methods. The reason why DWS performs poorly when the positive-
negative pair ratio is small may be that DWS aims to sample pairs uniformly in terms of distance
(Wu et al. (2017)), while our DRO framework and SH focus more on hard pairs. To sum up, our
framework achieves very competitive performance against SOTA methods, and maintains increasing
recall@1 as the positive-negative ratio increases. These two observations together demonstrate the
effectiveness of our DRO framework to handle pair imbalance.

4.2.3 SENSITIVITY OF K IN TOP-K
As we mentioned in section 1, selecting too many pairs within a batch will leads to poor performance
of the model. On the other hand, when the number of selected pairs is too small, the model would be
sensitive to outliers. In this experiment, we study the sensitivity of K in our DRO framework–how
the performance of our DRO framework is affected by the value ofK. We set the batchsizeB = 640
and M = 5, which makes the number of positive pairs |P| = 1280 and the number of negative pairs
|N | = 198080. We set K from the range {640, 960, 1280, 1600, 1920, 2560} and evaluate recall@k
for models trained by different K. We choose the above range of K according to the number of
pairs selected by DWS and SH in Section 4.2.2 (both selects 2560 pairs roughly).

Figure 2 illustrates how different values of K affect recall@k on In-Shop. We can see that, DRO-
TopKM performs best when K = 1280 and recall@k is stable on the entire range of K. Our DRO
framework is not sensitive to K when K is in a reasonably large range.
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Figure 2: The effects of K on recall@k on In-Shop
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Figure 3: Average running time of every iteration

4.2.4 RUNTIME COMPARISON

Next, we compare the running time of our proposed three variants of our DRO framework with
different pair mining methods, MS and LS losses on In-shop. Our experiments conducted on eight
GTX1080Ti GPU. The embedding dimension d = 1024, and results are compared under different
batchsize B = {80, 160, 320, 480, 640}. The same as previous experiments, we set K = 2 ∗B both
for DRO-TopKM and DRO-TopK-PNM . γ = 0.1 for DRO-KLM . SH is implemented according to
the paper Schroff et al. (2015), Wu et al. (2017). DWS and MS are implemented based on the code
provided by the author. LS loss is implemented following the code provided by Wang et al. (2019).

Figure 3 reports the average running time of each iteration on 200 epochs. We can see that all of
three proposed variants of DRO framework run faster than other anchor-based mining methods and
losses. For all of our three variants, pairs are selected directly from all the pairs, while additional
cost is required to select pairs anchor by anchor in other methods. LS loss is slower than MS loss,
because MS mining is applied to MS loss, which would reduce the number of pairs for computing
subgradients when updating the model. For DWS, the distance distribution of negative pairs is only
calculated once for each iteration. It thus only needs to select pairs according to the pre-computed
distribution for each anchor. In contrast, SH requires to compare negative pairs with the lower and
upper bound of an interval at each iteration for each anchor, which increases the computational
burden. It can be the reason why SH is slower than DWS.

5 CONCLUSION

In this paper, we cast DML as a simple pairwise binary classification problem and formulate it
as a DRO framework. Compared to existing DML methods that leverage all pairs in a batch or
employ heuristic approaches to sample pairs, our DRO framework constructs a robust loss to sample
informative pairs, which also comes with theoretical justification from the perspective of learning
theory. Our framework is general since it can include many novel designs in its uncertainty decision
set. Its flexibility allows us to recover the state-of-the-art loss functions. Experiments show that
our framework outperforms the state-of-the-art DML methods on benchmark datasets. We also
empirically demonstrate that our framework is efficient, general and flexible.
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6 SUPPLEMENTARY

6.1 DERIVATION OF RECOVER SOTA LOSSES

In this section, we show how our DRO framework recovers SOTA loss functions, LS loss and MS
loss. Their definitions are as follows, respectively.

LLS =

B∑
i=1

[log
∑
k∈Pi

eλ−Sik + log
∑
k∈Ni

eSik−λ]+, (8)

where λ is the margin hyper-parameter.

LMS =
1

n

n∑
i=1

{ 1

α
log[1 +

∑
k∈Pi

e−α(Sik−λ)] +
1

β
log[1 +

∑
k∈Ni

eβ(Sik−λ)]} (9)

where λ is the margin hyper-parameter and α and β are coefficient hyper-parameters.

6.1.1 LS LOSS UNDER OUR FRAMEWORK

Recall that the objective function is decomposable in terms of pi = [p+
i ,p

−
i ] ∈ RPi+Ni . We denote

the pij = p+ij when j ∈ Pi, and pij = p−ij when j ∈ Ni for simplicity. The Lagrangian function
of (7) can be represented as:

L(p,v) =

B∑
i=1

L(pi, v
+
i , v

−
i ), (10)

where

L(pi, v
+
i , v

−
i ) = −

∑
j∈Pi∪Ni

pij lij(θ) + γ+i DKL(Pi||
1
|Pi|

) + γ−i DKL(p−i ||
1
|Ni|

)

+ v+i (
∑
j∈Pi

pij − 1) + v−i (
∑
j∈Ni

pij − 1).
(11)
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According to KKT conditions, v+∗i and v−∗i are the optimal solutions of the dual function, and p∗i
is the optimal solution of the primal problem (7), if and only if

dL
dp∗i

= 0, (12)

v+∗i (
∑
j∈Pi

p+∗ij − 1) + v−∗i (
∑
j∈Ni

p−∗ij − 1) = 0. (13)

We first derive p∗i in terms of v+i , v
−
i using equation (12), i.e.:

dL
dp∗i

= −li(θ) + γ+i log(np+∗
i ) + γ−i log(np−∗i ) + γ+i 1

+ + γ−i 1
− + v+i 1

+ + v−i 1
− = 0 (14)

where li(θ) = {li1(θ), · · · , li|p+i ∪N+
i |

(θ)},1+ ∈ R|Pi|,1− ∈ R|Ni|. Then the closed form of p∗i
for positive pairs and negative pairs can be written as follows

p+∗ij =
1

|Pi|
e

lij(θ)−v
+∗
i

γ
+
i

−1
, p−∗ij =

1

|Ni|
e

lij(θ)−v
−∗
i

γ
−
i

−1
. (15)

Substitute p+∗ij , p
−∗
ij into equation (13), which means v+∗i and v−∗i need to satisfy:

v+∗i (
∑
j∈Pi

1

|Pi|
e

lij(θ)−v
+∗
i

γ
+
i

−1
− 1) + v−∗i (

∑
j∈Ni

1

|Ni|
e

lij(θ)−v
−∗
i

γ
−
i

−1
− 1) = 0. (16)

Even though equal (16) also equals to 0 when v+∗i = 0 or v−∗i = 0, or v+∗i = v−∗i = 0, but the
corresponding optimal solution p∗i will not meet the equality constraints, i.e.,

∑
j∈Pi p

+∗
ij = 1 and∑

j∈Pi p
+∗
ij = 1, in the original formulation (7). Therefore, we only have

∑
j∈Pi

1

|Pi|
e

lij(θ)−v
+∗
i

γ
+
i

−1
= 1,

∑
j∈Ni

1

|Ni|
e

lij(θ)−v
−∗
i

γ
−
i

−1
= 1. (17)

Then from equation (17), we can get

v+∗i = γ+i log
( ∑
j∈Pi

1

|Pi|
e
lij(θ)

γ −1
)
, v−∗i = γ−i log

( ∑
j∈Ni

1

|N−i |
e
lij(θ)

γ −1
)
. (18)

Plugging them into (15) and apply margin loss as the base loss function for each pair, lij(θ) =
[m+ yij(λ− Sij)]+, we successfully derive the weighting representation of LS loss:

p+∗ij =
e
lij(θ)

γ∑
k∈Pi

e
lik(θ)

γ

yij=1
=

e
[m+(λ−Sij)]+

γ∑
k∈Pi

e
[α+[λ−Sik)]+

γ

=
1∑

k∈Pi
e
Sij−Sik

γ

p−∗ij =
e
lij(θ)

γ∑
k∈Ni

e
lik(θ)

γ

yij=−1
=

e(
[m+(Sij−β)]+

γ )∑
k∈Ni

e
[α+(Sik−β)]+

γ

=
1∑

k∈Ni
e
Sik−Sij

γ

(19)

Thus, when updating the model parameter θ, we are going to minimize the following objective
function:

g(θ,p∗) =

B∑
i=1

∑
j∈Pi∪Ni

p∗ij lij(θ)

=

B∑
i=1

( ∑
j∈Pi

p+∗ij lij(θ) +
∑
j∈Ni

p−∗ij lij(θ)
) (20)
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Taking the gradients to equation 20 in terms of θ, we can get:

∂g(θ,p∗)

∂θ
=

B∑
i=1

( ∑
j∈Pi

−p+∗ij
∂Sij
∂θ

+

B∑
j∈Ni

p−∗ij
∂Sij
∂θ

)
(21)

Similarly, we take gradients to the LLS loss function (8):

∂LLS
∂θ

=

B∑
i=1

( ∑
j∈Pi

−1
B∑

k∈Pi
eSij−Sik

∂Sij
∂θ

+

B∑
j∈Ni

1
B∑

k∈Ni
eSik−Sij

∂Sij
∂θ

)
(22)

By substituting equation (19) into equation (26), we can see that equation (22) and (26) are equiv-
alent. This shows our DRO framework successfully recovers the LS loss by setting the uncertainty
decision set U in equation (7).

6.1.2 MS LOSS UNDER OUR FRAMEWORK

MS loss, a combination of binomial loss and LS loss, can also be formulated into our DRO frame-
work. LS loss only considers the lifted structure between pairs, while binomial loss focusing on the
intrinsic property of an independent pair while encoding the pair class information. To recover MS
loss under our framework, we re-define p ∈ [0, 1]P

++N++2B by adding one more element to Pi
and p−i . Therefore, now we have p+

i ∈ [0, 1]P
+
i +1 and p−i ∈ [0, 1]N

+
i +1, where the newly added

element corresponds to a zero loss, and thus does not contribute to the computation of overall loss.
Then based on the formulation of LS loss, the formulation of MS loss can be written as:

max
p∈[0,1]P++N++2B

B∑
i=1

( ∑
j∈Pi∪Ni

pij lij(θ)− γ+i DKL(Pi‖
1

|Pi|+ 1
)− γ−i DKL(p−i ‖

1

|Ni|+ 1
)
)

s.t.
∑

j∈Pi+1

pij = 1,
∑

k∈Ni+1

pik = 1, i ∈ [B].

(23)
Note that ∑

j∈Pi∪Ni

pij lij(θ) + p+
i,P+

i

· 0 + p−
i,N+

i

· 0 =
∑

j∈Pi+1∪Ni+1

pij lij(θ),∀i ∈ [B]. (24)

As the analysis of LS loss, we can also obtain the representation of MS loss under our DRO frame-
work from formulation (23), i.e.,

p+∗ij =
e

lij(θ)

γ
+
i

e

li,|Pi|+1

γ
+
i +

∑
k∈Pi

e
lik

γ
+
i

yij=1
=

e

[m+(λ−Sij)]+
γ
+
i

1 +
∑
k∈Pi

e

[m+(λ−Sik)]+

γ
+
i

=
1

e

Sij−c+

γ
+
i +

∑
k∈Pi

e

Sij−Sik
γ
+
i

,

p−∗ij =
e

lij

γ
−
i

e

li,|Ni|+1

γ
−
i +

∑
k∈Ni

e
lik

γ
−
i

yij=−1
=

e

[m+(Sij−λ)]+
γ
−
i

1 +
∑
k∈Pi

e

[m+(Sik−λ)]+
γ
−
i

=
1

e

c−−Sij
γ
−
i +

∑
k∈Ni

e

Sik−Sij
γ
−
i

,

(25)

where c+, c−, γ+i , γ
−
i are hyperpatmeters. Similar to LS loss, waking the gradients to ∂g(θ,p∗) in

terms of θ, we can get:

∂g(θ,p∗)

∂θ
=

B∑
i=1

( ∑
j∈Pi

−p+∗ij
∂Sij
∂θ

+

B∑
j∈Ni

p−∗ij
∂Sij
∂θ

)
(26)

Similarly, we take gradients to the LMS loss function (9):

∂LLS
∂θ

=

B∑
i=1

( ∑
j∈Pi

−1

eα(Sij−λ) +
B∑

k∈Pi
eα(Sij−Sik)

∂Sij
∂θ

+
∑
j∈Ni

1

eβ(λ−Sij) +
B∑

k∈Ni
eβ(Sik−Sij)

∂Sij
∂θ

)
(27)
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By substituting (25) into (21),and set c+ = λ + m, c− = λ −m, γ+i = 1
α , γ

−
i = 1

β , i ∈ [B], it is
obvious to show equation (21) and (27) are the same. As a result, our DRO framework also recovers
the MS loss.

6.1.3 RECOVERING OF HAP2S E IN YU ET AL. (2018)

Yu et al. (2018) provides an a hardaware point to set (HAP2S) triplet loss with an adaptive hard
mining scheme to address the sensitive issue caused by mining the hardest positive pair and negative
pair in Hermans et al. (2017). The key of HAP2S loss is to assign different weights to the points in
Pi and Ni for each anchor xi. We show that our DRO framework is able to recover HAP2S with
exponential weighting scheme by exactly using the DRO formulation equation (7) for LS loss.

The triplet loss is defined as follows:

Ltrp =
1

Nt

∑
yj=yi,yk 6=yi

[Sik − Sij +m]+ (28)

where [x]+ = max{0, x}, Sij and Sik denote the similarity of positive pair {xi, xj}, j ∈ Pi,
negative pair {xi, xk}, k ∈ Ni for the same anchor xi, Nt is the number of all possible triplets in
the mini-batch. Without causing ambiguity, S+

ij = Sij , when j ∈ Pi, S−ij = Sij , when j ∈ Ni.
Similar to pair losses, such as margin loss and binomial loss, there exist a huge amount of triplets
in a batch that have no contribution to the Ltrp. As a result, pair mining is critical to improve the
performance of the model.

Hermans et al. (2017) provide a variant of triplet loss by selecting the hardest positive pair and the
hardest negative pair for each anchor. The formulation can be written as:

LtrpBH =
1

B

B∑
i=1

[max
j∈Ni

Sij − min
j∈Pi

Sij +m]+ (29)

The state-of-the-art results on two large-scale datasets has been reported based on this variant of
triplet loss. However, equation (29) is sensitive to outliers which usually serve as the hardest sample.
To increase the robustness of the model, HAP2S triplet loss has been proposed in Yu et al. (2018):

LHAP2S =
1

B

B∑
a=1

[S−ij − S
+
ij +m]+, (30)

where

S−ij =

∑
k∈Ni

q−ijS
−
ij∑

j∈Ni
q−ij

,S+ij =

∑
j∈Pi

q+ijS
+
ij∑

j∈Pi
q+ij

, (31)

where qij is the weights designed to each pair, for which they propose two variants of weighting
schemes for HAP2S, i.e., exponential weighting and polynomial weighting. Here we show that our
DRO formulation is able to recover the HAP2S with exponential weighting scheme (denoted by
HAP2S E), i.e. the weight qij of each pair is an exponential function over its similarity:

q+ij = exp (
−Sij
γ

), j ∈ Pi, q−ij = exp (
Sij
γ

), j ∈ Ni. (32)

Note that q+ij and q−ij are constant scalars that not involved in the gradient of LHAP2S w.r.t to θ.

Substitute equation (31) and (32) into (30)

LHAP2S =
1

B

B∑
i=1

( ∑
j∈Pi

(
−1∑

k∈Pi
exp(

Sij−Sik
γ )

)Sij +
∑
j∈Ni

(
1∑

k∈Ni
exp(

Sik−Sij
γ )

)Sij

)
+D (33)

where D absorbs all constants.
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Since Sij −Sik, Sik −Sij in the exponential function is derived from q+ij and q−ij , thus they are also
a constant scalars when taking derivative to θ. By taking derivative to LHAP2S , we get:

∂LHAP2S

∂θ
=

1

B

B∑
i=1

( ∑
j∈Pi

(
−1∑

k∈Pi
exp(

Sij−Sik
γ )

)
∂Sij
∂θ

+
∑
j∈Ni

(
1∑

k∈Ni
exp(

Sik−Sij
γ )

)
∂Sij
∂θ

)
, (34)

We can see that the subgradients of LHAP2E in (34) are the same as the subgradients of LS loss
in (22). As a result, LHAP2S is a special case of our DRO framework.

6.2 SUPPLEMENTARY EXPERIMENTS
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Figure 4: Mean and std of Recall@k over five runs
comparing the best baseline performer (MS)
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Figure 5: Recall@1 vs Imbalance Ratio on embed-
ding space dimension 512

To investigate the effect of randomness of the stochastic algorithms and evaluate the robustness of
our DRO framework, we report the average mean and standard variance of recall@k on Cub-200-
2011 in Figure 4. We do not plot recall@4 and recall@16 for better visualization. The experimental
setting is the same as the experiments of the SOTA quantitative results we reported in Table 1 (sec-
tion 4.1) but with five runs. The gray bars are the recall@k of best performer among SOTA baselines,
i.e., MS. It is clear to see that all our DRO variants outperform MS in terms of the average recall@k
over all different values of k. Specifically, the average recall@1 of DRO-TopKB is 67.9%, which
has a significant improvement over the baselines, i.e., 65.7% of MS. In addition, the small standard
deviation error bars imply that our DRO framework is robust enough to have a better performance
than SOTA methods.

To show the effect of the network architecture to our DRO framework and its robustness, we addi-
tionally repeat the experiments of Recall/Imbalance Ratio in section 4.2.2, but with the embedding
space dimensions 512 (rather than 1024 in Section 4.2.2). The results are illustrated in Figure 5. In
comparison with the performance of recall@1 on embedding space dimensions 1024 in Figure 1, we
can see that the fluctuations of recall@1 on different PN-Ratios are sublet when the feature embed-
ding changes from 1024 to 512. For example, the recall@1 only changes, from 0.9046 to 0.9058 for
DRO-TopKM , from 0.9086 to 0.9073 for DRO-TopK-PNM , from 0.9018 to 0.9021 for DRO-KLM ,
when PN-Ratio is 0.006. Further, the trends of different methods imply that our DRO framework
can consistently achieve competitive even best results compared with other SOTA methods (SH and
DWS) under different embedding space dimensions. Since different P-N Ratios in corresponding
to batchsizes {80, 160, 320, 480, 640}, the above experimental results verify that our methods are
not too sensitive to the embedding space dimensions in different batchsizes, and also outperform
other SOTA mining methods in different embedding space dimensions. In contrast, it shows that
the baseline DWS is relatively more sensitive to the embedding space dimension. In Figure 5 where
embedding space dimension is set to 512, DWS has a smaller performance drop from P-N ration
= 0.012 to 0.006, while in Figure 1 where the embedding space dimension is 1024, DWS encoun-
ters a much larger performance decrease.
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