
Under review as a conference paper at ICLR 2019

RENEG AND BACKSEAT DRIVER: LEARNING FROM
DEMONSTRATION WITH CONTINUOUS HUMAN FEED-
BACK

Anonymous authors
Paper under double-blind review

ABSTRACT

In autonomous vehicle (AV) control, requiring an agent to make mistakes, or even
allowing mistakes, can be quite dangerous and costly in the real world. For this
reason we investigate methods of training an AV without allowing the agent to
explore and instead having a human explorer collect the data. Supervised learning
has been explored for AV control, but it encounters the issue of the covariate shift.
That is, training data collected from an optimal demonstration consists only of
the states induced by the optimal control policy, but at runtime, the trained agent
may encounter a vastly different state distribution and has seen little relevant train-
ing data. To mitigate this issue, we intentionally have our human explorer make
sub-optimal decisions. In order to have our agent not replicate these suboptimal
decisions, supervised learning requires that we either erase these actions, or re-
place these action with the correct action. Erasing these actions is wasteful and
replacing these actions is difficult, since it is not easy to know the correct action
without driving the car. Since supervised learning falls short, we introduce an al-
ternate framework that includes continuous scalar feedback on each action, mark-
ing which actions we should replicate, which we should avoid, and how sure of
this we are. Our framework, called “ReNeg”, learns from from human demonstra-
tion and human evaluative feedback, collected entirely before any training begins.
Our agent learns continuous control from sub-optimal behavior, but sub-optimal
behavior that is safely performed by a human. We find that a human demonstrator
can explore sub-optimal states in a safe and controlled manner, while still getting
enough gradation in the states to benefit learning. The way we collect data and
the algorithm we use to compute feedback on the data we call “Backseat Driver.”
Backseat Driver gives us state-action pairs matched with scalar values represent-
ing the score for those action in those states. We call the more general learning
framework ReNeg, since it learns a regression from states to actions given nega-
tive as well as positive examples. We empirically validate several models in the
ReNeg framework, testing on lane-following with limited data. We find that the
best solution is a generalization of mean-squared error and outperforms supervised
learning on the positive examples alone.

1 PROBLEM FORMULATION

We seek a way learn autonomous vehicle control using only RGB input from a front-facing camera.
(Example input image in the appendix.) Specifically, we want to produce a policy network to map
states to actions in order to follow a lane as close to center as possible. We would like the agent
to behave optimally in dangerous situations, and recover to safe situations. For this to happen, the
data the agent trains on must include these sub-optimal states. However, we do not want to leave
the safety determination up to any machine. Thus, we require that a human explorer take all the
actions. This is referred to as “Learning from Demonstration” or LfD. An expert human does the
exploration and thus can limit the danger by controlling how dangerous the negative examples are
(i.e. the human can swerve to show suboptimal driving but never drive off the road, as an RL agent
likely would). Still, in order to get into sub-optimal states, the explorer will need to take sub-optimal
actions. Ideally we could replace these sub-optimal actions with labels corresponding to the correct

1

Under review as a conference paper at ICLR 2019

and optimal actions to take so we could perform supervised learning, which provides the strongest
signal. However, it is notoriously difficult to assign supervised labels to driving data because it is
hard to know the correct steering angle to control a vehicle when your steering has no effect on what
happens to the vehicle (Ross et al., 2012). Instead of trying to enable humans to assign supervised
labels by somehow showing the consequences of their actions, we focus on letting humans assign
feedback that evaluates the sub-optimal actions, without actually representing the optimal action.

Thus our goal is to learn a deterministic continuous control policy from demonstration, including
both good and bad actions and continuous scores representing this valence. Our problem statement
is somewhere in between supervised learning and RL: we focus on a general approach that is ca-
pable of mapping continuous sensor input to an arbitrary (differentiable) continuous policy output
and capable of using feedback for singular predetermined actions. Our problem falls within the
supervised setting since our agent cannot chose want actions to take, in order to avoid the agent
exploring dangerous states, and all data collection is done prior to training. However, we also wish
to incorporate evaluative scalar feedback given to each data point, which traditionally falls under
the RL framework. We refer to this problem setting as the ReNeg framework, since we are essen-
tially performing a regression with scalar weights attached to each data point, that can be positive
and negative. For the demonstration, a human demonstrator drives, yielding state-action pairs the
agent can learn from. In order to teach the agent which actions are good or bad, an expert critic, or
“backseat driver,” labels the actions with a continuous scalar.

For a viable solution to this problem, we need to define a loss function that induces an effective and
robust policy. We also need to choose what driving data to collect to expose the agent to a variety of
good and bad states, and in particular show the agent how to get out of bad states where an accident
is imminent. What data to collect is non-obvious: we want to explore a range of good and bad states
so the agent learns a reasonable policy for how to act in all kinds of states. However, to make this
feasible in the real world, we want to avoid exploring dangerous states. Finally, we need to carefully
choose a way to collect human feedback that contains signal from which the agent can learn, but is
not too hard to collect. We will discuss the choices we made for these three parts of the problem
in the Loss Function, Driving Data, and Feedback sections respectively. Although we validate in
simulation, specifically Unity, for the sake of ease, the algorithms we test could be easily trained in
the real world.

2 RELATED WORK

Learning from demonstration has mostly been studied in the supervised learning framework and
the Markov Decision Process (MDP) framework. In the former, it is generally known as imitation
learning (or behavioral cloning in the AV setting), and in the latter, it is generally known as appren-
ticeship learning. There are other relevant RL algorithms, but none for LfD in our problem setting,
as we will show.

The supervised learning in this area has focused on a least squares regression that maps from an
input state to action. The easiest approach to take here is to have an expert perform an optimal
demonstration, and then simply use that as training data. The main issue here is that the runtime and
training distributions can be vastly different. That is, once the trained agent is acting on its own after
training and encounters states it has not seen, it does not know how to act, and strays further from the
intended behavior. This problem is known as the Covariate Shift and the widely accepted solution
generally follow the approach laid out in DAgger Ross et al. (2010). DAgger allows the agent to
explore and then uses the expert to label the new dataset, then training on all of the combined data.
Such an approach has even been improved upon both to address scalar feeddback by incorporating
experts that can label Q values with the AggreVaTeD algorithm (Ross & Bagnell, 2014), and to and
to address deep neural networks by finding a policy gradient with the Deeply AggreVaTeD algorithm
(Sun et al., 2017). However, these DAgger based policies require the agent to ex-plore and make
mistakes.

The MDP research on apprenticeship learning has largely been on inverse reinforcement learning,
or IRL (Abbeel & Ng, 2004), in which a reward function is estimated given the demonstration
of an expert. However, often in this framework, the reward function is restricted to the class of
linear combinations of the discrete features of the state, and the framework only allows for positive
examples. In addition, there has been work on inverse reinforcement learning from failure (Shiarlis

2

Under review as a conference paper at ICLR 2019

et al., 2016), which allows for a sequence of positive or a sequence of negative examples. There
is also distance minimization for reward learning from scored trajectories (Burchfiel et al., 2016),
which allows for gradation in the scores, but does not allow for an arbitrary reward function on
continuous inputs or labels for atomic actions as opposed to a trajectory or sequence of actions.
Moreover, these IRL methods are not a candidate for our problem, since they require an exact MDP
solution with a tractable transition function and exploration to find the optimal policy. The issue we
have is not that we don’t have the reward function, but that even with the more informative feedback,
we cannot use exploration to learn the optimal policy.

It is interesting to note that there are off-policy RL algorithms as well, but we would like to highlight
that this is not the same thing as LfD. LfD, as we use it, means that we have collected all of our data
before training. This could be thought of as on-policy only if our policy and start state never changes.
Whereas, off-policy RL (e.g. Off-Policy Actor-Critic(Degris et al., 2012), Q-Learning(Watkins &
Dayan, 1992), Retrace(Munos et al., 2016)) generally requires agents to have a non-zero probability
of choosing any action in any state, in order for the algorithm to converge. (Moreover, it is the
somewhat parenthetical opinion of at least one of authors of this paper that in the off-policy policy
gradient RL framework, using importance sampling to calculate an expectation over a different
action distribution is fine, but changing the objective function from an expectation over the learned
policy state-visitation distribution to an expectation over the behavior (exploratory) state-visitation
distribution, as in (Degris et al., 2012), is an unsatisfactory answer that does not give the optimal
policy for the agent when running on the learned policy, as we will want to do.) Normalized Actor
Critic (NAC) does attempt to bridge the gap between off-policy and LfD, and works with bad as
well as good demonstration, however, NAC does not allow for restricted exploration either, since it
adds entropy to the objective function to encourage exploration (Gao et al., 2018). NAC has also
only been done for discrete action control, not continuous as we want to do.

Finally, there are many RL algorithms that use human evaluative feedback, but none for LfD. One
RL algorithm with human feedback of note is COACH (MacGlashan et al., 2017), which is based
on the stochastic policy gradient. COACH is an on-policy RL algorithm that uses human-feedback
to label the agent’s actions while exploring. COACH’s view on human feedback helps us to draw
connections to RL, as we will discuss later. However, COACH was designed for on-policy explo-
ration and uses discrete feedback values of 1 and -1, whereas we generalize to continuous values in
[−1, 1]. We cannot use a stochastic policy gradient in a justified manner, since we do not explore
with a stochastic policy.

Out of all the LfD work in the AV context, the most notable has either been on behavioral cloning
(Bojarski et al., 2016) (Pan et al., 2017) or using IRL to solve sub-tasks such as driving preferences
that act on top of a safely functioning trajectory planner (Kuderer et al., 2015). To the best of our
knowledge, no research so far has focused on using any kind of evaluative scalar feedback provided
by a human in the context of AV control with LfD. That is, no one has solved how to take states,
actions, and continuous feedback with respect to those actions, and convert them into a control
policy for an AV, without having the AV explore. We believe that this is a major oversight: many
AV research groups are investing huge amounts of time into collecting driving data; if they used our
model, they could improve performance simply by having an expert labeler sit in the car with the
driver for no additional real time.

3 OUR APPROACH

3.1 LOSS FUNCTION

Let θ be the steering angle in the demonstrated example; θ̂ the steering angle predicted by the policy
network (or PNet); D the absolute difference between θ and θ̂, |θ - θ̂|; and fθ, or f , the feedback
for the demonstrated angle. We collect f ∈ [−1, 1]. The loss function we choose should have the
following 3 properties:

1. Minimizing the loss should minimize the D for positive examples. That is, when f > 0,
∂Loss
∂D ≥ 0.

2. Minimizing the loss should maximize the distance between θ and θ̂ for negative examples.
That is, when f < 0, ∂Loss∂D ≤ 0.

3

Under review as a conference paper at ICLR 2019

3. The rate at which the loss is minimized should be determined by the magnitude of the
feedback. That is, when f > 0, ∂|Loss|∂f > 0, and when f < 0, ∂|Loss|∂f < 0.

These three properties together ensure that the network avoids the worst negative examples as much
as possible, while seeking the best examples. Given an input state s, the first loss function that
comes to mind is what we term “scalar loss”:

Lossscalar = fs ∗ (θs − θ̂(s))2

This loss function is notable for several reasons. First, it is a generalization of mean squared error,
the standard behavioral cloning loss function:

LossMSE = (θs − θ̂(s))2

Mean squared error is a well-principled loss function if you assume Gaussian noise in your training
data. That is, you assume the probability of your data can be given by Gaussian noise around some
mean and you learn to predict θ̂ as that mean. Given this assumption, you can derive MSE as the loss
that produces a maximum likelihood estimate for your parameters. Let the parameters of the model
be represented by p and probability be Pr. θ̂ is parameterized by p and will be used interchangeably
with θ̂p, when clarity is needed. Please note that θ refers to the angle label, and not the model
parameters:

argmaxpPr(data)

argmaxp
∏

θ∈data

Pr(θ|θ̂p)

argmaxp
∑

θ∈data

log(Pr(θ|θ̂))

argmaxp
∑

θ∈data

log(Pr(θ|θ̂))

argminp
∑

θ∈data

−log(Pr(θ|θ̂))

Loss = −log(Pr(θ|θ̂))

Loss = −log(e
− (θ−θ̂)2

2σ2

√
2πσ2

)

Loss =
(θ − θ̂)2

2σ2
− log(

√
2πσ2)

Generally, log(
√
2πσ2) is left out since it is a constant w.r.t. our parameters and so will go away

when the gradient is taken, leaving:

Loss =
(θ − θ̂)2

2σ2

Generally, 2σ2 is also left out, since it only acts to scale the gradient, and can be accounted for by
adjusting the learning rate of gradient descent, leaving:

Loss = (θ − θ̂p)2

However, we note that, if we interpret |f |, the magnitude of our feedback, as 1
2σ2 , we can view

|f | as a measure of certainty. This certainly applies to a Gaussian distribution with a variance of
at least 1

2 , since f ∈ (0, 1] for positive examples. For negative examples, we generalize further by
removing the magnitude calculation, and allowing our feedback to be negative. This enforces that
we minimize the probability of negative data:

Loss = f ∗ (θ − θ̂p)2

To be able to easily recover behavioral cloning, we introduce two hyperparameters. The first such
parameter is the ability to threshold feedback values. If we threshold, we simply replace every

4

Under review as a conference paper at ICLR 2019

f with sign(f). Thresholding eliminates gradations in positive and negative data. Additionally,
we introduced the parameter α, which scales down all our negative examples’ feedback: f :=
max(f, αf). This trades off between behavioral cloning and avoiding negative examples. We apply
max(f, αf) after we threshold, so if we threshold with and set α to 0.0, we recover behavioral
cloning.

Our scalar loss is also notable since it closely resembles a loss that induces a stochastic policy
gradient. In a standard RL policy network such as REINFORCE, the gradient would be ∇p =
∇p(Qπ(θ) ∗ −log(Pr(θ))) (Williams, 1992). The loss then, that would induce this gradient is
Loss = Qπ(θ) ∗ −log(Pr(θ)). R, the return, or a sample contributing to Qπ(θ), is generally used.
In continuous control, one could instead predict a mean θ̂ for a normal distribution and then sample
your action θ from that normal distribution. As demonstrated above, if you replace log(Pr(θ)) with
the probability density function for a normal distribution, the loss you wind up with is precisely
MSE scaled by R. Substituting this scalar into the derivation above at every step, you get:

Loss = R ∗ (θ − θ̂)2

A full derivation of this loss given the stochastic policy gradient and Gaussian policy can be found
in the appendix. Clearly if we view fθ, our feedback, as Rθ̂ and assume a Gaussian policy, we get
our scalar loss function. COACH in fact points out that you can view online feedback given for the
current policy, fθ̂ as a sample fromQπ(θ̂), orAπ(θ̂), the advantage function, and empirically verifies
that this works for on-line RL with discrete feedback (MacGlashan et al., 2017). This similarity was
useful for inspiration and ideation, but actually falls short of rigorous justification for two reasons.
Since we are training off-policy, and, more specifically, on a pre-determined policy that does not
explore stochastically and does not vary depending on the current predicted policy, we run into
major issues justifying our loss this way.

First, the main “off-policy” issue here is that for the stochastic policy gradient to hold, the explo-
ration must be stochastic. However, in our case, the data is drawn from a pre-determined, determin-
istic policy. We can illuminate the intuition for why the stochastic policy gradient no longer works
by considering a simple example. Consider the network attempting to learn the correct predicted θ̂
for a given state. Consider that there is only one demonstrated θ, -1, with a feedback of -1. Now,
no matter what θ̂ the network predicts, the θ action that is taken during training will always be -1,
and the feedback will always be -1. Moreover, consider that the actual optimum is θ̂ = 1, and the
network is currently predicting θ̂ = −2. Using our scalar loss, the network will increase distance
between θ and θ̂ by decreasing θ̂, making the policy worse and worse. This would not happen when
using a stochastic RL policy, since the network can explore states around the current predicted θ̂ by
choosing appropriate actions.

Using a stochastic RL policy, given enough samples on either side of θ̂, the network will have larger
and larger gradients, the more negative θ̂ is. But these gradients will not keeping “pushing” the
prediction to the left of -1, but rather will randomly cause θ̂ to move around, gradually moving
to the right as it finds better feedback, and eventually converging at the optimum of θ̂ = 1. The
network will move less “violently” and more “stably” the closer θ̂ gets to 0. And when the network
eventually reaches the positive numbers, it might get “pulled” to the left a bit when it happens to
sample a worse action, but it will not get pulled as strongly as when it samples a better action to the
right. We can now intuitively see the issue: the neural network cannot not influence the probability
of seeing an example again, which can lead to problems with learning the policy. In RL, a policy
network can try a bad action, and then move the policy away from that action and not revisit it.
On the other hand, if we have a bad example in our training set for a given state, on every epoch
of training, our neural net will encounter this example and take a step away from it, thus pushing
our network as far away from it as possible. Taking these steps is not necessarily helpful since the
network may not have favored taking the bad action before.

We could use some sort of importance sampling (Silver et al., 2014) (Degris et al., 2012), as is done
with stochastic off-policy exploration, to scale down the loss for examples we are far away from.
However, this would make our update have almost no effect when we are far away from positive
examples, and with the deterministic exploration of ReNeg, the distinction between positive and
negative examples now matters. We can’t have it both ways just by multiplying by the probability of
θ̂ given our model. (This happens since the Gaussian PDF decreases exponentially with difference

5

Under review as a conference paper at ICLR 2019

|θ − θ̂|, but the loss only increases quadratically with the difference, due to the logarithm. Thus the
gradient tends toward 0 due to the differing rates of growth, as the difference gets large.) Moreover,
importance sampling consistently reduced performance for learning from demonstration in the NAC
paper (Gao et al., 2018).

Another, perhaps less significant issue, is that our feedback represents Q∗, and not Qπ. Even if
the human critic could re-assigned labels as the agent trains, he/she would have no way to sample
the return from Qπ, without letting the agent explore freely. This is significant because an action
that is optimal for the expert may be a dangerous and poor decision for a non-optimal policy. This
is perhaps less significant than the other issue, since there are no actions in our data that could be
considered both good and risky. What is good for one policy (i.e. steering back to the middle of
the road) is generally good for all policies, and so can act rather greedily with respect to Q∗, even
though it will not always be following the optimal policy.

For these reasons, we find the comparison to stochastic policy gradients useful, but ultimately un-
compelling. Applying RL losses to supervised learning does not provide the mathematical justifi-
cation we need. The stochastic policy gradient is no longer computing the gradient of the current
policy at all. Thus, we focus primarily on extending and generalizing MSE. Yet, we can still learn
from the policy gradient comparison. In particular, we acknowledge that the sign of our feedback is
far more significant than it was in the RL context (which is one of the reasons we introduce the α
parameter, which scales down the importance of negative examples, in the event that we collect too
many negative examples). In RL, using the stochastic policy gradient, it did not matter if negative
examples “pulled” θ̂ closer to them, so long as the positive examples pulled θ̂ more, since you would
eventually try one of those actions, if it is a nearby optimum. However, since actions are no longer
sampled dependent on the current policy, suddenly the sign matters very much. In fact, even if we
have a positive example for a state, if we have more negative examples than positive examples, we
may wind up ignoring our positive examples entirely in an effort to get away from our negative
examples. This case highlights the trouble inherent in using negative examples: It is hard to know
how and when to take into account the negative examples.

Figure 1: Potential outcomes of regression with negative examples

Now, let us consider negative examples in the ReNeg framework. For example, as shown in Figure
1, if we perform a regression on positive and negative examples with more negative examples than
positive in one state, we may wind up in a case where our loss is minimized by a prediction of
positive or negative infinity, and thus our regression is “overwhelmed” by the negative examples.
This led us to our second “exponential” loss:

Lossexp = |θ(s)− θ̂(s)|2f

Using this loss, negative examples will have infinite loss at distance 0, and then drop off expo-
nentially with distance. We hope that this will create regressions more akin to the second image
in Figure 1. In this image, adding more negative points will still nudge the regression away more
and more, but one positive point not too close by should be enough to prevent it from diverging
to positive or negative infinity. It should be noted that the loss in a particular state still could only
have negative examples, especially in a continuous state-space like ours where states are unlikely to
be revisited. However, the reduction in loss caused by diverging to infinity would be so small that
it should not happen simply due to continuity with nearby states enforced by the structure of the
network. In addition, one concern with this loss could be that for positive fractional differences, and
negative non-fractional differences, the desired property 3) of loss functions no longer holds. That

6

Under review as a conference paper at ICLR 2019

is, our positive loss will not grow with f if the difference being exponentiated is a fraction. And for
negative exponents, the loss will only grow if the difference is a fraction that shrinks as it is raised
to increasing powers of f . However, we hope that for negative examples, distances that are more
than 1 unit away will not occur often (since 1 unit is half the distance range). We discuss a potential
future solution in the appendix to patch this loss function.

Our final loss function should produce regressions more like the final image in Figure 1: We propose
directly modelling the feedback with another neural network (which we call the FNet) for use as a
loss function for our PNet. If this FNet is correctly able to learn to copy how we label data with
feedback, it could be used as a loss function for regression with our PNet. Thus, in order to maximize
feedback, our loss function would be as follows:

LossFNet = −FNet(s, θ̂)
After learning this FNet, we can either use it as a loss function to train a policy network or, every time
we want to run inference, we can run a computationally expensive gradient descent optimization to
pick the best action. Because the latter does not depend on the training distribution (so we do not
have the issue of the runtime and training distributions being different), and it is more efficient, we
choose an even easier version of the latter: we pick the best action out of a list of discrete options
according to the FNet’s predictions. One feature of the FNet is that adding more negative points will
not “push” our regression further away from this point, but rather just make our FNet more confident
of the negative feedback there. This may not be the desired effect for all applications. Moreover, the
FNet cannot operate on purely positive points with no gradation. That is, behavioral cloning cannot
be recovered from it.

3.2 DRIVING DATA

Figure 2: Types of driving:
swerving (left), lane change
(right)

We recorded 20 minutes of optimal driving and labeled all of this
data with a feedback of 1.0. Choosing the suboptimal data and how
to label it was a bit more tricky. One reason that we are not us-
ing reinforcement learning is that letting the car explore actions is
dangerous. In this vein, we wanted to collect data only on “safe”
driving. However, the neural network needs data that will teach it
about bad actions well as good actions that recover the car from bad
states. In order to explore these types of states and actions, we col-
lected two types of bad driving: “swerving” and “lane changing”.
The first image in Figure 2 is swerving. In swerving, the car was
driving in a “sine wave” pattern on either side of the road. We col-
lected 10 minutes of this data on the right side of the road and 10
minutes on the left. The second image is lane changing. For this,
we drove to the right side of the road, straightened out, stayed there,
and then returned to the middle. We repeated this for 10 minutes,
and then collected 10 minutes on the left-hand side as well.

3.3 “BACKSEAT DRIVER” FEEDBACK

Backseat Driver is the framework we use to compute and collect
feedback in the AV context. Our feedback includes much more information than just a reward (as is
used in RL): we take our label to directly measure how “good” an action is relative to other possible
actions. We use this approach instead of labeling rewards for actions both because we found it an
easy way to label data with feedback, and because it contains more signal. How exactly to label the
data with feedback, however, is non-obvious. At first, we considered labeling using a slider from -1
to 1. However, using a slider can be non-intuitive in many cases and there would be discontinuities
in feedback you would want to give. For example, if the demonstrator is driving straight off the
road and then starts to turn left back onto the road, there would be a large discontinuity in the very
negative and then slightly positive feedback.

In order to circumvent these issues, and to make the labeling process more intuitive, we decided
to collect feedback using the steering wheel. We found that it is easier for people to focus on the
steering angle, since that is how we are used to controlling cars. Our first thought was to just turn the
steering wheel to the correct angle. However, this is very difficult to estimate, especially on turns,

7

Under review as a conference paper at ICLR 2019

when you cannot see the actual effects your steering is having on the car. (Note that if we did this,
our algorithm would turn into behavioral cloning.) Instead, we decided to label the differential. That
is, we turned the wheel to the left if the car should steer more left. This signal shows where the error
is (i.e. “You should be turning more” or “You’re turning the wrong way”). Note that the label does
not need to be the exact correct angle; it just needs to show in which direction the current action is
erring, and proportionally how much. We call this method of human feedback collection “Backseat
Driver.” In order to process the angle labels into a feedback value in [−1, 1], we used the equation
below:

FEEDBACK(c, θ)
1 if sign(c) == sign(θ) or |c| ≤ ε
2 return 1− |c|
3 else
4 return −|c|

Note: We first normalize all of our corrections by dividing by the greatest collected correction c, so
all of our c values fall in [−1, 1]. In line 1 above, if we are turning the steering wheel in the same
direction as the car (with some ε of error), then the feedback should be positive. (We set epsilon to

5
θmax

so that it allows up to 5 degrees of tolerance.) Since c represents a delta in steering, a greater
delta should result in a less positive signal. Therefore, the feedback should be proportional to −|c|.
We add 1 to ensure all c in the same direction as θ are positive. If c is in a different direction than we
were steering (line 3), then the feedback should be negative, so we just return −|c| as the feedback.
Thus the greater the delta, the more negative the feedback will be. If c is in the same direction, on
the other hand, we chose to scale these feedbacks up so that the feedback is positive, but less positive
for a greater differential. This makes sense since if, for example, the car is steering left and we tell it
to steer more left, this is not as bad as if the car is steering the wrong way. Thus, slow actions back
to the center of the road will be rewarded less than quick actions back to the center of the road.

3.4 ARCHITECTURE

We chose to use only an hour of data because we wanted to see how far we could get with limited
data. While our feedback is relatively easy to collect compared to other options, it still takes up
human hours, so we would like to limit its necessity. We sampled states at a rate of approximately
two frames per second, since states that are close in time tend to look very similar. We augmented
our data by flipping it left-right, inverting the angle label, and leaving the feedback the same. After
this augmentation, we had 17,918 training images and 3,162 validation images (a 85:15 split).

We chose to learn our policy with an end-to-end optimization of a neural network to approximate a
continuous control function. Such networks are capable of tackling a wide array of general problems
and end-to-end learning has the potential to better optimize all aspects of the pipeline for the task
at hand. Given the option to use separate (differentiable) modules for sub-tasks such as computer
vision, or to connect these modules in a way that is differentiable for the specific task, the latter will
always perform better, since the end-to-end model always has the ability to simply not update the
sub-module if it will not help training loss.

We used transfer learning to help bootstrap learning with limited data for both the PNet and Fnet. We
decided to start with a pretrained Inception v3 since it has relatively few parameters, but has been
trained to have strong performance on ImageNet, giving us a head start on any related computer
vision task. We kept some early layers of Inception and added several of our own, followed by a
tanh activation for the output. We tried splitting the network at various layers and found that one
about halfway through the network (called mixed 2) worked best. The layers we added after the split
were fully connected layers of sizes 100, 300, and 20. For the FNet, the angle input is concatenated
onto the first fully-connected layer. (Find an architecture diagram in the appendix.)

4 EXPERIMENTS

We tested our trained models by running them in our Unity simulator and recording the time until
the car crashed or all four tires left the road. (Note: We designed the ReNeg framework so it need

8

Under review as a conference paper at ICLR 2019

Average Time Lasted (sec)
0

2

4

6

8

Scalar
Exponential
Fnet

Figure 3: Initial comparison of loss functions.

Average Time Lasted (sec)
0

50

100

150

α = 1 LR = 1e-6
α = 1 LR = 1e-6 (thresholded)
α = 1 LR = 5e-6
α = 1 LR = 1e-5
α = 0 LR = 1e-6
α = 0 LR = 5e-6
α = 0 LR = 1e-5

Figure 4: Scalar loss function performance in-
cluding negative examples vs. only positive ex-
amples

not be run in a simulator. This would work just as well in the real world. We only used a simulator
because it was all we had access to.) We first tested our PNet with the scalar loss, our PNet with
the exponential loss, and our FNet. We plotted their mean times over the eight runs with standard
deviation. See Figure 3 below. (All of these were on the default hyperparameters listed in the
appendix, except for the exponential loss model, for which we set α to 0.1 since otherwise we could
not get it to converge.) Based on the predicted angles, the FNet seemed to primarily predict feedback
based on state, not angle; this makes sense given that the feedback in “bad” states is generally “bad”,
except for the split second when the “good” action takes place.

Average Time Lasted (sec)
0

50

100

Scalar
Behavioral Cloning

Figure 5: Over 3 training
runs, our scalar loss model
performed over 1.5 times as
well as the behavioral cloning
benchmark, with significantly
less variance.

Given that the scalar loss performed best (and was training cor-
rectly), we spent more time tuning the hyperparameters for this
model. This can be seen in Figure 4. We note several interesting
things from figure 4 exploring the scalar loss. First, the pink group
is identical to the solid blue group except that all the α values are
0, meaning that negative-feedback examples are zeroed out and ef-
fectively ignored in training. The blue bars are much higher than
their pink counterparts, indicating that the negative data is useful.
Second, we can see that thresholding the feedback to -1 and 1 (the
blue crosshatch pattern) increased the scalar performance to about
30 seconds (compared to 6 seconds with the default hyperparame-
ters). At first this could be taken to indicate that having gradations
in positive and negative data could be harmful to training. However,
we see that the same performance is achieved (and surpassed) by in-
creasing the learning rate instead of thresholding, by looking to the
2 rightmost blue bars. The reason for this is likely that we tuned
the learning rate to work well on thresholded data, and so, when
we don’t threshold/clone our data, the scalars on the loss drop sig-
nificantly, forcing the network to take smaller steps, and effectively
decreasing the learning rate. Increasing the learning rate instead of
thresholding yields much better performance, indicating that grada-
tions in the data (with a high learning rate) do help training.

Note, α can in fact be in [0,∞], however we focused on α = 0 and
α = 1, since this corresponds to no negative examples and an equal weighting between positive and
negative examples. It it difficult to tune independently due its relationship with the learning rate.

9

Under review as a conference paper at ICLR 2019

Moreover, all we are trying to show is that using negative examples, with some relative importance
to the positive examples, can be beneficial.

After selecting the best learning rate for each model, we then trained new versions of each network
2 more times, for a total of 3 models each, to account for stochasticity in SGD. (The best learning
rate for both turned out to be 1e-5; see the appendix for more details on tuning.) Each time, we let
the model drive the car for 8 trials and calculated the performance as the mean time before crashing
over these 8 trials. We then calculated the mean performance for each over the 3 training sessions.
Figure 5 shows the results.

5 CONCLUSION

We hypothesized that for the task of learning lane following for autonomous vehicles from demon-
stration, adding in negative examples would improve model performance. Our scalar loss model
performed over 1.5 times as well as the behavioral cloning baseline, showing our hypothesis to be
true. The specific method of regression with negative examples we used allows for learning deter-
ministic continuous control problems from demonstration from any range of good and bad behavior.
Moreover, the loss function that empirically worked the best in this domain does not require an ad-
ditional neural network to model it, and it induces a stochastic policy gradient that could be used for
fine-tuning with RL. We also introduced a novel way of collecting continuous human feedback for
autonomous vehicles intuitively and efficiently, called Backseat Driver. We thus believe our work
could be extremely useful in the autonomous control industry: with no additional real world time,
we can increase performance over supervised learning by simply having a backseat driver.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
In Proceedings of the Twenty-first International Conference on Machine Learning. ACM Press,
2004.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016. URL
http://arxiv.org/abs/1604.07316.

Benjamin Burchfiel, Carlo Tomasi, and Ronald Parr. Distance minimization for reward learning
from scored trajectories. In AAAI, 2016.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. CoRR, abs/1205.4839,
2012. URL http://arxiv.org/abs/1205.4839.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations. CoRR, abs/1802.05313, 2018. URL http://arxiv.org/
abs/1802.05313.

Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. Learning driving styles for autonomous
vehicles from demonstration. 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2641–2646, 2015.

James MacGlashan, Mark K. Ho, Robert Tyler Loftin, Bei Peng, David L. Roberts, Matthew E.
Taylor, and Michael L. Littman. Interactive learning from policy-dependent human feedback.
CoRR, abs/1701.06049, 2017. URL http://arxiv.org/abs/1701.06049.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-
policy reinforcement learning. CoRR, abs/1606.02647, 2016. URL http://arxiv.org/
abs/1606.02647.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou,
and Byron Boots. Agile off-road autonomous driving using end-to-end deep imitation learning.
CoRR, abs/1709.07174, 2017. URL http://arxiv.org/abs/1709.07174.

Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning via interactive no-
regret learning. CoRR, abs/1406.5979, 2014. URL http://arxiv.org/abs/1406.5979.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. No-regret reductions for imitation
learning and structured prediction. CoRR, abs/1011.0686, 2010. URL http://arxiv.org/
abs/1011.0686.

Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, Debadeepta
Dey, J. Andrew Bagnell, and Martial Hebert. Learning monocular reactive UAV control in clut-
tered natural environments. CoRR, abs/1211.1690, 2012. URL http://arxiv.org/abs/
1211.1690.

Kyriacos Shiarlis, Joao Messias, and Shimon Whiteson. Inverse reinforcement learning from
failure. In Proceedings of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, AAMAS ’16, pp. 1060–1068, Richland, SC, 2016. International Foun-
dation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-4239-1. URL
http://dl.acm.org/citation.cfm?id=2936924.2937079.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31st International Confer-
ence on International Conference on Machine Learning - Volume 32, ICML’14, pp. I–387–
I–395. JMLR.org, 2014. URL http://dl.acm.org/citation.cfm?id=3044805.
3044850.

Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, and J. Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. CoRR, abs/1703.01030,
2017. URL http://arxiv.org/abs/1703.01030.

11

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1205.4839
http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1701.06049
http://arxiv.org/abs/1606.02647
http://arxiv.org/abs/1606.02647
http://arxiv.org/abs/1709.07174
http://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1211.1690
http://arxiv.org/abs/1211.1690
http://dl.acm.org/citation.cfm?id=2936924.2937079
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://arxiv.org/abs/1703.01030

Under review as a conference paper at ICLR 2019

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pp. 279–292,
1992.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256, May 1992. ISSN 1573-0565. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/BF00992696.

12

https://doi.org/10.1007/BF00992696

Under review as a conference paper at ICLR 2019

6 APPENDIX

6.1 EXAMPLE INPUT

6.2 ARCHITECTURE

The architecture of our model, based on Inception v3. After the split, the branch on the right is the
branch used for our PNet or FNet, while the left branch is ignored. The new layers we added were
3 fully connected layers of sizes 100, 300, and 20. The final activation is Tanh to ensure the output
range of (-1,1). For the FNet, the angle input is concatenated onto the first fully-connected layer.

6.3 HYPERPARAMETERS

Our batch size was 100 and we trained for 5 epochs. Unless otherwise specified for a given model
in the experiments, we used an α value of 1.0, we did not threshold, and we used a learning rate
of 1e-6. As in the Inception model we were using, our input was bilinearly sampled to match the

13

Under review as a conference paper at ICLR 2019

resolution 299x299. Likewise, we subtracted off an assumed mean of 256.0/2.0 and divided by an
assumed standard deviation of 256.0/2.0.

6.4 TRAINING METRICS

During training, we kept track of two validation metrics: the loss for the model being trained, and
the average absolute error on just the positive data multiplied by 50. The first we refer to as “loss”
and the second we refer to as “cloning error” (since it is the 50 times the square root of the cloning
error) or just “error”. The reason we multiplied by 50 is that this is how Unity converts the -1 to 1
number to a steering angle, so the error is the average angle our model is off by on the positive data.
(This is true with the maximum angle set to 50.)

During training, these two metrics generally behaved very similarly, however, in the models for
which we increased the learning rate, these eventually start to diverge. In this case, the error on the
positive data started to increase, but the loss was still decreasing. For this reason, we tried varying
the learning rate on several models, to see if the loss was more important than the “cloning” error.
It is clear that the behavioral cloning models (thresholded with α = 0.0) should in general do better
on the “cloning” error, since they are very closely related. Whereas for non-thresholded data, it
was trained with examples weighted differently. And for the negative data, it was trained to also
get “away” from negative examples. We hope that even though the cloning error may increase, this
means that it is because the model is choosing something better than (yet further away from) the
positive examples. We still use the cloning error, however, because it is a useful intuitive metric for
training and comparison.

6.5 LEARNING RATE TUNING

We tried several learning rates for both behavioral cloning and ReNeg. We compared the perfor-
mance, shown in figures 6 and 7, and found that 1e-5 worked best for both.

Average Time Lasted (sec)
0

50

100

150

5e-6
1e-5
1.5e-5
2e-5

Figure 6: The scalar loss performed best with a learning rate of 1e-5.

6.6 GAUSSIAN POLICY GRADIENT DERIVATION

Here is the derivation from the stochastic policy gradient to the loss that induces it, which is very
similar to our scalar loss:

∇Loss = ∇(R ∗ −log(Pr(θ)))

∇Loss = ∇(R ∗ −log(e
− (θ−θ̂)2

2σ2

√
2πσ2

))

14

Under review as a conference paper at ICLR 2019

Average Time Lasted (sec)
0

50

100

5e-6
1e-5
1.5e-5
2e-5

Figure 7: The behavioral cloning loss performed best with a learning rate of 1e-5.

∇Loss = ∇(R ∗ −(log(e−
(θ−θ̂)2

2σ2)− log(
√
2πσ2)))

∇Loss = ∇(R ∗ −(log(e−
(θ−θ̂)2

2σ2))

∇Loss = ∇(R ∗ (θ − θ̂)
2

2σ2
)

∇Loss ∝ ∇(R ∗ (θ − θ̂)2)

Loss ∝ R ∗ (θ − θ̂)2

6.7 FUTURE RESEARCH

Future research involving human feedback should focus on 2 things: the loss function and enforcing
continuity. These will be briefly explored in the next two sections.

Note, before we discuss potential extensions of this work, that fine-tuning the policy once it is
acceptably safe is a separate but also interesting problem. Supervised approaches involving a safety
driver taking over control, and retraining on this data a la DAgger, should probably be explored.
Additionally, instead of aggregating the new data with the old, active learning approaches could be
explored, where the model is not entirely retrained. we point the reader to (Pan et al., 2017) for an
AV application of DAgger.

6.7.1 LOSS FUNCTION

Immediate next steps should likely focus on alterations to the loss function. Here we introduce a
fourth desired property that can ensure our negative examples have less or the same “impact” as they
get farther away, and positive examples have more of an impact as they get farther away. In other
words, for positive examples, as D increases, the update (derivative) is always the same or greater in
magnitude, and for negative examples, the same is true as D decreases.

4. Concavity:
The loss is concave up with respect to D i.e. ∂

2Loss
∂D2 >= 0.

For positive examples, when f > 0: This enforces that |∂Loss∂D | has have a minimum at
D = 0 (the optimum), since it must be positive and increasing. Ideally, ∂Loss∂D would equal
0 at D = 0, and nowhere else.

15

Under review as a conference paper at ICLR 2019

For negative examples, when f < 0: This enforces that |∂Loss∂D | has have a minimum a
D = ∞ (the optimum), since it must be negative and increasing. Ideally, ∂Loss

∂D would
approach 0 as D →∞, and be 0 nowhere else.

We propose two loss functions that meet properties 1-4:

1. We can accomplish this exponential decay by modifying our scalar function in a very easy way:
Move the “sign” of f into the exponent:

Lossinverse = |f | ∗ (θ(s)− θ̂(s))2∗sign(f)

Using this loss function we have all three properties satisfied. That is, positive examples encourage
moving towards them, negative examples encourage moving away from them, and the amount of this
movement increases with the magnitude of f. Moreover, we also have the property that, in negative
examples, loss drops off exponentially with the distance from the negative example (because we are
dividing by it).

2. If we want our scalar loss function to have neither an exponential decay nor an exponential
increase with the distance from the negative points, we can simply use the following loss:

Lossabsolute = f ∗ |θ(s)− θ̂(s)|

This has the not-so-nice property that, in the positive example, it allows outliers much more easily
than the traditional squared loss. However, it has the very nice property that, given a single state
input, as long as you have more positive examples than negative examples, your loss will always
be minimized in that state by a value between your positive examples. This is because, as soon
as you get to your greatest or least positive example, every step away from your positive examples
will cost you 1 loss, for each positive example you have, and you will only lose 1 loss for each
negative example you have. (Note, if you are not thresholding, then this translates to more total |f |
for positive examples than negative examples.)

6.7.2 CONTINUITY

Because in both our scalar and exponential loss, our loss function at a given state with just a negative
example is minimized by moving away from the negative example, our regression in that state will
tend toward positive or negative infinity. Certainly having a cost on negative examples that drops
of exponentially will help, but it may not be enough. Moreover, we may not want to rely on the
structure of neural networks to discourage this discontinuity. Therefore, research could be done on
adding a regularization term to the loss that penalizes discontinuity. That is, we would add some
small loss based on how dissimilar the answers for nearby states are. Of course, this implies a
distance metric over states, but using consecutive frames may suffice.

16

	Problem Formulation
	Related Work
	Our Approach
	Loss Function
	Driving Data
	``Backseat Driver'' Feedback
	Architecture

	Experiments
	CONCLUSION
	Appendix
	Example Input
	Architecture
	Hyperparameters
	Training metrics
	Learning Rate Tuning
	Gaussian Policy Gradient Derivation
	Future Research
	Loss Function
	Continuity

