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ABSTRACT

Interpretability has largely focused on local explanations, i.e. explaining why a model
made a particular prediction for a sample. These explanations are appealing due to
their simplicity and local fidelity. However, they do not provide information about
the general behavior of the model. We propose to leverage model distillation to learn
global additive explanations that describe the relationship between input features and
model predictions. These global explanations take the form of feature shapes, which
are more expressive than feature attributions. Through careful experimentation, we
show qualitatively and quantitatively that global additive explanations are able to
describe model behavior and yield insights about models such as neural nets. A
visualization of our approach applied to a neural net as it is trained is available at
https://youtu.be/ATNcgurNHhc.

1 INTRODUCTION

Recent research in interpretability has focused on developing local explanations: given an existing
model and a sample, explain why the model made a particular prediction for that sample (Ribeiro
et al., 2016). The accuracy and quality of these explanations have rapidly improved, and they are
becoming important tools to understand model decisions for individual samples. However, the hu-
man cost of examining multiple local explanations can be prohibitive with today’s large data sets,
and it is unclear whether multiple local explanations can be aggregated without contradicting each
other (Ribeiro et al., 2018; Alvarez-Melis & Jaakkola, 2018).

In this paper, we are interested in global explanations that describe the overall behavior of a model.
While usually not as accurate as local explanations on individual samples, global explanations pro-
vide a different, complementary view of the model. They allow us to clearly visualize trends in
feature space, which is useful for key tasks such as understanding which features are important,
detecting unexpected patterns in the training data and debugging errors learned by the model.

We propose to use model distillation techniques (Bucilua et al., 2006; Hinton et al., 2015) to learn
global additive explanations of the form

F̂ (x) = h0 +
∑
i

hi(xi) +
∑
i 6=j

hij(xi, xj) +
∑
i 6=j

∑
j 6=k

hijk(xi, xj , xk) + · · · (1)

to approximate the prediction function of the model F (x). Figure 1 illustrates our approach. The
output of our approach is a set of p feature shapes {hi}p1 that can be composed to form an explanation
model that can be quantitatively evaluated. Through controlled experiments, we empirically validate
that feature shapes provide accurate and interesting insights into the behavior of complex models.
In this paper, we focus on interpreting F from fully-connected neural nets trained on tabular data.

Our goal is not to replace local explanations nor to explain how the model functions internally. What
we claim is that we can complement local explanations with global additive explanations that clearly
illustrate the relationship between input features and model predictions. Our contributions are:

• We propose to learn global additive explanations for complex, non-linear models such as
neural nets.
• We leverage powerful generalized additive models in a model distillation setting to learn

feature shapes that are more expressive than feature attributions
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Figure 1: Given a black box model and unlabeled samples (new unlabeled data or training data with
labels discarded), our approach leverages model distillation to learn feature shapes that describe the
relationship between input features and model predictions.

• We perform a quantitative comparison of feature shapes to other global explanation meth-
ods in terms of fidelity to the model being explained, accuracy on independent test data,
and interpretability through a user study.

2 LEARNING GLOBAL ADDITIVE EXPLANATIONS

Although our approach of using model distillation with powerful additive models of the form in
equation 1 is new, our work is based on two previous research threads: (1) decomposing F into
additive F̂ to understand how F is affected by its inputs (e.g. Hooker (2007)), and (2) learning an
interpretable model (often some form of decision tree) to mimic F (e.g. Craven & Shavlik (1995)).

2.1 ADDITIVE F̂

Global additive explanations have been used to analyze inputs to complex, nonlinear mathematical
models and computer simulations (Sobol, 2001), analyze how hyperparameters affect the perfor-
mance of machine learning algorithms (Hutter et al., 2014), and decompose prediction functions
into lower-dimensional components (Hooker, 2004). They are determined by the choice of metric L
between F and its approximation F̂ , degree d of highest order components (d = 3 in equation 1, and
type of base learner h. One common theme of these methods is that they decompose F into F̂ using
numerical or computational methods (e.g. matrix inversion, quasi Monte Carlo). Rather than ap-
proximately decomposing F (which can be prohibitively expensive with large n or p)1, we propose
to learn F̂ using model distillation. This is equivalent to choosing L that minimizes the empirical
risk between the prediction function F and our global additive explanation F̂ on the training data.

To minimize ||F − F̂ ||L, we select two flexible, nonparametric base learners for h: splines (Wood,
2006) and bagged trees. This gives us two global additive explanation models: Student Bagged
Additive Boosted Trees (SAT) and Student Additive Splines (SAS). Other choices of h are possi-
ble. We describe our distillation setup to learn these models in Section 2.2. In most of this paper, F̂
consists of main components hi (d = 1 in equation 1). Higher order components hij and hijk can
increase the accuracy of F̂ , but make interpretation more difficult. When F̂ consists of only main
components hi, any pairwise or higher order interactions in F are expressed as a best-fit additive
approximation added to main components hi, plus a pure-interaction residual. We show examples
of this expression in Section 4.1, and show the utility of adding higher order components hij and
hijk, when present in F , in Section D.2.

2.2 LEARNING F̂ USING MODEL DISTILLATION

Neural nets and other black-box models have been approximated by interpretable models such as
trees, rule lists, etc., either via model distillation/compression (Craven & Shavlik, 1995; Che et al.,
2016; Frosst & Hinton, 2017) or model extraction (Fu, 1994; Sanchez et al., 2015; Lakkaraju et al.,
2017; Bastani et al., 2017; Ribeiro et al., 2018). However, all of them approximated classifier mod-
els; there has been less work approximating regression models. Another gap in the literature is rule
lists for regression: state-of-the-art rule lists (Letham et al., 2015; Angelino et al., 2017) or rule sets
(Lakkaraju et al., 2016) do not have regression implementations. Model distillation requires only
that the teacher model label a training set, not repeated probing or access to the teacher’s internal

1E.g. Hooker (2007)’s decomposition procedure requires computing XTX , where X is an n by p feature
matrix and solving a system of equations involving 2p+1 samples.

2



Under review as a conference paper at ICLR 2019

structure or derivatives. This, combined with the applicability of generalized additive models to both
classification and regression, means that our approach can approximate a broad class of classifica-
tion and regression models. We also show in Sections 4.2.2 and 4.3, with a user study, that additive
explanations have advantages over decision trees when it comes to interpretability.

Training teacher neural nets. Our teacher models are fully-connected neural nets (FNNs) with
ReLU nonlinearities. We use the Adam optimizer (Kingma & Ba, 2015) with Xavier initialization
(Glorot & Bengio, 2010) and early stopping based on validation loss. At each depth, we search for
optimal hyperparameters (number of hidden units, learning rate, weight decay, dropout probability,
batch size, enabling batch norm) based on average validation performance on multiple train-val splits
and random initializations. The most accurate nets we trained are FNNs with 2-hidden layers and
512 hidden units per layer (2H-512,512); nets with three or more hidden layers had lower training
loss, but did not generalize as well. In some experiments we also use a restricted-capacity model
with 1 hidden layer of 8 units (1H-8) to compare explanations.

Training student additive explanation models. To train SAT and SAS, we find optimal feature
shapes {hi}p1 that minimize the mean square error between the teacher F and the student F̂ , i.e.

L(h0, h1, . . . , hp) =
1

T

T∑
t=1

‖F (xt)− F̂ (xt)‖22 =
1

T

T∑
t=1

‖F (xt)− (h0 +

p∑
i=1

hi(x
t
i))‖22, (2)

where F (x) is the output of the teacher model (scores for regression tasks and logits for classification
tasks), T is the number of training samples, xt is the t-th training sample, and xti is its i-th feature.
The exact optimization details depend on the choice of h. For trees we use cyclic gradient boosting
(Buhlmann & Yu, 2003; Lou et al., 2012) which learns the feature shapes in a cyclic manner. As
trees are high-variance, low-bias learners (Hastie et al., 2001), when used as base learners in additive
models, it is standard to bag multiple trees (Lou et al., 2012; 2013; Caruana et al., 2015). We follow
that approach here. For splines, we use cubic regression splines trained using penalized maximum
likelihood in R’s mgcv library (Wood, 2011) and cross-validate the splines’ smoothing parameters.

2.3 INTERPRETABLE BUILDING BLOCKS OF F̂ : FEATURE SHAPES

Our global additive explanation models, SAT and SAS, can be visualized as feature shapes (Figure
1). These are plots with the x-axis being the domain of input feature xi and the y-axis being the fea-
ture’s contribution to the prediction hi(xi). This way of representing the relationship between input
features and model predictions has precedence in interpretability, from work that learned monotonic
(Gupta et al., 2016) or concave/convex (Pya & Wood, 2015) feature shapes from original data (i.e.
without distillation), to post-hoc explanations such as partial dependence (Friedman, 2001), and
Shapley additive explanations dependence plots (Lundberg & Lee, 2017). The latter two are hence
natural baselines for SAT and SAS, and we describe the results from our comparison in Section
4.2.1. In Section 4.3, we also describe the results of a user study to evaluate the interpretability of
feature shapes, showing that humans are able to understand and use feature shapes.

How are feature shapes different from feature attribution? A classic way to interpret black-box
models is feature attribution/importance measures. Examples include permutation-based measures
(Breiman, 2001), gradients/saliency (see Montavon et al. (2017) or Ancona et al. (2018) for a re-
view), and measures based on variance decomposition (Iooss & Lemaitre, 2015), game theory (Datta
et al., 2016; Lundberg & Lee, 2017), etc. We highlight that feature shapes are different from and
more expressive than feature attributions. Feature attribution is a single number describing the fea-
ture’s contribution to either the prediction of one sample (local) or the model (global), whereas our
feature shapes describe the contribution of a feature, across the entire domain of the feature, to the
model. Nonetheless, feature attribution, both global and local, can be automatically derived from
feature shapes: global feature attribution by averaging feature shape values at each unique feature
value; local feature attribution by simply taking one point on the feature shape. In Section 4.3 we
show that humans are able to derive feature attribution from feature shapes.

3 EVALUATING GLOBAL EXPLANATIONS

Lundberg & Lee (2017) suggested the perspective of viewing an explanation of a model’s prediction
as a model itself. With this perspective, we propose to quantitatively evaluate explanation models
as if they were models. Specifically, we evaluate not just fidelity (how well the explanation matches
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the teacher’s predictions) but also accuracy (how well the explanation predicts the original label).
Note that Lundberg & Lee (2017) and Ribeiro et al. (2016) evaluated local fidelity (called local
accuracy by Lundberg & Lee (2017)), but not accuracy. A similar evaluation of global accuracy was
performed by Kim et al. (2016) who used their explanations (prototypes) to classify test data. In our
case, we use the feature shapes generated by our approach to predict on independent test data.

Baselines. We compare to two types of baselines: (1) additive explanations obtained by querying the
neural net (i.e. without distillation): partial dependence, Shapley additive explanations (Lundberg
& Lee, 2017) and linearization through gradients; (2) interpretable models learned by distilling the
neural net: trees, rules, and sparse linear models.

Partial dependence (PD) is a classic global explanation method that estimates how predictions
change as feature xj varies over its domain: PD(xj = z) = 1

T

∑T
t=1 F ((x

t
1, . . . , x

t
j = z, . . . , xtp)

where the neural net is queried with new data samples generated by setting the value of their xj
feature to z, a value in the domain of xj . Plotting PD(xj = z) by z returns a feature shape.

Linearization through gradient approximation (GRAD). We construct the additive function G
through the Taylor decomposition of F , defining G(x) = F (0) +

∑p
i=1

∂F (x)
∂xi

xi, and defining the

attribution of feature i of value xi as ∂F (x)
∂xi

xi. This formulation is related to the “gradient*input”
method (e.g. Shrikumar et al. (2017)) used to generate saliency maps for images.

Figure 2: From SHAP to gSHAP. Blue
points are individual SHAP values; red
line is gSHAP feature shape.

Shapley additive explanations (SHAP). SHAP is a state-
of-the-art local explanation method that satisfies several
desirable local explanation properties (Lundberg & Lee,
2017). Given a sample and its prediction, SHAP decom-
poses the prediction additively between features using a
game-theoretic approach. We use the python package by
the authors of SHAP.

Both GRAD and SHAP provide local explanations that
we adapt to a global setting by averaging the generated
local attributions at each unique feature value. For ex-
ample, the global attribution for feature “Temperature” at
value 10 is the average of local attribution “Temperature”
for all training samples with “Temperature=10”. This is
the red line passing through the points in Figure 2. Apply-
ing this procedure to GRAD and SHAP’s local attributions, we obtain global attributions gGRAD
and gSHAP that we can now plot as feature shapes.

4 EXPERIMENTAL RESULTS

First, we validate our approach on synthetic data with known ground-truth feature shapes (Section
4.1). Next, we quantitatively evaluate our approach on real data against other non-distilled additive
explanations (Section 4.2.1) and distilled, not-necessarily additive, interpretable models (Section
4.2.2). Third, we design a user study to evaluate the interpretability of feature shapes (Section 4.3).
Finally, we further validate our approach with controlled experiments on real data (Section 4.4).

4.1 VALIDATION USING SYNTHETIC DATA WITH KNOWN GROUND-TRUTH

For this experiment, we simulate data from synthetic functions with known ground-truth feature
shapes to see if our approach can recover these feature shapes. We are particularly interested in
observing how predicted feature shapes differ for neural nets of different capacity trained on the
same data. Our expectation is that for neural nets that are accurate, our predicted shapes would
match the ground-truth feature shapes, independent of how the features are used internally by the
net. On the other hand, predicted shapes of less accurate neural nets should less accurately match
ground-truth shapes.

Experimental setup. We designed an additive, highly nonlinear function combining components
from synthetic functions proposed by Hooker (2004), Friedman & Popescu (2008) and Tsang et al.
(2018): F1(x) = 3x1 + x32 − πx3 + exp(−2x24) + 1

2+|x5| + x6 log(|x6|) +
√
2|x7|+max(0, x7) +

x48 + 2 cos(πx8). Like Tsang et al. (2018), we set the domain of all features to be U(−1, 1). Like
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Figure 3: Three of ten feature shapes learned for F1 (top row) and F2 (bottom row) by small (1H-8)
and large (2H-512,512) nets. To view shapes learned for all features, see the Appendix.

Friedman & Popescu (2008), we add noise features to our samples that have no effect on F1(x)
via two noise features x9 and x10. We trained two teacher neural nets, 2H-512,512 and 1H-8, as
described in Section 2.2 to predict F1 using all ten features.

Performance of teachers and students. The high-capacity 2H neural net obtained test RMSE of
0.14, while the low-capacity neural net obtained test RMSE of 0.48, more than 3x larger. For each
neural net, we used our approach to generate two global additive explanation models, SAT and SAS.
These explanation models are faithful: the reconstruction RMSE of SAT is 0.14 for the 1H model
and 0.08 for the 2H model, while the reconstruction RMSE of SAS is 0.14 for the 1H model and
0.07 for the 2H model. This suggests that both student methods should accurately represent the
teacher, and that they will probably be very similar to each other.

Model All Agree Disagree

1H-8 0.483 0.407 0.489
2H-512,512 0.142 0.141 0.180

Table 1: RMSE error of the teacher
models on all samples, compared to
the error on samples sampled from
regions where the predicted feature
shapes “agree” or “disagree” with the
ground truth shape.

Do SAT and SAS explain the teacher model, or just
the original data? The top row of Figure 3 compares
the feature shapes of our global explanation models SAT
and SAS to function F1’s analytic ground-truth feature
shapes. SAT and SAS’ feature shapes are almost identi-
cal. More importantly, it is clear that the feature shapes
for the 2H model are different from shapes for the 1H
model, and that the shapes for the 2H model better match
ground-truth shapes. In general, the shapes of the 2H
model are very faithful to the ground-truth shapes, but
sometimes fall short when there are sharp changes in the
ground-truth, highlighting the limitations of a 2-hidden-layer neural net (which achieves 0.14 test
RMSE, as noted before). On the other hand, both SAT and SAS’ feature shapes for the 1H neural
net show a less accurate teacher model that captures the gist of the ground-truth function but not its
details, which is consistent with the original teacher RMSE of 0.48. This shows that our methods
fit what the teacher model has learned, and not the original data, and that when the teacher model is
accurate the learned shapes match the ground-truth shapes.

Do SAT and SAS’ feature shapes match the real behavior of the model? To further validate this
we use the feature shapes to predict which samples will be inaccurately predicted by the teacher
model. Specifically, we sample testing points from the space regions where the predicted feature
shapes agree (or disagree) with the the feature shape ground truth (for example, for the 2H model,
x4 ≈ 0, x7 ≈ 0, and |x6| ≈ 0.3 define a region where the predicted feature shapes and the ground
truth feature shapes disagree) and evaluate them using the teacher model. If the learned feature
shapes correctly represent the teacher model, we would expect a lower teacher error on the sam-
ples drawn from areas of agreement, and a higher teacher error on the samples drawn from areas of
disagreement, compared to the RMSE of all samples. Indeed, as shown in Table 1, points sampled
on the agreement regions have lower error than points sampled from the disagreement regions. We
performed a two-sample t-test to test if the errors of the samples in the (disjoint) agree and disagree
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Figure 4: Example feature shapes from Magic (left), and Loan (right). SAT and SAS tend to agree.
Best seen on a screen.

groups are significantly different (p-values 4.3e-21 for 1H, 2.3e-4 for 2H). Additionally, to be robust
against potential violation of the t-tests normal distribution assumption, we also performed a non-
parametric Mann-Whitney-Wilcoxon rank sum test (p-values 5.4e-14 for 1H, 1.8e-6 for 2H). Hence,
the difference between the errors is statistically significant, supporting our conclusion that teacher
error is higher for samples where feature shapes do not match ground truth, and vice versa, i.e.,
feature shapes correctly represent the behavior of the models.

How do interactions between features affect feature shapes? We design an augmented version
of F1 to investigate how interactions in the teacher’s predictions are expressed by feature shapes:
F2(x) = F1(x) + x1x2 + |x3|2|x4| + sec(x3x5x6). We again simulate 50,000 samples. Note that
this function is much harder to learn (the 2H model obtained an RMSE of 0.21) and also harder for
students that do not model interactions to mimic (SAT and SAS obtain fidelity RMSEs of 0.35). The
bottom row of Figure 3 displays features with interactions (x4, x2) and a feature without interactions
(x8), and compares them with the shapes from F1. For x4 the part of the interactions that can be
approximated additively by hi’s has been absorbed into the hi feature shapes, changing their shapes
as expected. On the other hand, we were still able to recover perfectly the feature shapes of features
without interactions (e.g. x8). An interesting case is x2, where, despite interacting with x1, its
feature shape has not changed. This is less surprising if we recall that feature shapes describe the
expected importance of the feature, learned in a data-driven fashion. The interaction term is x1x2,
which, for x1 ∼ U(−1, 1), has an expected value of zero, and therefore does not affect the feature
shape. Similarly, the expected value of |x3|2|x4| when x3 ∼ U(−1, 1) is 1/(2|x4| + 1), an upward
pointing cusp, which modifies the feature shape as shown in Figure 3 (bottom left figure).

4.2 QUANTITATIVE COMPARISON OF EXPLANATION METHODS ON REAL DATA

Performance

Data n p Type 1H 2H

Bikeshare 17,000 12 Reg RMSE 0.60 0.38
Loan 42,506 22 Reg RMSE 2.71 1.91
Magic 19,000 10 Class AUC 92.52 94.06
Pneumonia 14,199 46 Class AUC 81.81 82.18
FICO 9,861 24 Class AUC 79.08 79.37

Table 2: Performance of neural net teachers. For
RMSE, lower is better. For AUC, higher is better.

We selected five data sets: two UCI data sets
(Bikeshare and Magic), a Loan risk scoring data
set from an online lending company (Lending-
Club, 2011), the 2018 FICO Explainable ML
Challenge’s credit data set (FICO, 2018), and
the pneumonia data set analyzed by Caruana
et al. (2015). Table 2 provides details about
the data sets and performance of the 1H and 2H
neural nets. 2H neural nets exhibited the most
gain in accuracy over 1H neural nets on Bike-
share, Loan, and Magic. For the rest of this section we focus on 2H neural nets; results for 1H neural
nets are in the Appendix.

4.2.1 COMPARISON WITH NON-DISTILLED ADDITIVE EXPLANATIONS

Table 3 presents the fidelity and accuracy results for SAT and SAS compared to other additive
explanations. SAT and SAS yield similar results in all cases, both in terms of accuracy and fidelity.
In some cases, such as Magic, SAT (which uses tree base learners) is more accurate, while in some
others such as FICO, SAS (which uses spline base learners) has the edge. Trees are locally adaptive
smoothers (Breiman et al., 1984) better able to adapt to sudden changes in input-output relationships
than splines, but that also gives them more capacity to overfit. We also see this in the feature shapes,
where trees tend to be more jagged than splines, particularly in regions with fewer points.
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Accuracy Bikeshare Loan score Magic Pneumonia FICO
Global Explanation RMSE RMSE AUC AUC AUC

SAT 0.98± 0.00 2.35± 0.01 90.75± 0.06 82.24± 0.05 79.42± 0.04
SAS 0.98± 0.00 2.34± 0.00 90.58± 0.02 82.12± 0.04 79.51± 0.02

gGRAD 1.25± 0.00 6.04± 0.01 80.95± 0.13 81.88± 0.05 79.28± 0.02
gSHAP 1.02± 0.00 5.10± 0.01 88.98± 0.05 82.31± 0.03 79.36± 0.01
PD 1.00± 0.00 4.31± 0.00 82.78± 0.00 82.15± 0.00 79.47± 0.00

Fidelity Bikeshare Loan score Magic Pneumonia FICO
Global Explanation RMSE RMSE RMSE RMSE RMSE

SAT 0.92± 0.00 1.74± 0.01 1.78± 0.00 0.35± 0.00 0.15± 0.00
SAS 0.92± 0.00 1.71± 0.00 1.75± 0.00 0.35± 0.00 0.14± 0.00

gGRAD 1.20± 0.00 5.93± 0.01 2.93± 0.01 0.43± 0.00 0.16± 0.00
gSHAP 0.96± 0.00 4.83± 0.00 2.15± 0.00 0.46± 0.00 0.16± 0.00
PD 0.94± 0.00 3.85± 0.00 3.17± 0.00 0.47± 0.00 0.16± 0.00

Table 3: Accuracy and fidelity of global additive explanations for 2H neural nets. Accuracy is in
terms of RMSE for regression tasks and AUROC for classification tasks; fidelity is always RMSE
between the student’s predictions and the teacher’s scores or logits (equation 2). Results for 1H-8
neural nets in Appendix.

Figure 4 displays selected feature shapes for Magic and Loan. The feature shapes produced by PD
tend to be much too smooth, which hurts its fidelity and accuracy. Second, in all cases, trees and
splines have similar feature shapes and obtain equal or better accuracy and fidelity than the other
methods. This is not surprising as the other methods are either local methods adapted to the global
setting (gSHAP, gGRAD), or are global explanations that are not optimized to learn the teacher’s
predictions (PD). For reference, gSHAP when used as a local method (i.e. individual SHAP values,
not global feature shapes) achieved a lower RMSE of 0.37 compared to 1.02 on Bikeshare, and a
lower RMSE of 1.99 compared to 5.10 on Loan, which is comparable to its 2H teacher’s RMSE on
test data (Table 2). Hence, methods such as gSHAP excel at local explanations and should be used
for those, but, to produce global explanations, global model distillation methods optimized to learn
the teacher’s predictions perform better.

4.2.2 COMPARISON WITH OTHER DISTILLED INTERPRETABLE MODELS

Figure 5: Fidelity (RMSE) of SAT compared to other inter-
pretable models on Bikeshare (left) and Pneumonia (right),
as a function of model-specific parameter K.

Figure 5 presents the fidelity of SAT
measured with RMSE (accuracy has
similar pattern) compared to two other
distilled interpretable models: de-
cision trees (DT) and sparse L1-
regularized linear model (SPARSE),
both trained using scikit-learn. We
present results as a function of a
model-specific parameter K that con-
trols the complexity of the model.
For DT, K represents depth, while
for SPARSE it represents the number
of features with non-zero coefficients.
For trees, true model complexity falls
between K and 2K because a binary tree of depth K has 2K leaves (2K rules), but the complexity
is somewhat less than 2K because there is overlap in the rules resulting from the tree structure.

SPARSE obtained by far the worst results in terms of accuracy and fidelity: even if it is interpretable,
linear models do not have the fidelity necessary to accurately represent most teacher models. Note
that two explanation methods that use sparse linear models (Ribeiro et al., 2016) and rules (Ribeiro
et al., 2018) use them as local (not global) explanations, and only for classification (not regression).
Trees start to match the accuracy of SAT on Bikeshare at depth K = 6 (64 leaves) (Figure A7).
However, the largest tree that is readable on letter-size paper has depth K = 4 (16 leaves). As seen
in the user study in Section 4.3, depth hinders the interpretability of trees. Furthermore, they do not
always perform as well as powerful additive models such as SAT. For example, on Pneumonia, a
depth K = 12 tree (4, 096 leaves) achieved an accuracy of 80.9 AUC and a fidelity of 0.57 RMSE,
significantly worse than SAT’s 82.24 AUC and 0.35 RMSE.
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First stage (n=24) Second stage (n=14) Third stage (n=12)

Task SAT-5 DT-4 SAT-2 DT-2 SPARSE S-RULES

Rank top 2 features 75% 58% 100% 85.7% 83.3% 0%
Rank all (5) features 45% 0% N/A N/A N/A 0%

Described increased demand
42% 0% 29% 0% 0% 33%

during rush hour
Described increased demand

33% 0% 29% 0% 0% 33%
during mornings and afternoons

Compute change in prediction
33% 25% 14% 100% 83% 0%

when feature changes

Caught data error 33% 8% N/A N/A N/A 0%

Time taken (minutes) 11.7± 5.8 17.5± 14.8 7.2± 3.2 6.2± 2.2 5.2± 3.1 14.9± 8.4

Table 4: Quantitative results from user study. Since SAT-2, DT-2, and SPARSE only had two
features, the task to rank five features does not apply. Since the data error only appeared in the
output of SAT-5, DT-4, and S-RULES, the other subjects could not have caught the error.

We tried to compare to rule lists, however, as noted in Section 2.2, state-of-the-art rule lists (Letham
et al., 2015; Angelino et al., 2017) do not support regression which is needed for distillation. Hence
we used a subgroup discovery algorithm (Atzmueller & Lemmerich, 2012) that supports regression
but does not generate disjoint rules. For the rest of this paper we call them S-RULES, short for
subgroup rules. Although S-RULES generated semantically meaningful rules, they were no more
faithful than SPARSE on Bikeshare (1.42 RMSE), and less faithful than SPARSE on Pneumonia
(perhaps because Pneumonia is highly imbalanced).

4.3 INTERPRETABILITY EVALUATION WITH HUMAN SUBJECTS

We now describe the results from a user study to see if feature shapes can be understood and used by
humans, comparing them to other interpretable models (DT, SPARSE, S-RULES). Table 4 presents
quantitative results from the user study.

Study design. 50 subjects were recruited to participate in the study. These subjects – STEM PhD
students, or college-educated individuals who had taken a machine learning course – were familiar
with concepts such as if-then-else structures (for trees and rule lists), reading scatterplots (for SAT),
and interpreting equations (for sparse linear models). Each subject only used one explanation model
(between-subject design) to answer a set of questions (see Section C) covering common inferential
and comprehension tasks on machine learning models: (1) Rank features by importance; (2) De-
scribe relationship between a feature and the prediction; (3) Determine how the prediction changes
when a feature changes value; (4) Detect an error in the data.

The study proceeded in three stages. First, we compared the two most accurate and faithful students
of the Bikeshare 2H neural net: trees and SAT. We used the depth 4 tree (16 leaves), the largest tree
that is readable on letter-size paper, and which does not lag too far behind the depth 6 tree in accuracy
(RMSE: SAT 0.98, DT-6 1, DT-4 1.16). DT-4 used five features: Hour, Year, Temperature, Working
Day, Season (Figure A4), hence we select the corresponding five feature shapes to display for SAT
(Figure A3). In the first stage, 24 of 50 subjects were randomly assigned to see output from DT-4 or
SAT-5. In the second stage, we experimented with smaller versions of trees and SAT using only the
two most important features, Hour and Temperature. 14 of 50 subjects were randomly assigned to
see output from SAT-2 or DT-2. In the last stage, the remaining 12 subjects were randomly assigned
to see output from one of the two worst performing models (in terms of accuracy and fidelity): sparse
linear models and subgroup-rules.

Can humans understand and use feature shapes? From the absolute magnitude of the SAT
feature shapes as well as Gini feature importance metrics for the tree, we determined the ground
truth feature importance ranking (in decreasing order): Hour, Temperature, Year, Season, Working
Day. More SAT-5 than DT-4 subjects were able to rank the top 2 and all features correctly (75% vs.
58%, see Table 4). When ranking all 5 features, 0% of the DT-4 subjects were able to predict the
right order, while 45% of the SAT-5 subjects correctly predicted the order of the 5 features, showing
that ranking feature importance for trees is actually a very hard task. The most common mistake
made by DT-4 subjects (42% of subjects) was to invert the ranking of the last two features, Season
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and Working Day, perhaps because Working Day’s first appearance in the tree (in terms of depth)
was before Season’s first appearance (Figure A4).

When asked to describe, in free text, the relationship between the variable Hour and the label, one
SAT-5 subject wrote:

There are increases in demand during two periods of commuting hours: morning
commute (e.g. 7-9 am) and evening commute (e.g. 4-7 pm). Demand is flat during
working hours and predicted to be especially low overnight,

whereas DT-4 subjects’ answers were not as expressive, e.g.:

Demand is less for early hours, then goes up until afternoon/evening, then goes down
again.

75% of SAT-5 subjects detected and described the peak patterns in the mornings and late afternoons,
and 42% of them explicitly mentioned commuting or rush hour in their description. On the other
hand, none of the DT-4 subjects discovered this pattern on the tree: most (58%) described a con-
cave pattern (low and increasing during the night/morning, high in the afternoon, decreasing in the
evening) or a positively correlated relation (42%). Similarly, more SAT-5 subjects were able to pre-
cisely compute the change in prediction when temperature changed in value, and detect the error in
the data – that spring had lower bike demand whereas winter had high bike demand (bottom right
feature shape in Figure A3).

How do tree depth and number of feature shapes affect human performance? We also ex-
perimented with smaller models, SAT-2 and DT-2, that used only the two most important features,
Hour and Temperature. As the models are simpler, some of the tasks become easier. For example,
SAT-2 subjects predict the order of the top 2 features 100% of the time (vs 75% for SAT-5), and
DT-2 subjects, 85% of the time (vs 58% for DT-4). The most interesting change is in the percentage
of subjects able to compute the change in prediction after changing a feature: only 25% for DT-4,
compared to 100% for DT-2. Reducing the complexity of the explanation made using it easier, at
the price of reducing the fidelity and accuracy of the explanation.

Another important aspect is the time needed to perform the tasks: increasing the number of features
from 2 to 5 increases the time needed by the subjects to finish the study by 60% for the SAT model,
but increases it by 166% for the DT model, that is, interpreting a tree becomes much more costly as
the tree becomes deeper (and more accurate), and, in general, subjects make more mistakes. SAT
appears to scale up more gracefully.

Remaining interpretable models: subgroup-rules and sparse linear models. These explanations
were the least accurate and faithful. We found that human subjects can easily read the (few) weights
of SPARSE, establish feature importance, and compute prediction changes, and do so quickly – at
5.1 minutes on average, this was the fastest explanation to interpret. However, the model is highly
constrained and hid interesting patterns. For example, 100% of the subjects described the relation
between demand and hour as increasing, and 83% predicted the exact amount of increase, but none
were able to provide insights like the ones provided by SAT-5 and DT-4 subjects.

S-RULES was the second hardest explanation to interpret based on mean time required to answer
the questions: 14.9 minutes. Understanding non-disjoint rules appears to be hard: none of the
subjects correctly predicted the feature importance order, even for just two features; none were able
to compute exactly the change in prediction when feature value changes, and none were able to
find the data error. The rules in S-RULES are not disjoint because we could not find a regression
implementation of disjoint rules. However, 66% of the subjects discovered the peak during rush
hour, as that appeared explicitly in some rules, e.g. “If hour=17 and workingday=yes then bike
demand is 5”.

To summarize, feature shapes, the interpretable representation we focus on in this paper: (1) allowed
humans to perform better (than decision trees, sparse linear models, and rules) at ranking feature
importance, pointing out patterns between certain feature values and predictions, and catching a
data error; (2) Feature shapes were also faster to understand than big decision trees; (3) Very small
decision trees and sparse linear models had the edge in calculating how predictions change when
feature values change, but were much less faithful and accurate.
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Figure 6: Feature shapes from controlled experiments on real data. Left: Label modification experi-
ment. Center and right: Data modification experiment. See details in Section 4.4.

4.4 VALIDATION USING CONTROLLED EXPERIMENTS ON REAL DATA

In this section we further validate global additive explanations on real data. Although here we do
not have an analytic solution for the ground-truth feature shapes, we can still design experiments
where we modify data in ways that will lead to expected known changes to the ground-truth feature
shapes and then verify that these changes are captured in the learned feature shapes.

Label modification. On Bikeshare, we added 1.0 to the label (the number of rented bikes) for
samples where one of the features (humidity) is between 55 and 65. We then retrained a 2H neural
net on the modified data, and applied our approach to learn feature shapes from the 2H net. Ideally,
the feature shapes of that new neural net should be almost identical to those of the original net except
in that particular range of the humidity feature, where we should see an abrupt “bump” that increases
its feature shape value by one. Figure 6 (left) displays the feature shapes. Our method was able to
recover the change to the label for the neural net in the new feature shape.

Data modification: expert discretization. Sometimes features are transformed before training.
For example, in medical data, continuous variables such as body temperature may be discretized
by domain experts into bins such as normal, mild fever, moderate fever, high fever, etc. In this
experiment we test if our additive explanation models can recover these discretizations from the
neural net without access to the discretized features. We train our student additive models using as
input features the original un-discretized features, but using as labels the outputs of a neural net that
was trained on discretized features. Our expectation is that if the student models are an accurate
representation of what the neural net learned from the discretized features, they will detect the
discretizations, even if they never have access to the discretized features or to the internal structure
of the neural-net teacher. We study the feature shapes of two features in the Pneumonia data (Blood
pO2 and Respiration Rate) in Figure 6, where we compare the feature shapes learned from teachers
trained on the original continuous data (dotted lines) with those from teachers trained on discretized
features (solid lines). Recall that in both cases the student models only saw non-discretized features
to generate feature shapes. Our approach captures the expected discretization intervals (in yellow)
as described in Cooper et al. (1997).

We discuss extensions & applications of our approach in Section D in the Appendix, including
visualizing a neural net as it is trained (https://youtu.be/ATNcgurNHhc).

5 CONCLUSIONS

We presented a method for “opening up” complex models such as neural nets trained on tabular
data. The method, based on distillation with high-accuracy additive models, has clear advantages
over other approaches that learn additive explanations but not using distillation, and non-additive
explanations using distillation. Our global additive explanations do not aim to compete with lo-
cal explanations or non-additive explanations such as decision trees. Instead, we show that differ-
ent interpretable representations work well for different tasks, and global additive explanations are
valuable for important tasks that require quick understanding of feature-prediction relationships. Al-
though in this paper we focus on explaining FNNs, the method will work with any classification or
regression model including random forests and CNNs, but is not designed to work with raw image
inputs such as pixels where providing a global explanation in terms of input pixels is not meaningful.
One way to address this is to define more meaningful “features”, e.g. the intermediate activations of
a CNN, which are known to implicitly represent a hierarchy of concepts.
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APPENDIX

A ALL FEATURE SHAPES FOR F1 AND F2 SYNTHETIC FUNCTIONS (FROM SECTION 4.1)
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Figure A1: Feature shapes for features x1 to x9 of F1 from Section 4.1. Notice how x9, which
is a noise feature that does not affect F1, has been assigned an importance of approximately 0
throughout its range. The feature shape of x10, another noise feature, is very similar to x9 and hence
not included here.
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Figure A2: Feature shapes for features x1 to x9 of F2 from Section 4.1. Notice how x9, which
is a noise feature that does not affect F2, has been assigned an importance of approximately 0
throughout its range. The feature shape of x10, another noise feature, is very similar to x9 and hence
not included here.
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B QUANTITATIVE COMPARISON OF EXPLANATION METHODS ON REAL DATA: ALL NEURAL
NET TEACHERS (CONTINUED FROM SECTION 4.2)

Accuracy Bikeshare Loan score Magic Pneumonia FICO
Teacher Global Explanation RMSE RMSE AUC AUC AUC

1H-8

SAT 1.00± 0.00 2.82± 0.00 90.44± 0.05 82.01± 0.05 79.43± 0.02
SAS 1.00± 0.00 2.82± 0.00 90.43± 0.03 81.91± 0.06 79.56± 0.02

gGRAD 1.08± 0.00 2.84± 0.00 84.52± 0.67 81.63± 0.06 79.34± 0.05
gSHAP 1.04± 0.00 2.87± 0.00 89.94± 0.03 82.02± 0.02 79.49± 0.02
PD 1.00± 0.00 3.00± 0.00 85.11± 0.00 82.03± 0.00 79.46± 0.00

2H-512,512

SAT 0.98± 0.00 2.35± 0.01 90.75± 0.06 82.24± 0.05 79.42± 0.04
SAS 0.98± 0.00 2.34± 0.00 90.58± 0.02 82.12± 0.04 79.51± 0.02

gGRAD 1.25± 0.00 6.04± 0.01 80.95± 0.13 81.88± 0.05 79.28± 0.02
gSHAP 1.02± 0.00 5.10± 0.00 88.98± 0.05 82.31± 0.03 79.36± 0.01
PD 1.00± 0.00 4.31± 0.00 82.78± 0.00 82.15± 0.00 79.47± 0.00

Fidelity Bikeshare Loan score Magic Pneumonia FICO
Teacher Global Explanation RMSE RMSE RMSE RMSE RMSE

1H-8

SAT 0.64± 0.00 1.15± 0.00 1.12± 0.00 0.30± 0.00 0.21± 0.00
SAS 0.64± 0.00 1.14± 0.00 1.11± 0.00 0.30± 0.00 0.21± 0.00

gGRAD 0.71± 0.00 1.54± 0.00 35.40± 4.47* 0.36± 0.00 0.24± 0.00
gSHAP 0.68± 0.00 1.28± 0.00 1.29± 0.00 0.38± 0.00 0.22± 0.00
PD 0.65± 0.00 1.37± 0.00 1.94± 0.00 0.38± 0.00 0.25± 0.00

2H-512,512

SAT 0.92± 0.00 1.74± 0.01 1.78± 0.00 0.35± 0.00 0.15± 0.00
SAS 0.92± 0.00 1.71± 0.00 1.75± 0.00 0.35± 0.00 0.14± 0.00

gGRAD 1.20± 0.00 5.93± 0.01 2.93± 0.01 0.43± 0.00 0.16± 0.00
gSHAP 0.96± 0.00 4.83± 0.01 2.15± 0.00 0.46± 0.00 0.16± 0.00
PD 0.94± 0.00 3.85± 0.00 3.17± 0.00 0.47± 0.00 0.16± 0.00

Table A1: Accuracy and fidelity of global explanation models across 1H and 2H teacher neural nets
and datasets. Table 3 is a subset of this table with only 2H neural nets.

In general, the lower-capacity 1H neural nets are easier to approximate (i.e. better student-teacher
fidelity), but their explanations are less accurate on independent test data. Students of simpler teach-
ers tend to be less accurate even if they are faithful to their (simple) teachers. One exception is
the FICO data, where the fidelity of the 2H explanations is better. Our interpretation is that many
features in the FICO data have almost linear feature shapes (see Figure A5 for a sample of features),
and the 2H model may be able to better capture fine details while being simple enough that it can
still be faithfully approximated. The accuracy of the SAT and SAS for 1H and 2H neural nets are
comparable, taking into account the confidence intervals.

On the Magic data, the fidelity of the gGRAD explanation to the 1H neural net (see * in Table A1) is
markedly worse than other explanation methods. We investigate the individual gradients of the 1H
neural net with respect to each feature (∂F (x)

∂xi
in GRAD equation in Section 3). 99% of them have

reasonable values (between -5.6 and 6). However, 3 are larger than 1,000 (with none between 6 and
1,000) and 13 are lower than -1,000 (with none between -1,000 and -5.6), resulting in the ensuing
gGRAD explanation generating extreme predictions for several samples that are not faithful to the
teacher’s predictions. Because AUC is a ranking loss, accuracy (AUC) is less affected than fidelity
(RMSE) by the presence of these extreme values. This shows that gGRAD explanations may be
problematic when individual gradients are arbitrarily large, e.g. in overfitted neural nets.
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C USER STUDY MATERIALS (FROM SECTION 4.3)

All 50 user study subjects answered these questions:

1. What is the most important variable for predicting bike demand?
2. Rank all the variables from most important to least important for predicting bike demand.
3. Describe the relationship between the variable Hour and predicted bike demand.
4. What are variables for which the relationship between the variables and predicted bike

demand is positive?
5. The Hour is 11. When Temperature increases from 15 to 20, how does predicted bike

demand change?
6. There is one error in the data. Any idea where it might be? Cannot find the error is an ok

answer.

17



Under review as a conference paper at ICLR 2019

MODEL 
The additive model below was trained to predict bike demand. Each plot describes a variable on the x-axis and predicted bike 
demand on the y-axis. Hour denotes hour-of-day, i.e. 0, 1, 2, … 23. Temperature is in Celsius. Year has 2 possible values: 2011, 
2012. Season has 4 possible values: Spring, Summer, Fall, Winter.  
 
 

 

 

Figure A3: Model output shown to SAT-5 subjects.

 
MODEL 

The tree below was trained to predict bike demand. The tree is using five variables: Hour, Temperature, Year, Season, Working day. 
Hour denotes hourofday, i.e. 0, 1, 2, … 23. Temperature is in Celsius. Year has 2 possible values: 2011, 2012. Season has 4 
possible values: Spring, Summer, Fall, Winter.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4: Model output shown to DT-4 subjects. This visual presentation was simplified from
the visual presentation in Figure A7, removing the color and number of samples in each node, to
improve readability for the user study.
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D APPLICATIONS AND EXTENSION

In this section we discuss applications of our approach and extensions to include higher-order inter-
actions.

D.1 INSIGHTS FROM GLOBAL ADDITIVE EXPLANATIONS

Checking for monotonicity. Domains such as credit scoring have regulatory requirements that pre-
scribe monotonic relationships between predictions and some features (Federal Reserve Governors,
2007). For example, the 2018 FICO Explainable ML Challenge encouraged participants to impose
monotonicity on 16 features (FICO, 2018). We use feature shapes to see if the function learned by the
neural net is monotone for these features. 15 of 16 features are monotonically increasing/decreasing
as required. One feature, however, “Months Since Most Recent Trade Open” was expected to de-
crease monotonically, but actually increased monotonically. This is true not just in our explanations,
but also in PD, gGRAD, and gSHAP (Figure A5). Note that testing for monotonicity requires global
explanations or checking and aggregating many local explanations.

With the insight from the global explanations that the neural net may not be exhibiting the expected
pattern for “Months Since Most Recent Trade Open”, we perform a quick experiment to verify this
in the neural net. We sample values of this feature across its domain, set all data samples to this value
(for this feature), and obtain the neural net’s predictions for these modified samples. The majority of
samples (70%) had predictions that increased as this feature increased across its domain, confirming
that on average, the neural net exhibits a monotonically increasing instead of decreasing pattern for
this feature. Note that we could not have checked for a monotonicity pattern (which is by definition
a global behavior) without checking and aggregating multiple local explanations.
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Figure A5: 3 of 16 features with expected monotonically increasing/decreasing patterns in the FICO
data. “Months Since Most Recent Trade Open”, the leftmost figure, was expected to decrease mono-
tonically, but actually increased monotonically according to all explanations. The two figures on the
right are two related features, “Months Since Oldest Trade Open” and “Number of Trades Open in
Last 12 Months”, both of which exhibit the expected monotonically decreasing/increasing patterns.

Visualizing neural net training: from underfit to overfit. Using additive models to peek inside
a neural net creates many opportunities. For example, we can see what happens in the neural net
when it is underfit or overfit; when it is trained with different losses such as squared, log, or rank loss
or with different activation functions such as sigmoid or ReLUs; when regularization is performed
with dropout or weight decay; when features are coded in different ways; etc. The video at https:
//youtu.be/ATNcgurNHhc shows what is learned by a neural net as it trains on a medical
dataset. The movie shows feature shapes for five features before, at, and after the early-stopping
point as the neural net progresses from underfit to optimally fit to overfit. We had expected that the
main cause of overfitting would be increased non-linearity (bumpiness) in the fitting function, but a
significant factor in overfitting appears to be unwarranted growth in the confidence of the model as
the logits grow more positive or negative than the early-stopping shape suggests is optimal.
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D.2 EXTENDING F̂ TO INCLUDE INTERACTIONS

Figure A6: An important pair-
wise interaction in Bikeshare.

Functions learned by neural nets cannot always be represented
with adequate fidelity by the additive function F̂ in equation 1.
We can improve F̂ ’s expressive power by adding pairwise and
higher-order components hij , hijk, and so on to account for inter-
actions between two or more input features. In Bikeshare, RMSE
decreases from 0.98 to 0.60 when we add pairwise interactions
to the student model. Figure A6 shows an interesting interaction
between two features: “Time of Day”, and “Working Day”. On
working days, the highest bike rental demand occurs at 7-9am
and 5-7pm, but on weekends there is very low demand at 7-9am
(presumably because people are still sleeping) and at 5-7pm, and
demand peaks during midday from 10am-4pm. These two fea-
tures also form a three-way interaction with temperature. When-
ever the teacher neural net learned these (and other) interactions, a global explanation method must
also incorporate interactions if it is to provide high-fidelity explanations of the teacher model. Our
approach is able to do so by adding higher-order components hij , hijk, and so on to the global
additive explanation F̂ .
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E TREE THAT MATCHED SAT FIDELITY ON BIKESHARE DATASET (FROM SECTION 4.2.2)

Figure A7: Tree of depth 6 (64 leaves), the least deep tree that matched SAT’s fidelity. This uses
the default tree visualizer in scikit-learn. For the tree of depth 4 (DT-4) presented in the user study
(Figure A4), we removed the color and number of samples in each node to increase readability.
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