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ABSTRACT

The ability of modeling the other agents, such as understanding their intentions
and skills, is essential to an agent’s interactions with other agents. Conventional
agent modeling relies on passive observation from demonstrations. In this work,
we propose an interactive agent modeling scheme enabled by encouraging an
agent to learn to probe. In particular, the probing agent (i.e., a learner) learns
to interact with the environment and with a target agent (i.e., a demonstrator) to
maximize the change in the observed behaviors of that agent. Through probing,
rich behaviors can be observed and are used for enhancing the agent modeling to
learn a more accurate mind model of the target agent. Our framework consists of
two learning processes: i) imitation learning for an approximated agent model and
ii) pure curiosity-driven reinforcement learning for an efficient probing policy to
discover new behaviors that otherwise can not be observed. We have validated
our approach in four different tasks. The experimental results suggest that the
agent model learned by our approach i) generalizes better in novel scenarios than
the ones learned by passive observation, random probing, and other curiosity-
driven approaches do, and ii) can be used for enhancing performance in multiple
applications including distilling optimal planning to a policy net, collaboration,
and competition. A video demo is available at https://www.dropbox.com/
s/8mz6rd3349tso67/Probing_Demo.mov?dl=0.

1 INTRODUCTION

An accurate understanding of other agents is essential to many multi-agent problems, such as
collaboration, competition, and learning from an expert agent. Humans achieve this not only by
passively observing others’ behaviors, but also by actively probing others including interacting with
them or changing the environment and conditions so that they can understand others’ intentions,
skills, and capabilities better. For instance, when working with a colleague for the first time, one may
intentionally create diverse situations where the true intention and skill set of that colleague can be
clearly revealed, which in turn helps improve the collaboration.

Inspired by this observation, in this work, we try to enable a probing agent (i.e., a learner) to
automatically learn a good policy for probing in a way that helps it discover new behaviors of a target
agent (i.e., a demonstrator) and thus learn a better model of the target agent that is generalizable to
unseen environments or settings. Different from common task-oriented policy training, the learning
of our probing policy is purely driven by the motivation of maximizing the knowledge about the
target agent’s model. We show a simple case in Figure 1 to illustrate this idea, where the learner and
the demonstrator are initially located in the upper part and the lower part of the room respectively.
The true policy of the demonstrator is trying to go to the upper part by finding the shortest path.
However, since the room layout is fixed, the learner may overfit the only path observed from the
demonstrator. By actively creating new gaps, the learner is able to discover various paths, which will
greatly improve the accuracy of the approximated model of the demonstrator.

We consider the following setting for probing-based interactive agent modeling. In an environment,
there are two general types of agents: i) a demonstrator who possesses certain skills for a single
task or multiple tasks, and ii) a learner who has no prior knowledge of the environment and the
demonstrator’s skills. The purpose of the learner is to efficiently and thoroughly learn all of the
demonstrator’s skills and goals by not only passively watching the demonstrations but also actively
interacting with the environment and/or the demonstrator. This learning process entails both imitation
learning (IL) for modeling the demonstrator’s skills and goals, and reinforcement learning (RL)
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Figure 1: Illustration of our probing-based interactive agent modeling. Here, the demonstrator tries
to go from the bottom-right corner to the upper part of the room. The passive learner (left) only
observes one path in the fixed environment while the probing learner (right) removes a wall block to
create a new gap so that the demonstrator will change its path accordingly.

for optimizing probing policy to diversify the task settings and the demonstrations to facilitate the
imitation learning. Note that we assume that the demonstrator will always truthfully reveal its skills
and intentions in any scenarios.

A key idea in our approach is to use task independent RL training purely driven by a curiosity reward.
For this, we represent the demonstrator’s mind by i) a latent vector to encode and track an agent’s
intention and belief, and ii) a policy conditioned on the latent vector and the agent’s observed state for
action prediction (i.e., the agent’s skills). By introducing this latent vector, we are able to characterize
an agent’s policy by a low dimensional representation, and to reflect the change of policy by the
change of this latent vector. Since the goal of probing policy is to cause the demonstrator to change
its policy so that the learner may observe diverse demonstrations, it is natural to apply the change in
the latent mind representation as the curiosity-driven incentive for the learner.

We evaluate our approach on four tasks in different domains (grid worlds and algorithmic problems).
The experimental results indicate that our probing-based interactive agent modeling framework can:
i) efficiently model the demonstrator’s mind that is generalizable in unseen scenarios, and ii) can
be applied to several applications including distilling optimal plans to a policy net by automatically
diversifying task settings, and improving multi-agent collaboration as well as competition using the
learned agent model.

2 RELATED WORK

In multi-agent reinforcement learning (MARL), agent modeling or opponent modeling plays an
essential role as the ability of understanding other agent’s goals and predicting their actions can
greatly facilitate both collaborative and competitive purposes (Busoniu et al., 2008; Albrecht &
Stone, 2018). Previous work has attempted to achieve this by task-oriented learning for maximizing
a specified collaborative or competitive reward in the given tasks. For instance, inspired by game
theory, there have been approaches aiming at finding Nash equilibira in multi-agent games, where
agents’ models are represented by their utilities (Littman, 1994; Hu & Wellman, 2003) and strategies
(Claus & Boutilier, 1998; Tesauro, 2004; Powers & Shoham, 2005; Heinrich et al., 2015; Heinrich &
Silver, 2016; Lanctot et al., 2017). Recently, some deep RL methods have incorporated simple agent
modeling into Q-learning (Lowe et al., 2017) or policy updates (Foerster et al., 2018). Auxiliary
tasks like explicitly predicting other agents’ goals have also been applied to MARL (Mordatch &
Abbeel, 2018). In previous work, the agents’ incentive of modeling other agents comes from reaching
a common goal or conflicting goals. In contrast, we never define a task-specific reward for the learner
since the goal of our probing-based interactive agent modeling is not to reach a predefined goal but
rather to learn a good mind model of the demonstrator which can be generalized to unseen settings
and transferred to multi-agent tasks afterwards when a task-dependent reward is given.

Our work is greatly inspired by Theory of Mind (ToM) (Premack & Woodruff, 1978), which is a
general and powerful framework to model an agent’s mind and use the mind model to better explain or
predict the agent’s behaviors. Baker et al. (2009) has proposed a Bayesian formulation to incorporate
an agent’s desires, intentions, and belief about the world into the agent’s policy in order to predict
the agent’s goals and actions via inverse planning. Rabinowitz et al. (2018) adopts a simpler mind
representation (i.e., a latent vector) learned by a neural net (ToMnet). In our work, the learner is also
trying to learn the policy of the demonstrator with a simple mind modeling. However, instead of only
serving as a passive observer, we encourage the learner to probe so that it will learn to interact with
the environment and with the demonstrator to quickly and continuously discover new behaviors of
the demonstrator, which in turn helps learning a better mind model.
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Figure 2: An overview of our model. Architecture details are in Appendix C. Note that the modules
do not share weights, and the dashed line indicates that it is a feed forward only path (no back
propagation through this path to update the mind model).

Our task-independent reward is related to the curiosity-driven reward applied to an RL agent for
encouraging exploration (Strehl & Littman, 2008; Bellemare et al., 2016; Tang et al., 2017; Pathak
et al., 2017). Our probing framework differs from this in two ways: i) instead of exploring the world
states, we encourage the learner to discover new behaviors of the demonstrator to learn a better
model of its mind; ii) the curiosity-driven rewards in previous work only serve as auxiliary rewards
for achieving specific goals, whereas in our case, the sole motivation of our learner agent is from
curiosity, and we demonstrate that this type of pure curiosity-driven learning can actually yield rich
behaviors and general agent modeling.

There is certain similarity between active learning and our learning to prob mechanism. As Yang &
Shafto (2017) shows, active learning is more effective than optimal teaching when the learner and
teacher are not conceptually aligned, which is exactly the scenario in our problem setting (the learner
does do not share any conceptual common ground with the demonstrator at the beginning). However,
active learning typically addresses problems such as classification (Tong & Koller, 2001; Kapoor
et al., 2007) by generating queries to an oracle to get additional ground-truth supervision. There are
have been work on active imitation learning (Shon et al., 2007; nd Geoffrey J. Gordon & Bagnell,
2011; Judah et al., 2012) and active inverse reinforcement learning (Lopes et al., 2009) utilizing the
similar concept, where the learner asks quires at certain states to a human oracle for guidance on what
actions to take at those states. In contrast, our work goes beyond the scope of the existing work on
active learning – we aim at training a learner agent to directly interact with the environment and with
the target agent in order to automatically diversify the task settings and learn a better agent model
without any task-dependent training objectives so that the learned agent models can be applied to
improve the learner’s performance in various applications.

Lastly, our task-independent learning objective can also be connected with meta-learning (Wang et al.,
2016; Finn et al., 2017), which is to learn a meta strategy that can conduct efficient multi-task learning
(Maclaurin et al., 2015; Duan et al., 2017; Hariharan & Girshick, 2017; Wichrowska et al., 2017;
Yu et al., 2018; Baker et al., 2017) or adapt an agent’s policy to its opponent’s policy (Al-Shedivat
et al., 2018) in a competitive setting. In this work, the purpose of our task-independent learning is
to learn to probe a demonstrator for a better modeling of its mind, which is different from existing
meta-learning approaches.

3 APPROACH

3.1 MODEL

We assume a Markov Decision Process (MDP) framework for both the demonstrator and the
learner, where their behaviors at time t are denoted by a pair of state and action (std, a

t
d) and

(stl , a
t
l) respectively. The history of their behaviors upon time t is represented by trajectories

Γtd = {(sτd , aτd) : τ = 1, · · · , t} and Γtl = {(sτl , aτl ) : τ = 1, · · · , t} respectively.
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Our interactive agent modeling framework is illustrated in Figure 2, which consists of two parts:
i) learner’s estimation of the demonstrator’s model and ii) the learner’s probing policy for a better
understanding of the demonstrator’s model.

To estimate the demonstrator’s model, the learner maintains a behavior tracker,M(·), to encode the
observed trajectory of the demonstrator, which generates a latent vector, mt =M(Γtd). This latent
vector can be viewed as a simplified representation of the demonstrator’s mind upon time t, hence the
learner may use it to characterize the demonstrator’s policy, πd(atd|std,mt−1), from which the learner
may predict the demonstrator’s future action âtd. Note that for each demonstration, mt always starts
from the same constant, m0 = 0. This particular definition of the demonstrator’s policy may also be
connected with the option framework in hierarchical RL (Sutton et al., 1999), where the behavior
tracker serves as a global policy to update the temporal abstraction mt and consequently changes the
local policy πd.

In this work, we require a learner to interact with the environment and/or with the demonstrator
instead of passively watching the demonstrations. We enable this by learning a probing policy for
the learner, πl(atl |stl ,mt−1), where mt−1 is from the current demonstration. The main purpose of
the probing policy is to incite new behaviors of the demonstrator, thus we adopt a curiosity-driven
reward to train this policy. Particularly, we define the reward function as

rt = R(stl ,m
t−1, atl ,m

t) = ||mt −mt−1||2, (1)

where mt is the successive output of the behavior tracker after observing (std, a
t
d).

Finally, based on the probing policy, the learner can perform the probing as the rollout procedure
outlined in Algorithm 1 (see Appendix A).

In summary, there are four key components in our probing-based interactive agent modeling:

• A behavior trackerM(Γtd; θM );

• The approximated demonstrator’s policy πd(atd|std,mt−1; θd);

• A probing policy for the learner πl(atl |stl ,mt−1; θl);

• A value function for the probing policy V (stl ,m
t−1; θV ).

Please refer to Appendix C for the details of the network architecture.

3.2 LEARNING

As discussed above, we have two main learning objectives corresponding to the two parts in our
model respectively: i) minimizing imitation error (i.e., cross-entropy loss for action prediction)
and ii) maximizing accumulated probing reward (i.e., probing policy optimization). Consequently,
our approach includes an imitation learning process for recovering demonstrator’s policy and a
reinforcement learning process for optimizing the probing policy. These two processes are intertwined
and influenced by each other: the IL process provides the behavior tracker guiding the probing policy
while the RL process helps IL to observe more diverse behaviors from the demonstrator, thus enabling
an interactive learning scheme. Algorithm 2 in Appendix A summarizes the overall learning approach,
where N is the total number of training iterations. The optimization details for the two learning
processes are introduced as follows.

3.2.1 IMITATION LEARNING

For IL, we want to learn a good behavior tracker as well as the demonstrator’s policy. For this, we
minimize a cross-entropy loss for predicting demonstrator’s actions:

L(θM , θd) = E
[
− log πd(a

t
d|std,mt−1)

]
. (2)

3.2.2 REINFORCEMENT LEARNING

The goal of RL is to train a good probing policy that will maximize the change of behavior and/or
discover new behaviors of the demonstrator to facilitate the imitation learning. Based on the reward
function defined in Eq. (1), this goal is equivalent to maximizing the accumulated reward, J(θl) =
E [
∑∞
τ=0 γ

τrt+τ ], where γ is the discounted factor.
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For the policy optimization, we use Advantage Actor-Critic (A2C) (Mnih et al., 2016) to conduct
on-policy training. The policy gradient is

∇θlJ(θl) = ∇θl
[
log πl(a

t
l |stl ,mt−1; θl)A(stl ,m

t−1, atl) + λH(πl(·|stl ,mt−1; θl))
]
, (3)

where A(stl ,m
t−1, atl) is the advantage estimation defined as A(stl ,m

t−1, atl) =
∑∞
τ=0 γ

τrt+τ −
V (stl ,m

t−1) andH(·) is the entropy regularization weighted by the constant λ = 0.01 for encourag-
ing exploration. The value function is updated by the following gradient:

∇θV
1

2

( ∞∑
τ=0

γτrt+τ − V (stl ,m
t−1; θV )

)2

. (4)

Note that when we update the probing policy and the value function, the behavior tracker is fixed
(i.e., no back propagation through the dashed path in Figure 2). Thus θM will only be updated by the
IL loss in Eq. (2). This is to ensure that the change of mt is only caused by the change in policy or in
behaviors, and not by the change of the parameters of the mind model, θM .

4 EXPERIMENTS

To evaluate our approach, we introduce four tasks as shown in Figure 3, including three grid world
tasks (passing through obstacles, maze navigation, construction) and an algorithmic problem (sorting).

In order to test the generalization ability of the learned agent model, we adopt a strict training
procedure, where only one particular environment and task design is given during training. Specially,
for grid world tasks, we fix the environment layout and/or item placement in each demonstration,
whereas for the sorting task, we use the exact same input array throughout the training. At testing
time, we randomize the task settings to an extent to create novel environments/inputs that have never
been seen during training. We provide the specific settings in Section 4.1.

We implement rule-based policies for the demonstrator i) by searching the best plan from the initial
state to the goal state for the grid world tasks or ii) by the bubble sort algorithm for sorting. When
there is no possible path to reach the goal (e.g., blocked by the learner), the demonstrator will stop
until a viable path appears.

4.1 TASKS

2 0 5 12 … 9 7

(1) Passing (2) Maze Navigation (3) Construction (4) Sorting

1

Learner

Demonstrator

Doors

Wall Blocks

Tools

2 Number

Figure 3: Illustration of the evaluated tasks.

Passing. In this task modified from Baker et al. (2009), the demonstrator is initially located at the
bottom-right corner and is trying to pass through the closest gap to get into the upper part of the room.
The demonstrator can take 5 actions including moving in four directions and stopping, whereas the
learner can move in four directions, stop, and also pickup or put down a wall block. The training
environment is shown in Figure 3, where the gap is always located at the left end of the wall in the
middle. In testing cases, we randomly place the location of the gap and the initial position of the
demonstrator.

Maze Navigation. Inspired by similar tasks in recent literature (Andreas et al., 2017), we place a
few door blocks and tools (a key and a hammer) in a four-room maze, where the key can be used to
open the yellow door but has no effect on the blue door, which must be broken by the hammer. The
demonstrator is trying to go from the top-right room to the top-left room. The two agents share the
same action space including moving in four directions, picking up an item, and putting down an item.
Also, they can only carry one item at a time. In the training setting, the initial positions of both agents
and the door blocks are fixed as shown in Figure 3, whereas the tools may be randomly placed at only
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a few locations. The rules in this environment are in fact fairly complex compared to other grid world
tasks in previous work, where multiple sub-goals such as getting the tools, getting the door blocks,
placing the door blocks, and walking through the doors are involved.

Construction. We adapt the stacking tasks in Shu et al. (2018) into a grid world, where the
demonstrator has a latent goal invisible to the learner, which is to construct a new block by putting
two blocks with a specific color combination together. Three items are present in a room and they
are assigned with different colors randomly. In each episode, the demonstrator is randomly assigned
with a goal (i.e., a pair of colors). It then seeks the needed blocks and puts one of them beside the
other one. In order to predict the demonstrator’s actions precisely, the learner must infer the correct
goal first, which requires a sophisticated and dynamic agent modeling. Both agents share the same
action space as in Maze Navigation. In training, there are no obstacles in the room. To increase the
difficulty of goal inference, in testing scenarios, we randomly place a few wall blocks as obstacles
around the colored blocks.

Sorting. Compared to a grid world, algorithmic problems are less visually informative and entail
more abstract reasoning. For this, we design a sorting task where an array with certain length is given
at the beginning. In our experiments, we set the length to be 10 and restrain the size of numbers in
the array to be 4 bits (i.e., from 0 to 15). The demonstrator is able to perform a bubble sort algorithm
to rearrange the input array in an ascending order. Its action at each step is to select a pair of numbers
to swap. For every 5 steps done by the demonstrator, the learner can select a number and flipping one
of the bit of that number. Both agents can choose to do nothing for a step. During training, we only
provide one constant array so that the sorting always starts from the same initial array. This is a very
challenging setting as only 10 out of 16 possible numbers are present in the training example and the
fixed ordering may also easily cause overfitting. For testing, we generate random arrays as inputs.

For more details about the task settings, please refer to Appendix D.

4.2 GENERALIZATION IN UNSEEN TASK SETTINGS
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Figure 4: Action prediction accuracies in novel testing settings over numbers of training iterations.
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Figure 5: Action prediction accuracies in novel testing settings over numbers of training iterations
with 10% random actions.

One of the main goals of learning to probe is to learn a good agent model that can be generalized to
unseen scenarios. To evaluate how accurate our agent model is for approximating the true mind of
the demonstrator, we may test the accuracy of predicting the demonstrator’s actions using the learned
πd and behavior trackerM(·) in testing task settings unseen by the learner during training. A high
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prediction accuracy in unseen settings will indicate good generalization of the learned agent model.
To eliminate the effects from probing, we remove the learner from the environment during testing.

We compare our model with six baselines: i) ToMnet in Rabinowitz et al. (2018), which learns the
demonstrator’s model by only observing the given demonstrations without interactions, ii) our model
without training the probing policy using RL (i.e., the leaner always takes random actions), iii), ours
without the attention-based fusion (concatenating state feature and mt−1 instead), iv) using two
LSTMs for the estimated demonstrator’s policy and the probing policy respectively (Figure 16), v)
using count-based bonus as reward (Strehl & Littman, 2008; Bellemare et al., 2016; Tang et al., 2017),
and vi) using cross-entropy loss for action prediction as reward (i.e., exploration by self-supervised
prediction in Pathak et al. (2017)). To ensure fair comparison, the training settings and the testing
settings are shared by all methods. We provide more details of the baselines in Appendix E.

Figure 4 shows the predication accuracy in testing settings of the three approaches based on the
models from different training iterations. It is clear that with more iterations, our probing policy can
greatly help increase the accuracy by discovering new behaviors, and consequently yields much higher
testing accuracy than the baselines do. The results of “ours w/o fusion” and “2-LSTM” baselines
further demonstrates the importance of our attention-based fusion layer and the use of a separate
behavior tracker. By randomizing 10% of demonstrator’s actions (Figure 5), we show that the probing
policy can also handle stochastic and sub-optimal policies. It can be clearly seen from the results that
the performance of the two baselines based on different curiosity rewards is clearly inferior to ours,
which demonstrates the advantage of defining the behavioral change as the intrinsic reward for the
purpose of agent modeling. We have also evaluated the robustness of our approach by showing the
standard deviation from multiple runs as shown in Figure 9, which demonstrates a reasonably low
variance across multiple runs.

We demonstrate the effect of dimensionality of the latent vector mt (i.e., the complexity of the agent
model) in Figure 4. In simple environments, our approach still outperforms the baselines even when
the dimensionality is decreased from 8 to 2 or 4. In more complex tasks like Sorting, a higher
dimension is necessary for the agent modeling.

4.3 EVOLUTION OF LEARNED PROBING STRATEGY

As training progresses, we observe that our probing policy is able to progressively discover new
behaviors through interactions that are adapted to the demonstrator’s policy. For instance, in Maze
Navigation, we find that the learner first learns to place one door, then gradually learns to place two
doors at the appropriate moments to force the demonstrator to go back and forth to get the needed
tools for opening the doors. Finally, the probing policy will even blocks the demonstrator for a while
before it goes through the last door. Due to the space limit, we show this in the demo video.

We also provide more analysis and visualization of the probing behavior and the resulting latent
vectors in Appendix B.2 and Appendix B.3.

4.4 EMERGENCE OF OBSTRUCTIVE BEHAVIORS FROM PROBING

Although we never explicitly set an adversarial goal for the learner, we do observe a natural emergence
of obstructive behaviors caused by the probing, which can be quantitatively measured by the success
rate of the demonstrator within a time limit as shown in Figure 6. This phenomenon is aligned with
common sense that the optimal probing policy to discover new behaviors of the demonstrator should
constantly force the demonstrator to change its plan, which will eventually delay the time when the
demonstrator finishes the task. Because of the reward defined in Eq. (1), the probing policy learned
from RL is also maximizing the accumulated behavioral change of the demonstrator just like the
common sense. This further justifies our simple yet effective reward design.

episodes

su
cc

es
s r

at
e

0k 10k 20k 30k 40k

0.4

0.6

0.8

1.0
Passing

0k 10k 20k 30k

0.5

0.6

0.7

0.8

0.9

1.0
Maze Navigation

0k 10k 20k 30k 40k 50k

0.6

0.7

0.8

0.9

1.0
Construction

0k 20k 40k
0.0

0.2

0.4

0.6

0.8
Sorting

Figure 6: The average success rate of the demonstrator within the given time limit.
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Figure 7: The learning curves of the col-
laborative task (reward is rescaled).

Figure 8: The learning curves of the com-
petitive task (reward is rescaled).

4.5 APPLICATION 1: DISTILLING OPTIMAL PLANS TO A POLICY NET

Table 1: Success rates using the learned demonstrator’s policy in unseen tasking settings. Unless
specified, the evaluated policies were learned from demonstrations without random actions.

Method Passing Maze Navigation Construction Sorting

Ours 0.71 0.60 0.48 0.82
Ours (from sub-optimal demo) 0.68 0.51 0.47 N/A
Ours w/o RL 0.13 0.31 0.23 0.80
Ours w/o fusion 0.11 0.19 0.29 0.10
Ours (2-LSTM) 0.17 0.02 0.17 0
Passive (ToMnet) 0.11 0 0.12 0
Count-based 0.22 0 0.31 0.39
Self-supervised 0.23 0 0.36 0.56

Optimal planning sometimes requires a long computational time. For acceleration, it is common to
distill the optimal plans to a policy net (Lazaric et al., 2010; Guo et al., 2014). However, the distilled
policy net may not generalize well in new scenarios if the training settings are not diverse enough.
Thus, the nature of our approach makes it suitable for improving the generalization without manually
designing a large number of diverse settings.

For this, we evaluate the success rates when the learner directly uses πd (with an 8-dim latent
vector) to perform tasks in testing settings without finetuning. The results summarized in Table 1
are consistent with the findings based on action predictions. We have also tested the success rate of
the policy learned from sub-optimal demonstrations with 10% random actions. Its performance is
comparable to the one learned from perfect demonstrations by our approach. It also outperforms
the baselines trained from optimal demonstrations. We didn’t test the randomized demonstrations
for Sorting as it is unnecessary to randomize bubble sort algorithm. Note that since the learner is
unaware of the goal in Construction, we let the learner take over the task after the first block has been
picked up.

4.6 APPLICATION 2: COLLABORATION

To test whether the improved agent modeling by learning a probing policy can facilitate multi-agent
collaboration, we modify the Construction task to be a collaborative task, where the learner is trying
to help the demonstrator (fixed policy) to finish the task. For every step the demonstrator takes, the
learner will get a -0.05 penalty. When the goal is reached, it will be given a reward of 1. This setting
is difficult for training a collaborative policy since the demonstrator is capable of finishing the task by
itself. In order to help finish the task faster, the learner must infer the true goal of the demonstrator
quickly and shares part of the labor accordingly.

We fix the behavior tracker module,M(·), trained from our interactive agent modeling and retrain the
learner’s policy πl using the task reward defined above. For comparison, we implement two baselines:
i) retraining πl based onM learned from passive agent modeling (i.e., ToMnet) and ii) training a
policy without agent modeling, i.e., πl(atl |stl , std).
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Figure 7 demonstrates the learning curves, where the reward is rescaled so that the theoretical
maximum reward from a perfect policy is 1. From the curves, we may see that the policy trained with
our interactively learned agent model significantly outperforms both baselines.

4.7 APPLICATION 3: COMPETITION

Similar to Section 4.6, we design a competitive task based on the Construction task, where the learner
gets a 0.05 reward for every step and a -1.0 penalty if the opponent achieves its goal. We adopt the
same training procedure as in Section 4.6, and also rescale the reward according to the maximum
reward. As Figure 8 shows, the mind model learned by our approach improves the learning efficiency
and the converged reward by a large margin.

5 CONCLUSIONS

In this work, we have proposed a novel agent modeling approach, i.e., probing-based interactive agent
modeling. The core idea is to learn a probing policy using only a curiosity-driven reward, which is
able to discover new behaviors of the target agent. We achieve this by incorporating two learning
processes (IL and RL) together. We are able to validate our approach in four distinct tasks. The
results show that by learning a probing policy, the learner in our approach can build a more accurate
agent model of the demonstrator. Thanks to this interactively learned agent model, the learner is able
to i) approximate the demonstrator’s policy more accurately in unseen settings compared to passive
agent modeling, ii) efficiently learn a good collaborative policy to help the demonstrator, and iii)
develop an adversarial policy to compete with the demonstrator.

In the future, we can extend this framework to simultaneous agent modeling and world modeling
with a more complex mind representation.
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A PSEUDO CODE OF OUR ALGORITHMS

Algorithm 1 Rollout(Tmax)
Input: Maximum steps Tmax

Output: Episode length T , trajectories ΓT
d and ΓT

l , and the latent vector sequence M
1: Initialize the environment
2: Γ0

d ← ∅,Γ0
l ← ∅,M ← ∅,m0 ← 0, t← 0

3: repeat
4: t← t+ 1
5: Observe std and atd from the demonstrator
6: Observe stl from the environment
7: Sample and execute the learner’s action atl ∼ πl(s

t
l ,m

t−1)
8: Γt

d ← Γt−1
d ∪ {(std, atd)},Γt

l ← Γt−1
l ∪ {(stl , atl)}

9: mt ←M(Γt
d),M ←M ∪ {mt}

10: until t = Tmax or the task is finished
11: T ← t

Algorithm 2 Learning Algorithm

1: Initialize parameters Θ = 〈θM , θb, θl, θV 〉
2: Set Tmax (the maximum steps in an episode) and N (the number of training iterations)
3: i← 1
4: repeat
5: T,ΓT

d ,Γ
T
l ,M ← Rollout(Tmax)

6: IL: Update θM and θd based on Eq. (2) using ΓT
d

7: RL: Update θl and θV based on Eq. (3 and Eq. (4) respectively using ΓT
l , and M

8: i← i+ 1
9: until i = N

B MORE RESULTS

B.1 ROBUSTNESS EVALUATION

We show the mean and standard deviation of the prediction accuracy from 5 runs by our full model in
Figure 9 for Maze Navigation to validate the robustness of our approach.
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Figure 9: Mean and standard deviation of multiple runs in Maze Navigation.

B.2 VISUALIZATION OF LATENT VECTORS

Figure 10 visualizes the latent vectors obtained from demonstrations with probing and without probing,
where the latent vectors were computed by the same behavior tracker in both cases. This provides
empirical evidences that by finding new latent vectors, we are able to discover new demonstrations
with probing.

B.3 VISUALIZATION OF THE CHANGE IN mt AND THE CHANGE IN POLICY

To show that the change in mt indeed indicates the change in policy, we compute the correlation of
||mt−mt−1||2 andKL(πd(·|st+1,mt)||πd(·|st+1,mt−1)) (i.e., how different the policy conditioned
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Figure 10: t-SNE embedding of mt.

r = 0.998 r = 0.778 r = 0.874 r = 0.827

Figure 11: Correlation between the change in mt and the change in policy in testing settings (r is
Pearson correlation coefficient).

on the new latent vector mt is compared to the one with the old latent vector mt−1). Figure 11
demonstrates the correlation between the change in mt and the corresponding change in policy in
testing settings. The high correlation validates our hypothesis that the distance between consecutive
latent vectors mt and mt−1 reflects the policy change of the demonstrator.

C NETWORK ARCHITECTURE OF OUR MODEL

State Encoder. The input of the state encoder is a multi-channel tensor. For the grid world case, the
input dimension is 11× 11× (Nblocks + 1), where 11× 11 is the size of the grid world, Nitems is the
number of types of blocks, and the additional channel is to show the position of the corresponding
agent, i.e., the position of the demonstrator for std or the position of the learner for stl . The other agent
is treated as an obstacle and its position is encoded into the channel corresponded to the wall block.
In the case of Sorting task, the input dimension is 10× 1× 4, representing 10 numbers in an array
where the size of each number is 4 bits. The state encoder has one convolutional layer which consists
of 32 filters with kernel size of 1× 1 and stride of 1.

Behavior Tracker. Assuming the action space is A, we combine the state input and the action input
by augmenting the state input with A channels, each of which corresponds to an action. We set the
channel of the observed action to be all ones and set the remaining A− 1 channels to be zeros. This
combined state and action input is then fed into a convolutional layer with 32 filters (the kernel size is
1× 1 and the stride is 1). The output is flatten into a vector and passed through two fully connected
(FC) layers (all have 128 dimensions). The resulting 128-dim vector serves as the input of an LSTM
with 128 hidden units. Finally, an FC layer takes in the hidden state from the LSTM and outputs the
latent vector mt as the mind representation.

…

Feature Maps 
from State Encoder

(N channels)

m

FC

…

… Reweighted 
Feature Maps

Fusion 
Module

N-dim Attention Vector 
for the N channels

Figure 12: The attention-based fusion module.
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Fusion. As shown in Figure 12, we design our fusion module using an attention based mechanism
similar to the one introduced by Chaplot et al. (2017), where the latent vector mt−1 is fed into
an FC layer outputting an N -dim attention vector (each element is from 0 to 1) corresponding to
the N feature maps from the state encoder (here N = 32). Formally, we have an attention vector
h = σ(mt−1) ∈ R32, where σ(·) is an FC layer with sigmoid activation. h is spatially expanded to
a H ×W × 32 tensor, H(h) ∈ RH×W×32, where the elements in k-th channel correspond to the
k-th element in h. We then reweight each feature maps using the attention vector, which becomes the
fusion output. I.e., f(φ(st),mt−1) = φ(st)�H(σ(mt−1)), where φ(st) are the feature maps from
the state encoder, f(·) is the fusion layer, and � is element-wise product.

Policy. The input of this module is the flattened output from the fusion module, and is fed to
an LSTM with 128 hidden units followed by an FC layer with softmax activation. The result-
ing output is an action distribution representing the policy (either πd or πl). For Sorting task,
we slightly modify the output to fit the problem. We decompose the demonstrator’s policy as
πd(a

t
d|std,mt−1) = π

(1)
d (at,1d |std,mt−1)π

(2)
d (at,2d |std,mt−1), where at,1d and at,2d are the indices

of the numbers the demonstrator chooses to swap. For the learner’s policy, it is decomposed as
πl(a

t
l |stl ,mt−1) = πid

l (at,1l |stl ,mt−1)πbit
l (at,2l |stl ,mt−1) instead, where at,1l indicates the number

that the learner selects to change and at,2l is the bit of that number that needs to be flipped. When at,1d
or at,1l is larger than the length of the array, it means that the demonstrator or the learner is choosing
to do nothing respectively.

Value. We also have a value net designed for training the learner’s policy using A2C (i.e.,
V (stl ,m

t−1)), which takes in the hidden state from the LSTM in the learner’s policy module and
outputs a scalar value after an FC layer.

The network is trained with RMSProp (Tieleman & Hinto, 2012) using a learning rate of 0.001.
During training, ε-greedy is applied to the rollout, where the ε gradually decreases from 0.1 to 0.01.

D TASK SETTINGS

We assume full observations of the world state for both agents in all tasks but the internal state of an
agent (e.g., goals) is unobservable to another agent. The discounted factor is set to be Γ = 0.95.

For the demonstrator in the grid world tasks, we implemented search based path planning and used
simple heuristics to perform branch and bound for acceleration. In particular, the state for the search
algorithm in Passing is the map status, whereas the state in Maze Navigation and Construction is the
combination of map status and the demonstrator’s inventory.

D.1 PASSING

…

(a) Trainig setting (b) Examples of testing settings

Figure 13: The training setting and examples of testing settings for Passing.

Figure 13 shows the training setting where the locations of the gap and the staring point of the
demonstrator are fixed, and the examples of testing settings where the placement of the gap and the
initial position of the demonstrator is randomized. We terminate a training episode if the demonstrator
has not passed the obstacle after 15 steps.

D.2 MAZE NAVIGATION

The training setting in Maze Navigation is designed as shown in Figure 14a, where the placement of
the tools is restrained in the purple region, and the positions of the demonstrator’s starting point and
the doors are fixed. For testing, we randomly put one or two doors to fill the gaps; the demonstrator
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…

(a) Trainig setting
(tools can be place 
in the purple region)

(b) Examples of testing settings
(tools and the demonstrator can be place in the purple region)

Figure 14: The training setting and examples of testing settings for Maze Navigation.

and the tools can be randomly placed in the purple region. The demonstrator is always guaranteed to
be able to find a path from its starting point to the destination (the top-left room). A training episode
has a time limit of 60 steps.

D.3 CONSTRUCTION

(a) Trainig setting (b) Examples of testing settings

…

Figure 15: The training setting and examples of testing settings for Construction.

The room layout in training setting is fixed and shown in Figure 15a. In testing settings, we randomly
put six wall blocks around the three colored blocks to create obstacles. Figure 15b displays a few
examples of testing scenarios. Note that in both training and testing, we allow randomized coloring
as long as the goal can be achieved.

For each episode, we assign a random goal (a pair of colors) for the demonstrator. The maximum
episode length is 30 steps during training.

D.4 SORTING

Algorithm 3 Modified Bubble Sort
Input: Initial array X = [x1, x2, · · · , xn], where n is the length.
Output: Sorted array
1: Last position i← 0
2: Steps t← 0
3: while X is not in an ascending order do
4: c← 0
5: while c < n− 1 do
6: if xi > xi+1 then
7: Swap xi and xi+1, i.e., the demonstrator’s t-th action is (i, i+ 1)
8: t← t+ 1
9: break
10: end if
11: c← c+ 1
12: i← (i+ 1)%(n− 1)
13: end while
14: end while

In training, there is only one sequence as the initial state, i.e., [2, 0, 5, 12, 14, 10, 3, 11, 9, 7]. The
testing settings include 100 randomly generated initial sequences. Training episodes have a 30-step
time limit.
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Since the learner may change certain numbers during the process of sorting, the original bubble sort
may fail to finish the sorting successfully since it will not look back at the sorted part of the array. To
address this, we modify the original bubble sort algorithm so that it will continue to sort the sequence
until it is in an ascending order. Algorithm 3 outlines how the demonstrator swaps the numbers.

E DETAILS OF BASELINES

E.1 REWARD FUNCTIONS IN BASELINES

We define the reward functions used for baselines, count-based reward and self-supervised prediction
here.

Count-based reward:
rt = R(std) =

β√
N(std)

, (5)

where β is a constant (we set β = 1, which gives the best results in our experiments), and N(std) is
the counts of state visitation. In our experiments, the counting can be efficiently implemented by
hashing. This reward encourages the learner to push the demonstrator to new states in order to incite
new demonstrations.

Self-supervised prediction:

rt = R(std,m
t−1, atd) = − log πd(a

t
d|std,mt−1), (6)

where atd is the ground-truth action from the demonstrator. This reward essentially measures action
prediction loss of the estimated demonstrator’s policy, which is designed to encourage the learner to
find new scenarios where the previously learned demonstrator’s policy becomes less accurate.

E.2 NETWORK ARCHITECTURE OF THE 2-LSTM BASELINE

Demonstrator’s 
Policy Probing Policy

LSTM

State Encoder State Encoder

LSTM

ât
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Figure 16: The network architecture of the 2-LSTM baseline.

Figure 16 illustrates the network architecture of the 2-LSTM baseline, where two LSTMs all have
128 hidden units.
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