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Abstract

Speech enhancement driven robust Automatic Speech Recognition (ASR) systems1

typically require a parallel corpus with noisy and clean speech utterances for2

training. Moreover, many studies have reported that such front-ends, even though3

improve speech quality, do not always improve the recognition performance. On the4

other hand, multi-condition training of ASR systems provides little visualization or5

interpretability capabilities of how these systems achieve robustness. In this paper,6

we propose a novel neural architecture with unified enhancement and sequence7

classification block, that is trained in an end-to-end manner only using noisy speech8

without having information of clean speech. The enhancement block is a fully9

convolutional network that is designed to perform Time Frequency (T-F) masking10

like operation, followed by an LSTM sequence classification block. The T-F11

masking formulation enables visualization of learned mask and helps us to visualize12

the T-F points important for classification of a speech command. Experiments13

performed on Google Speech Command dataset show that our proposed network14

achieves better results than the baseline model without an enhancement front-end.15

1 Introduction16

Performance degradation of Deep Neural Network (DNN) based Automatic Speech Recognition17

(ASR) systems in the presence of channel distortions, reverberation, and additive noise is still18

a well known issue [1]. There are two major paradigms to achieve robustness to various noise19

conditions, (a) use of model adaptation techniques to achieve robustness against various degradation20

conditions [1, 2, 3, 4], (b) use of enhancement front-end to map noisy speech features to clean21

features [5, 6, 7, 8, 9, 10, 11]. Model adaptation techniques majorly use representation power of22

DNNs to train the model with various degradation conditions. This approach is reported to work well23

in wide range of degradation conditions [2, 4], without using information of clean speech. However,24

they do not give much insights regarding their inner workings. Other popular approach to achieve25

robustness is to employ an enhancement front-end using De-noising Autoencoder (DAE) based on26

various DNN architectures such as DNN-DAE [12], Time-Delay Neural Network (TDNN)-DAE27

[8], Recurrent Neural Network (RNN)-based DAE [6, 7], or Time-Frequency (T-F) masking-based28

approaches to enhance the noisy signal [10, 9]. To train such front-ends, a parallel corpus containing29

noisy and clean speech pairs is required. However, it is reported that such front-ends do not always30

yield improvement in performance in unseen noise conditions [12].31

In this paper, we propose a novel neural network architecture that can leverage advantages of both32

these approaches. We propose a network with an enhancement front-end block that has a T-F masking33

like formulation in such that it learns feature detectors to locate T-F regions important for classification.34

The output of this enhancement block is given to an LSTM-based sequence classification block.35
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Figure 1: Architecture of proposed model that consist of a convolutional enhancement block and
baseline LSTM classification block.

The entire network is jointly trained in an end-to-end manner using only noisy data with random36

parameter initialization and without providing the network any information about clean speech data.37

The proposed architecture enables an easy visualization of the enhancement process by inspecting38

the T-F mask applied by the enhancement block and activation maps of convolution filters in the first39

layer of the enhancement block. This visualization gives insights on what T-F regions are important40

for classification of a speech command. Experiments on Google Speech Command dataset [13]41

demonstrate the effectiveness of the proposed model and its visualization capabilities.42

2 Proposed model architecture43

Our proposed model based on label-driven T-F masking is shown in Figure 1. It consist of two fully44

convolutional layers in the enhancement block. The output of convolutional block is then applied45

to the input T-F representation by treating the output of the convolutional block as a T-F mask. We46

constrain the mask values between 0− 1 by applying the sigmoid activation function at the output47

of the convolutional block. Here, the input is log-magnitude domain T-F representation such as48

log Mel-Filterbank Energies (FBEs). Mathematically, operations of the enhancement block can be49

summarized as follows:50

Y (t, f) = log(exp(X(t, f)) ◦M(t, f)), (1)

where X(t, f) is the input T-F representation (e.g. FBEs), M(t, f) is the T-F mask taken at the output51

of the enhancement block, and Y (t, f) is the enhanced T-F representation.52

An LSTM layer (referred as the baseline model) takes the enhanced T-F representation Y (t, f) as an53

input and the final hidden state of the LSTM cell is then propagated to fully connected and softmax54

classification layer. The parameters of classification and enhancement block are optimized using55

the final hidden state of the LSTM layer. This enhancement block tries to enhance the entire T-F56

sequence, in contrast with the frame-level enhancement. The enhancement block, along with the57

baseline model is trained to maximize the target class probability. Hence, the T-F mask is learned in a58

manner that will increase correct classification probability.59

3 Experiments and Results60

3.1 Database description61

We use Google Speech Command dataset for our experiments [13]. The database consists of 64,72762

audio files, each of 1 second duration, and consisting of one spoken command. Each utterance is63

labelled with one of the possible 30 commands. The splits for train (80%), validation (10%), and test64

(10%) datasets are provided in the database. The dataset also provides background noise audio files65

with six types of noise. In the initial observation we found that the audio files were already containing66
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Table 1: Classification accuracy (%) of various models on validation and test dataset.

Model name Validation Test Test (20 classes)
LSTM baseline 90.93 90.76 91.12
Direct enhancement 91.5 91.47 91.97
T-F masking enhancement 92.92 92.9 93.24

Table 2: Classification accuracy (%) of all the models on noisy test set. All the available noises in
the database were added with 15 dB, 10 dB, and 5 dB SNR.

Test
Noise

LSTM baseline T-F masking enhancement Direct enhancement
15 dB 10 dB 5 dB 15 dB 10 dB 5 dB 15 dB 10 dB 5 dB

running_tap 75.42 64.74 47.24 82.25 73.46 56.12 81.59 72.60 54.32
dude_miaowing 76.14 65.53 49.26 82.38 73.87 57.41 81.78 73.24 57.82
exercise_bike 76.40 64.30 42.83 83.70 73.91 54.00 81.95 71.60 49.74
doing_dishes 82.53 73.01 56.27 86.26 79.90 67.90 83.96 75.62 59.25
pink_noise 85.44 7.15 68.31 89.20 85.62 77.51 86.83 83.07 73.72
white_noise 72.07 58.26 35.48 79.75 68.01 45.94 79.41 67.90 44.92
Average 78.00 55.50 49.90 83.92 75.80 59.81 82.59 74.01 56.63

little noise. To evaluate the robustness of the proposed model and visualization of enhancement67

process, we add the provided noises at 15 dB, 10 dB and 5 dB SNR to test utterances.68

3.2 Model architectures and results69

In our proposed model, the first convolution layer in the enhancement block had 60 convolutional70

filters of size 15×7 followed by ReLU activation. The second convolution layer had one convolutional71

filter of size 7× 7× 60 followed by sigmoid activation. The number of filters and filter dimensions72

were optimized on validation set. The model was trained to jointly optimize the parameters of73

enhancement block and the baseline model. Results of this model are tabulated under the label “T-F74

masking enhancement".75

The baseline model has an LSTM layer with 128 units and ReLU activation. The LSTM layer76

was followed by a fully connected layer with 128 units ReLU activation. The output layer had 3077

softmax units for 30 class classification. Input to our models were 40 dimensional FBEs of 1 second78

utterance extracted by taking the frames of 25 ms with 10 ms overlap. The model was trained using79

cross-entropy objective and ADAM optimizer with learning rate of 0.001 for 10 epochs and model80

that gives the best accuracy on validation dataset was used for testing.81

We train one more model to compare results with T-F masking based formulation. In this model82

we use the same enhancement block as used earlier. However, rather than treating output of the83

enhancement block as T-F mask, we treat the output of the enhancement block as an enhanced T-F84

representation and directly feed it to the baseline model. The model parameters and training scheme85

for the model with the direct enhancement block same as the model with T-F masking enhancement.86

In this case we used linear activation instead of sigmoid activation. Results of this model are tabulated87

under the label “Direct enhancement".88

Results for all the models are shown in Table 1. The baseline results are better than the CNN and89

Capsule Network models trained on the same database with same training/testing condition [14]. On90

20 commands evaluation our LSTM baseline (91.12 %) performed better than CNN (77.9 %) and91

CapsNet (87.3 %) for 20-class decoding [14]. Model with direct enhancement gave improvement over92

baseline system in both validation (91.5%) and test(91.47%) dataset. While the proposed model gave93

the best results on the original validation (92.92%) and test (92.9%) dataset. Table 2 shows the results94

of evaluating the trained models on noisy dataset. Performance of LSTM baseline degraded greatly in95

the presence of noise. By employing CNN enhancement block, the results on noisy database improved96

significantly. While in this case also proposed model with label-driven T-F masking enhancement97

gave the best results.98

3.3 Visualizing the enhancement process99

To visualize the enhancement process we show input, output, and T-F mask applied by enhancement100

block in Figure 2-I for an original test utterance as well as noisy versions of it. It can be observed101
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Figure 2: I: Visualization of the enhancement process applied by the propose model. II: Visualization
of the activation maps corresponding to some of the filters learned by proposed model. (Vertical axis
corresponds to frequency and horizontal axis is the time axis in both figures.)

that the original utterance shown in Figure 2-I (a) taken from test dataset already has some noise. The102

enhancement block gives the output shown in Figure 2-I (b). T-F mask learned by the enhancement103

block is shown in figure 2-I (c). Figure 2-I (d)-(f) and (g)-(i) show the similar plots for the same104

utterance with 15 dB and 10 dB additive noise of type running_tap, respectively.105

Visual inspection of the enhanced representation and T-F mask suggests that the enhancement block106

tries to achieve two things : (1) finding out the important T-F points in the input T-F representation107

where acoustic information about spoken word is present, (2) finding out the boundary between T-F108

regions where acoustic information about spoken word is present and silence regions. Additionally,109

the T-F masks for original as well as noisy utterances are fairly similar except for some T-F regions110

with very less SNR.111

Figure 2-II shows the activation maps of 9 selected filters (out of 60 filters) for the utterance in Figure112

2-I (a) as input. Figure 2-II (a)-(c) suggest that the underlying filters tries to locate the T-F regions113

where spoken command is present. Figure 2-II (d)-(f) show that the underlying filters are locating the114

boundaries between acoustic information of spoken command and non speech T-F regions. While115

Figure 2-II (g)-(h) show the activation of filters that are finding out the important T-F points in the116

area where acoustic information of spoken command is present. Figure 2-II (i) shows the activation117

of filter that is not significant for classifying the utterance. We found that majority of the activation118

maps resembled Figure 2-II (a)-(c), i.e. trying to locate the T-F regions where spoken command is119

present. Other significant number of filters resembled the filters shown in Figure 2-II (d)-(f).120

These visualizations suggest that enhancement for robust speech classification is different than121

traditional enhancement. While traditional enhancement front-ends try to remove or suppress noise,122

the label driven enhancement approach focuses on finding out important regions in T-F representation123

that are significant to increase the correct classification probability.124

4 Summary and Conclusions125

In this paper, we propose a novel neural network architecture with a fully convolutional enhancement126

block and LSTM-based classification block for robust speech command recognition. We trained127

our model directly on noisy data to jointly train the enhancement and classification block. The128

enhancement block had T-F masking like formulation for enhancement purpose. Our proposed model129

gave significantly better classification accuracy for both original and noisy test set. The visualization130

of enhancement process for improving classification accuracy gave significant insights on the working131

of the proposed network. We observed that instead of removing or suppressing noise present in132

the noisy T-F representation, the enhancement block locates the important regions in the input T-F133

representation.134
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