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Abstract

Client-side video players employ adaptive bi-
trate (ABR) algorithms to optimize user quality
of experience (QoE).We evaluate recently pro-
posed RL-based ABR methods in Facebook’s
web-based video streaming platform. Real-world
ABR contains several challenges that requires cus-
tomized designs beyond off-the-shelf RL algo-
rithms —we implement a scalable neural network
architecture that supports videos with arbitrary
bitrate encodings; we design a training method to
cope with the variance resulting from the stochas-
ticity in network conditions; and we leverage con-
strained Bayesian optimization for reward shaping
in order to optimize the conflicting QoE objec-
tives. In a week-long worldwide deployment with
more than 30 million video streaming sessions,
our RL approach outperforms the prior ABR al-
gorithm.

1. Introduction

The volume of video streaming traffic has been rapidly
growing in the recent years (Cisco, 2016; Sandvine, 2015),
reaching almost 60% of all the Internet traffic (Sandvine,
2018). Meanwhile, there has been a steady rise in user
demands on video quality — viewers quickly leave the video
sessions with insufficient quality (Dobrian et al., 2011). As
a result, content providers are striving to improve the video
quality they deliver to the users (Krishnan & Sitaraman,
2012).

Adaptive bitrate (ABR) algorithms are a primary tool that
content providers use to optimize video quality subject to
bandwidth constraints. These algorithms run on client-side
video players and dynamically choose a bitrate for each
video chunk (e.g., 2-second block), based on network and
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video observations such as network throughput measure-
ments and playback buffer occupancy. Their goal is to
optimize the video’s quality of experience (QoE) by adapt-
ing the video bitrate to the underlying network conditions.
However, designing a strong ABR algorithm with hand-
tuned heuristics is difficult, mainly due to hard-to-model
network variations and hard-to-balance conflicting video
QoE objectives (e.g., maximizing bitrate vs. minimizing
stalls) (Yin et al., 2015).

Facing these difficulties, recent studies have considered us-
ing reinforcement learning (RL) as a data-driven approach
to automatically optimize the ABR algorithms (Mao et al.,
2017). RL optimizes its control policy based on the actual
performance of past choices, and it is able to discover poli-
cies that outperform algorithms that rely on fixed heuristics
or use inaccurate system models. For example, as explained
in Mao et al. (2017), RL methods can learn how much play-
back buffer is necessary to mitigate the risk of stall in a
specific network, based on the network’s inherent through-
put variability. In controlled experiments with a fixed set
of videos and network traces, a number of prior work has
shown promising results for RL methods (van der Hooft
et al.; Claeys et al., 2013). However, it remains unknown
how the RL-based methods compare to the already deployed
heuristic-based ABR methods in large-scale, real-world set-
tings, where generalization and robustness are crucial for
good performance (Systems & Research, 2019).

In this paper, we present the deployment experience of
ABRL, an RL-based ABR module in Facebook’s produc-
tion web-based video platform. In designing of ABRL, we
found that off-the-shelf RL methods were not sufficient to
address the challenges that we encountered when attempting
to deploy RL-based control policies in real-world environ-
ments. To learn high-quality ABR algorithms that surpass
the deployed heuristics, we had to design new components
in ABRL’s learning procedure to solve the following chal-
lenges.

First, videos in production have different available bitrate
encodings, e.g., some videos only have HD/SD encodings,
while other videos have a full spectrum of bitrate encodings.
However, standard RL approaches use neural networks (Ha-
gan et al., 1996) that provide fixed outputs both in the num-
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ber of bitrates and the corresponding bitrate levels (e.g.,
the third output always corresponds to 720P encoding). To
represent arbitrary bitrate encodings, we design ABRL’s
neural network to output a single priority value for each bi-
trate encoding; and we repeatedly use the same copy of the
neural network for all encodings of a video. This approach
scales to any video ABRL serves and supports end-to-end
RL training (§3.2).

Second, ABRL experiences a wide variety of network con-
ditions and different video durations during training. This
introduces undesirable variance since conventional RL train-
ing algorithms cannot tell whether the observed QoE feed-
back of two ABR decisions differs due to disparate network
conditions, or due to the quality of the learned ABR policy.
To cope with the stochasticity of network conditions, we
isolate the rewards on the actual network trace experienced
in a training session, using a recent technique for RL in envi-
ronments with stochastic input processes (Mao et al., 2019).
This approach separates the contributions of the ABR policy
from the overall feedback, enabling ABRL to learn robust
policies across different deployment conditions (§3.3).

Third, production ABR requires balancing and co-
optimizing multiple objectives together (e.g., maximize
bitrate and minimize stalls). But RL requires a single re-
ward value as the training feedback. Prior work merges
the multi-dimensional objectives with a weighted sum (Yin
et al., 2015). In practice, since ABRL’s goal is to outper-
form the existing ABR algorithm in every dimension of the
objective, this does not amount to a specific, pre-defined
tradeoff between different objectives. To determine the
weights for different reward components, we formulate the
multi-objective optimization problem as a constrained opti-
mization problem (i.e., optimizing one objective subject to
bounded degradation along other objectives). This allows
us to use constrained Bayesian optimization (Letham et al.,
2018) to efficiently search for reward weights which best
meet top-line objectives (§3.4).

Lastly, for ease of understanding and ensuring safety, we
translate ABRL’s learned ABR policy into an interpretable
form for deployment. Specifically, we realize from the pol-
icy visualization that the learned ABR algorithm exhibits
approximately linear behavior in the observed state of net-
work and buffer occupancy. Thus, we fit a linear function
of network throughput and buffer occupancy to approxi-
mate ABRL’s learned ABR policy (§3.5). Such translation
degrades the average stall rate by 0.8%, but provides full
interpretability for human engineers. This allows engineers
to understand the policy well enough to verify the learn
policy.

We run A/B tests that compare ABRL with the existing
ABR algorithm on Facebook’s web-based video streaming
platform. In a week-long worldwide deployment with more

than 30 million video streaming sessions (§4), ABRL outper-
forms the heuristic-based ABR policy by 1.6% in average
bitrates and reduces stalls by 0.4%. For video sessions with
poor network connectivity, in which cases the ABR task is
more challenging, ABRL provides 5.9% higher bitrate and
2.4% fewer stalls. For Facebook, even a small improvement
in video QoE is substantial given the scale of its video plat-
form, which consists of millions of hours of video watches
per day (Wagner, 2016). In this scale, a fraction of a per-
cent consistent reduction in video buffering is significant;
each day, this would save years of video loading time in
aggregate.

2. Background

We provide a review of the basic concepts of adaptive video
streaming over HTTP. Videos are stored as multiple chunks,
each of which represents a few seconds of video playback.
Each chunk is encoded at several discrete bitrates, where a
higher bitrate implies a higher resolution and thus a larger
chunk size. The chunks are aligned for seamless transitions
across bitrates, i.e., video players can switch bitrates at any
chunk boundary without fetching redundant bits or skipping
parts of the video.

When a client watches a video, the video provider initially
sends the client a manifest file that directs the client to a
specific source (e.g., a CDN) hosting the video and lists
the available bitrates for the video. The client then requests
video chunks one by one, using an adaptive bitrate (ABR)
algorithm. These algorithms use a variety of different inputs
(e.g., playback buffer occupancy, throughput measurements,
etc.) to select the bitrate for future chunks. As chunks are
downloaded, they are stored in the playback buffer on the
client. Playback of a given chunk cannot begin until the
entire chunk has been downloaded.

3. Design

In this section we describe the design of ABRL, a system
that generates RL-based ABR policies to deploy in Face-
book’s production video platform. We start by describing
the simulator that hosts RL training in the backend (§3.1).
Next, we explain the RL training framework (§3.2), which
includes the variance reduction (§3.3) and reward shaping
(§3.4) techniques needed for this application. Finally, we
describe how ABRL translates the learned ABR policy to
deploy in the front end (§3.5). Figure 1 shows an overview.

3.1. Simulator

To train the ABR agent with RL, we first build a simula-
tor that models the playback buffer dynamics during video
streaming. The buffer dynamics are governed by the stan-
dard ABR procedure described in §2. Specifically, the sim-
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Figure 1. Design overview. For each video session in the produc-
tion experiment, ABRL collects the experience of video watch
time and the network bandwidth measurements and predictions.
It then simulates the buffer dynamics of the video streaming us-
ing these experiences in the backend. After RL training, ABRL
deploys the translated ABR model to the user front end.

ulator maintains an internal representation of the client’s
playback buffer, which includes the current size of buffer
and the buffer capacity. The simulator invokes the ABR
logic at each video chunk download event, where the ABR
logic dictates the bitrate decision for the next chunk. For
each chunk download, the simulator determines the down-
load time based on the file size of the video chunk and
the network throughput from the traces. Since the video is
played in real time, the simulator then drains the playback
buffer by the download time of the current chunk represent-
ing the video playback during the download. If the size of
current playback buffer is smaller than the download time,
we empty the buffer and issue a stall event. Subsequently,
the buffer adds the duration of the downloaded chunk into
the playback buffer. In the case where the buffer exceeds the
capacity, the simulator ticks the time forward in the trace
without downloading any chunk (i.e., move forward in the
bandwidth trace). The simulated video session terminates at
the end of each trace (corresponding to the end of a watch).
During training, ABRL repeats the simulated video sessions
by loading traces randomly at each time.

The simulator utilizes sampled traces collected from the
actual video playback sessions from the frontend. At each
video chunk download event, we log to the backend a tuple
of (1) network bandwidth estimation, (2) bandwidth mea-
surement for the previous chunk download, (3) the elapsed
time of downloading the previous chunk and (4) the file
sizes corresponding to different bitrate encodings of the
video chunk. The bandwidth estimation is an output from a
Facebook networking module. Note that the length of the
trace varies naturally across different video sessions due to
the difference in the watch time. In our training, we use
more than 100,000 traces from production video streaming
sessions.

3.2. Reinforcement Learning

The training setup shown in Figure 2 follows the standard
RL framework. In this section, we describe the details of
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Figure 2. Backend RL training framework. ABRL updates the
ABR policy neural network by observing the outcome when inter-
acting with a simulator. The simulator uses production traces to
simulate the video buffer dynamics.

the RL agent and the policy gradient training algorithm.
In particular, we explain the challenges we encountered
to motivate the variance reduction (§3.3) and the reward
shaping (§3.4) techniques.

RL setup. Upon downloading each video chunk at each
step ¢, the RL agent observes the state s; = (x4,04,7¢),
where x; is the bandwidth prediction for the next chunk, oy
is the current buffer occupancy and 77 is a vector of the file
sizes for the next video chunk. As a feedback for the bitrate
action ay, the agent receives a reward r; constructed as a
weighted combination of selected bitrate b; and stall time of
the past chunk d;:

re = wpby® — wad]? + we[1(dy > 0)], (D

where 1(-) is an indicator function counting for stall events,
and wy, wq, we, vy, Vg are the tuning weights for the reward.
Notice that these weights cannot be predetermined, because
the goal of RL-based ABR is to outperform the existing
ABR algorithm in every dimension of the metric (i.e., higher
bitrate, less stall time and less stall count), which does not
amount to a quantitative objective. In §3.4 we describe
how we use Bayesian optimization to shape the weights for
optimizing the multi-dimensional objective.

Policy. As shown in Figure 3, the agent samples the
next bitrate action a; based on its parametrized policy:
mo(at|st) — [0,1]. In practice, since the number of bi-
trate encodings (thus the length of ;) varies across differ-
ent videos (Lederer et al., 2012), we architect the policy
network to take an arbitrary number of file sizes as input.
Specifically, for each bitrate, the input to the policy network
consists of the predicted bandwidth and buffer occupancy,
concatenated with the corresponding file size. We then copy
the same neural network for each of the bitrate encodings
(e.g., the neural networks shown in Figure 3 share the same
weights ). Each copy of the policy network outputs a
“priority” value ¢! for selecting the corresponding bitrate
1. Afterwards, we use a softmax (Bishop, 2006) operation
to map these priority values into a probability distribution
pi over each bitrate: p’ = exp(qi)/ M [exp(g?)]. Impor-
tantly, the whole policy network architecture is end-to-end
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Figure 3. Policy network architecture. For each bitrate, the input
is fed to a copy of the same policy neural network. We then apply
a (parameter-free) softmax operator to compute the probability
distribution of the next bitrate. This architecture can scale to
arbitrary number of bitrate encodings.

differentiable and can be trained with the policy gradient
algorithms (Sutton et al., 1999).

Training. We use the policy gradient method (Sutton et al.,
1999; Sutton & Barto, 2017; Tian et al., 2017) to update
the policy neural network parameters in order to optimize
for the objective. Consider a simulated video streaming
session of length T', where the agent collects (state, action,
reward) experiences, i.e., (s, at, ) at each step t. The
policy gradient method updates the policy parameter 6 using
the estimated gradient of the cumulative reward:

T T
0« 0+aZVg log 7o (s¢, at) <Z Ty — bt> )

t=1 t'=t

where « is the learning rate and by, is a baseline for reducing
the variance of the policy gradient (Weaver & Tao, 2001).

Notice that the estimation of the advantage over the average
case relies on the accurate estimation of the average. For
this problem, the standard baselines, such as the time-based
baseline (Greensmith et al., 2004; Williams, 1992) or value
function (Mnih et al., 2016), suffer from large variance due
to the stochasticity in the traces (Mao et al., 2019). We
further describe the details of this variance in §3.3 and our
approach to reducing it.

3.3. Variance Reduction

ABRL’s RL training on the simulator is powered by a large
number of network traces collected from the front end video
platform (§3.1). During training, ABRL must experience
a wide variety of network conditions and video watches
in order to generalize its ABR policy well. However, this
creates a challenge for training: different traces contain very
different network bandwidth and video duration, which sig-
nificantly affects the total reward observed by the RL agent.
Consider an illustrative example shown in Figure 4, where
we use a fixed buffer-based ABR policy (Huang et al., 2014)
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Figure 4. Illustrative example of how the difference in the traces

of network bandwidth and video watch time creates significant
variance for the reward feedback.

to make the bitrate action at time 7. Even for this fixed
policy, if the future trace happens to contain large band-
width (e.g., Trace 1), the reward feedback will naturally be
large, since the network can support high bitrate without
stalls. In contrast, if the future network condition becomes
poor (e.g., Trace 2), the reward will likely be lower than
average. More importantly, the video duration determines
the possible length of ABR interactions, which dictates the
total reward the RL agent can receive for training (e.g., the
longer watch time in Trace 1 leads to larger total reward).
The key problem is that the difference across the traces is in-
dependent with the bitrate action at time 7 — e.g., the future
bandwidth might fluctuate due to the inherent stochasticity
in the network; or a user might stop watching a video regard-
less of the quality. As a result, this creates large variance in
the reward feedback used for estimating the policy gradient
in Equation (2).

To solve this problem, we adopt a recently proposed tech-
nique for handling an exogenous, stochastic process in the
environment when training RL agents (Mao et al., 2019).
The key idea is to modify the baseline in Equation (2) to an
“input-dependent” one that takes the input process (e.g., the
trace in this problem) into account explicitly. In particular,
for this problem, we implement the input-dependent base-
line by loading the same trace (i.e., the same time-series for
network bandwidth and the same video watch time) multi-
ple times and computing the average total reward at each
time step among these video sessions. Essentially, this uses
the time-based baseline (Greensmith et al., 2004) for Equa-
tion (2) but computes the average return conditional on the
specific instantiation of a trace. During training, we repeat
this procedure for a large number of randomly-sampled net-
work traces. As a result, this approach entirely removes
the variance caused by the difference in future network con-
dition or the video duration. Since the difference in the
reward feedback is only due to the difference in the actions,
this enables the RL agent to assess the quality of different
actions much more accurately. In Figure 7, we show how
this approach helps improve the training performance.
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3.4. Reward Shaping with Bayesian Optimization

The goal of ABRL is to outperform the existing ABR policy
according to multiple team-wide objectives (i.e., increasing
the video quality while reducing the stall time). Recall that
the reward weights in Equation (1) dictates the performance
of ABRL’s learned ABR policy in each of the objective
dimensions. These objectives have an inherent trade-off:
optimizing one dimension (by tuning up the correspond-
ing reward weight) diminishes the performance in another
dimension (e.g., high video quality increases the risk of
stalls).

To determine the proper combination of the reward weights,
we treat ABRL’s RL training module (§3.2, §3.3) as a black
box function f(w) — (g,!) that maps the reward weights
W 2 (wp, Wq, We, Uy, vq) from Equation (1) to a noisy esti-
mate of the average video quality ¢ and stall rate [ in unseen
evaluating video sessions, with known standard error o, and
oy, respectively.

Then, we use Bayesian optimization (Shahriari et al., 2016)
to efficiently search for the weight combinations that leads to
better (g, 1), with only a few invocations of the RL training
module. This procedure of tuning the weights in the reward
function is a realization of reward shaping (Ng et al., 1999).
We formulate the multi-dimensional optimization problem
as a constrained optimization problem:

1)
I

argmax ; ¢(w), subject to >C 3)

Where ¢(w) and [(w) are the quality and stall rate evaluated
at , [, is the stall rate of the status quo (non-RL based)
policy, and C is some constraint value.

Notice that the function ¢(-) and [(-) are can only be ob-
served by running the RL training module—a computation-
ally intensive procedure. We solve this constrained opti-
mization problem with Bayesian optimization. Bayesian
optimization uses a Gaussian process (GP) (Rasmussen,
2004) surrogate model to approximate the results of the RL
training procedure using a limited number of training runs.
Gaussian processes are flexible non-parametric Bayesian
models representing a posterior distribution over possible
smooth functions compatible with the data. We find that
GPs are excellent models of the output of the RL training
module, as small changes to the reward function will result
in small changes in the overall outcomes. Furthermore, GPs
are known to produce good estimates of uncertainty.

Using Bayesian optimization, we start from an initial set of
M design points {w;},, and iteratively test new points
on the RL module according to an acquisition function that
navigates the explore/exploit tradeoff based on a surrogate
model (most commonly a GP).

A popular acquisition function for Bayesian optimization is

expected improvement (EI) (see Frazier (2018, §4.1)). The
basic version of EI simply computes the expected value of
improvement at each point relative to the best observed
point: apr(Z|f*) = Eyy@p)[max(0, f(z) — f*)],
where D = {w;, q(;)}}, represents N runs of data
points, f* is the current best observed value and ¢(Z|D)
denotes the the posterior distribution of f value from the
surrogate.

We use a variant of EI—Noisy Expected Improvement
(NEI)—which supports optimization of noisy, constrained
function evaluations (Letham et al., 2018). While EI and
its constrained variants (e.g., (Letham et al., 2018)), are
designed to optimize deterministic functions (which have
a known best feasible values), NEI integrates over the un-
certainty in which observed points are best, and weights the
value of each point by the probability of feasibility.

NEI naturally fits the structure of the optimization task,
since the training procedure is stochastic (e.g., it depends
on the random seed). We therefore evaluate the ABRL RL
training module with a given w multiple times and compute
its standard error, which are then passed into the NEI algo-
rithm. NEI supports batch updating, allowing us to evaluate
multiple reward parameterizations in parallel.

3.5. Policy Translation

In practice, most video players execute the ABR algorithms
in the front end to avoid the extra latency connecting to the
back end (Akhshabi et al., 2011; Sodagar, 2011; Adhikari
et al., 2012; Huang et al., 2014). Therefore, we need to
deploy the learned ABR policy to the users directly —i.e.,
the design of an ABR server in the back end hosting the
requests from all users is not ideal (Mao et al., 2017). To
massively deploy, we make use of the web-based video plat-
form at Facebook, where the front end service (if uncached)
fetches the most up-to-date video player (including the ABR
policy) from the back end server at the beginning of a video
streaming session.

For ease of understanding and maintenance in deployment,
we translate the neural network ABR policy to an inter-
pretable form. In particular, we found that the learned
ABR policies approximately exhibit a linear structure —
the bitrate decision boundaries are approximately linear
and the distances between the boundaries are constant in
part of the decision space. As a result, we approximate
the learned ABR policy with a deterministic linear fitting
function. Specifically, we first randomly pick N tuples of
bandwidth prediction = and buffer occupancy o (see the
inputs in Figure 3). Then, for each tuple values (z,0)
and for each of the M equally spaced bitrates with file
sizesn',n?,--- nM, we invoke the policy network to com-
pute the probability of selecting the corresponding bitrate:
n(at|z,0,nt), 7(a?|z,0,n2), -, 7(aM|z,0,n™). Next,
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we determine the “intended” bitrate using a weighted sum:
n= Zf\il nim(a’|w, 0,n?). This serves as the target bitrate
for the output of the linear fitting function. Finally, we use
three parameters a, b, and c, to fit a linear model of band-
width prediction and buffer occupancy, which minimizes
the mean squared error over all N points:

N
Z|awi+boi+c—m 2. (@)
i=1
Here, we use the standard least square estimator for the
model fitting, which is the optimal unbiased linear estima-
tor (Zyskind & Martin, 1969). At inference time, the front
end video player uses the fitted linear model to determine
the intended bitrate and then selects the maximum available
bitrate that is below the intended bitrate.

Translating the neural network ABR policy provides inter-
pretability for human engineers but it is also a compromise
in terms of ABR performance (§4.2 empirically evaluates
this trade-off). Also, adding more contextual based features
would likely require a non-linear policy encoded directly in
a neural network (§5). It is worth noting that directly using
RL to train a linear policy is a natural choice. However, to
our surprise, training ABRL with a linear policy function
leads to worse ABR performance than the existing heuris-
tics. We hypothesize this is because policy gradient with
a weak function approximator such as a linear one has dif-
ficulty converging to the optimal, even though the optimal
policy can be simple (Lu et al., 2018; Fujimoto et al., 2018;
Fairbank & Alonso, 2012; Achiam et al., 2019).

4. Experiments

We evaluate ABRL with Facebook’s web-based production
video platform. Our experiments answer the following ques-
tions: (1) Does ABRL provide gains in performance over
the existing heuristic-based production ABR algorithm? (2)
How are different subgroups affected by the ABRL-based
policy? (4) During training, how do different design compo-
nents affect the learning procedure?

4.1. Overall live performance

In a week-long deployment on Facebook’s production video
platform, we compare the performance of ABRL’s trans-
lated ABR policy (§3.5) with that of the existing heuristic-
based ABR algorithm. The experiment includes over 30
million worldwide video playback sessions. Figure 5 shows
the relative improvement of ABRL in terms of video quality
and stall rate.

Overall, ABRL achieves a 1.6% increase in average bitrate
and a 0.4% decrease in stall rate. Most notably, ABRL
consistently selects higher bitrate through the whole week
(99% confidence intervals all positive). However, choos-

Video quality Stall rate
4% 4%
Wl g e E g » - .
0 0
2% 2% . . l
-4% -4%

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

(a) Video quality (b) Stall rate

Figure 5. A week-long performance comparison with production
ABR policy. The comparison is sampled from over 30 million
video streaming session. The box spans 95% confidence intervals
and the bars spans 99% confidence intervals.

ing higher bitrates does not sacrifice stall rate— ABRL
rivals or outperforms the default scheme on the average
stall rate every day, even on Thursday when gains in video
quality are highest. This shows ABRL uses the output from
the bandwidth prediction module better than the fine-tuned
heuristic. By directly interacting with the observed data,
ABRL learns quantitatively how conservative or aggressive
the ABR should be with different predicted bandwidths.
As a result, this also leads to a 0.2% improvement in the
end-user video watch time.

These improvement numbers may look modest compared to
the those reported by recent academic papers (Huang et al.,
2014; Spiteri et al., 2016; Yin et al., 2015; Mao et al., 2017).
This is mostly because we only experiment with web based
videos, which primarily consist of well-connected desktop
or laptop traffic, different from the prior schemes that mostly
concern cellular and unstable networks. Nonetheless, any
non-zero improvement is significant given the massive vol-
ume of Facebook videos. In the following, we profile the
performance gain at a more granular level.

4.2. Detailed Analysis of RL Pipeline

Reward shaping. To optimize the multi-dimensional objec-
tive, we use a Bayesian Optimization approach for reward
shaping (§3.4). The goal is to tune the weights in the reward
function in order to train a policy that operates on the Pareto
frontier of video quality and stall (and, ideally, outperform
the existing policy in both dimensions). Figure 6 shows the
performance from different reward weights during the re-
ward shaping procedure. At each iteration, we set the reward
weights using the output from the Bayesian optimization
module, and treat ABRL’s RL module as a black box, in
which the policy is trained until convergence according to
the chosen reward weights. The Bayesian optimization mod-
ule then observes the testing outcomes (both video quality
and stall) and sets the search criteria for the next iteration to
be “expected improvement in video quality such that stall
time degrades no less than 5%”. As shown, within three
iterations, ABRL is able to hone in on the empirical Pareto
frontier. In this search space, there are many more weight



Real-world Video Adaptation with Reinforcement Learning

— Default ABR policy
=4 ° Initial random search
K @ BO 1st round
- BO 2nd round 1
] ® BO 3rd round
£3 —E—[%
= S,
v %, —=
E A ——
=2 *.._5_.'—6— - ——
g & >—E:6_ —f—

ag - T iy et

1

1 15 2 25 3 35 4
Video quality (unit scaled)
Figure 6. Reward shaping via Bayesian optimization using the
ABRL simulator. The initial round has 64 random initial param-
eters. Successive batches of Bayesian optimization converge to

optimal weightings that improve video quality while reducing stall
rate. The performance is tested on held out network traces.

configurations that lead to better video quality (i.e., right
of the dashed line) than the configurations leading to fewer
stalls (i.e., lower than the dashed line). Compared to the
existing ABR scheme, ABRL finds a few candidate reward
weights that lead to better ABR policy both in terms of video
quality and stalls (i.e., lower and to the right of the existing
policy). For the production experiment in §4.1, we deploy
the policies within the region that shows the largest improve-
ment in stall. After this search procedure, engineers on the
video team can pick policies based on different deployment
objectives as well.

Variance reduction. To reduce the variance introduced by
the network and the watch time across different the traces,
we compute the baseline for policy gradient by averaging
over the cumulative rewards from the same trace (in all the
parallel rollouts) at each iteration, effectively achieving the
input-dependent baseline (§3.3). For comparison, we also
train an agent with the regular state-dependent baseline (i.e.,
output from a value function that only takes the state obser-
vation as input). Figure 7 evaluates the impact of variance
reduction by comparing the learning curve trained with the
input-dependent baseline to that with the state-dependent
baseline. As shown, the agent with the input-dependent
baseline achieves about 12% higher eventual total reward
(i.e., the direct objective of RL training). Moreover, we
find that the agent with input-dependent baseline converges
faster in terms of the entropy of the policy, which is also
indicated by the narrower shaded area in Figure 7. At each
point in the learning curve, the standard deviation of re-
wards is around half as large under the input-dependent
baseline. This is expected because of the large variance in
the policy gradient estimation given the uncertainties in the
trace. Fixing the trace at each training iteration removes the
variance introduced by the external input process, making
the training significantly more stable.

Trade-off of performance for interpretability. Figure 8
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Figure 7. Improvements learning performance due to variance re-
duction. The network condition and watch time in different traces
introduces variance in the policy gradient estimation. The input-
dependent baseline helps reduce such variance and improve train-
ing performance. Shaded area spans = std.
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Figure 8. Performance comparison of ABRL and its linear approx-
imated variant. The agents are tested with unseen traces in simula-
tion. Translating the policy degrades the average performance by
0.8% in stall and 0.6% in quality.

shows how the testing performance of video quality and
stall in simulation differ between ABRL’s original neural
network policy and the translated policy (§3.5). Most no-
ticeably, making the ABR policy linear and interpretable
incurs a 0.8% and 8.9% degradation in the mean and 95th
percentile of stall rate. This accounts for the tradeoff to
make the learned ABR policy fully interpretable. Also, we
tried to train a linear policy directly from scratch (by remov-
ing hidden layers in the neural network and removing all the
non-linear transformations). However, the performance of
the directly learned linear policy does not outperform the ex-
isting baseline. This in part is because over-parametrization
in the policy network helps learn a more robust policy (Lu
et al., 2018; Fairbank & Alonso, 2012).

Subgroup analysis. To better understand how ABRL out-
performs the existing ABR scheme, we breakdown the per-
formance gain in different network conditions and we visu-
alize the ABR policy learned by ABRL.

In Figure 9, we categorize the video sessions based on the
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Figure 9. Breakdown the performance comparison with different
network quality for the live experiment. “slow network™ corre-
sponds to < 500K mbps measured network bandwidth, and “fast
network” corresponds to > 10 mbps bandwidth. The box spans
95% confidence intervals and the bars spans 99% confidence in-
tervals.

average measured network bandwidths. As shown, ABRL
overall achieves a higher bitrate while maintaining fewer
stalls in both fast and slow networks. Moreover, ABRL per-
forms significantly better in slow network conditions, where
it delivers 5.9% higher bitrate with 2.4% fewer stalls on
average. When the network connectivity is unstable, ABR
is challenging — a controller must agilely switch to lower
bitrate when the bandwidth prediction or buffer level is low,
but must avoid being too conservative by persistently stick-
ing with low bitrates (when is is feasible to use higher bitrate
without stalling). In the slow network condition, ABRL em-
pirically uses the noisy network bandwith estimation better
than the heuristic system in order to maintain better buffer
levels. This indicates that ABRL optimizes algorithm per-
formance under network conditions that existing schemes
may overlook.

5. Discussion

We intend to work on several directions to further enhance
ABRL in the production systems. First, ABRL’s training
is only performed once offline with pre-collected network
traces. To better incorporate with the updates in the backend
infrastructure, we can set up a continual retraining routine
weekly or daily. Prior studies have shown the benefit of
continual training with ever updating systems (Systems &
Research, 2019).

Second, we primarily evaluate ABRL on Facebook’s web-
based video platform, because it has the fastest codebase
update cycle (unlike mobile development, where the updates
are batched in new version releases). However, the network

conditions for cellular networks have larger variability and
are more unpredictable, where the gain of an RL-based ABR
scheme can be larger (e.g., we observed larger performance
gain for ABRL when the network condition is poor in §4.2.
Developing a similar learning framework for mobile clients
can potentially lead to larger ABR improvements.

Third, ABRL uses the same state variables (§3.2) as the cur-
rent heuristic-based ABR algorithm. In practice, ABRL can
also extend its state space to incorporate more contextual
features such as video streaming regions, temporal informa-
tion (which may contain different network characteristics)
and continuous / many-valued features which engineers
cannot easily fold into heuristics. Also, categorizing and
optimizing the video quality based on video content types
can likely result in better perceptual quality.

Lastly, there exists a discrepancy between simulated buffer
dynamics and the real video streaming session in practice.
Better bridging this gap can increase the generalizability of
ABRL’s learned policy. To this end, there is ongoing work
addressing the discrepancy between simulation and reality
with Bayesian optimization in reward shaping (Letham &
Bakshy, 2019). Furthermore, another viable approach is to
directly perform RL training on the production system. The
challenge for this is to construct a similarly safe training
mechanism (Alshiekh et al., 2018) that prevents the initial
RL trials from decreasing perceptual quality of a video (e.g.,
restricting the initial RL policy from randomly select poor
bitrates).

6. Conclusion

We presented ABRL, a system that uses RL to automat-
ically learn high-quality ABR algorithms for Facebook’s
production web-based video platform. ABRL has several
customized components for solving the challenges in pro-
duction deployment, including a scalable architecture for
videos with arbitrary bitrates, a variance reduction RL train-
ing method and a Bayesian optimization scheme for reward
shaping. For deployment, we translate ABRL’s policy to an
interpretable form for better maintenance and safety. In a
week-long worldwide deployment with more than 30 mil-
lion video streaming sessions, our RL approach outperforms
the existing carefully-tuned ABR algorithm by at least 1.6%
in video quality and 0.4% in stall.
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