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Abstract

In the off-policy policy evaluation (OPE) prob-
lem, we want to estimate an agent’s performance
without online interaction with the environment,
which is difficult due to out-of-distribution prob-
lems between the learned agent and the validation
set of offline interactions. OPE is commonly done
through importance weighting or model learning.
In this paper, we propose an alternative OPE met-
ric, focusing on the special (but relatively com-
mon) case of deterministic MDPs with sparse bi-
nary rewards, that uses a learned critic Q(s, a) as
a classifier, using its accuracy to estimate return of
the corresponding policy. Due to only requiring a
Q-function estimate, we can apply the proposed
metric to learning regimes where importance sam-
pling or model fitting is difficult or infeasible.
Experiments in toy and Atari environments show
the metric correlates with return better than ad
hoc approaches like the TD error. Turning an eye
towards cross-domain generalization, we test the
OPE metric on a difficult high-dimensional image-
based real-world robot grasping setup. When ap-
plied to models trained only in simulation, the
metric continues to correlate well with returns,
even when the testing environment is in the real-
world and uses objects not seen at training time.
This opens the potential to heavily reduce real-
robot usage when developing new models.

1. Introduction

Supervised learning has seen significant advances due to the
emergence of large labeled datasets (Deng et al., 2009), and
the use of validation sets to estimate their final performance
on the true test distribution, even if that test distribution
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differs from the training set. The analogue in reinforcement
learning (RL) is off-policy policy evaluation (OPE), where
we predict the performance of a learned RL policy using
validation data collected by a different, fixed policy. This
is unnecessary for simulated environments, but becomes
important in real-world settings where online interaction is
risky, costly, or time consuming (Thomas et al., 2015), since
a robust off-policy metric can reject poor policies without
risking harm in the real-world. In settings where we aim to
transfer a policy from a simulated environment to a more
complex one, such as robot grasping from simulation to
reality (Bousmalis et al., 2018), OPE could let us perform
model selection and algorithm design entirely in simulation,
reducing robot management overhead.

Previous approaches for off-policy policy evaluation
(OPE) (Precup et al., 2000; Dudik et al., 2011; Jiang & Li,
2015; Thomas & Brunskill, 2016) use a mix of importance
sampling and model learning to evaluate policies on their
validation sets. This can prove challenging for value-based
RL methods. Such methods may learn deterministic poli-
cies (Lillicrap et al., 2015; van Hasselt et al., 2016), which
have undefined importance weights for off-policy actions.
The training data may include human expert demonstra-
tions (Vecerik et al., 2017), the action distribution of which
is not explicitly known. In high-dimensional and contin-
uous state spaces, importance weights can degenerate to
zero (Levine & Koltun, 2013), making them tricky to work
with. As for model-based techniques, although there has
been progress on high-dimensional modelling (Babaeizadeh
et al., 2018; Lee et al., 2018), learning sufficiently accurate
models in image space for effective evaluation is still an
open research problem.

Seeking a more general approach, we observe that almost all
RL algorithms learn a Q-function, either through Q-learning
or as part of an actor-critic algorithm. Although general
MDPs can have complex dynamics and reward functions,
many tasks have deterministic dynamics and can be defined
by a simple binary reward function, where reward indicates
success or failure at a task. Focusing on this case, we de-
rive an OPE metric using only a learned ()(s,a) and an
off-policy validation set. Our method does not use impor-
tance weighting and does not assume knowledge of which
behavior policy collected the validation trajectories.
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At its core, our approach is based on the observation that
in deterministic binary reward tasks, the actions at every
state can be partitioned into “good” and “bad” actions, and
return can be related to whether the policy chooses good
actions or not. We present a theoretical motivation of our
approach based on semi-supervised classification. Our anal-
ysis is based on deterministic environments, but we show
strong results in practice across several environments, in-
cluding a non-deterministic real-world robotic grasping task
on unseen test objects (Kalashnikov et al., 2018).

2. Preliminaries

We focus on finite—horizon, deterministic Markov decision
processes (MDP). We define an MDP as (S, A, P, Sg, 7, 7).
S is the state—space, A the action—space, and both can be
continuous. P defines transitions to next states given current
state and action, Sy defines initial state distribution, r is the
reward function, and v € [0, 1] is the discount factor. We
assume the MDP is undiscounted (7 = 1). Episodes are of
finite length 7": at a given time-step ¢ the agent is at state
s; € S, samples an action a; € A from a policy 7, receives
a reward r; = (s, a;), and observes the next state s;41
as determined by P. Trajectories (s1,aj,S2,as,...) are
represented by 7, and R(w) is expected episode return.

The goal in RL is to learn a policy my(a¢|s;) that max-
imizes the return R(my) = ]Es,a{Ztho Yir(se,an)]. A
value of a policy for given state s; is defined as V7 (s;) =
E. [ZtT,:t A¥'~tr(sy, al)] where af is the action 7 takes
at state s; and E,. implies an expectation over trajectories
sampled from 7. Given a policy 7, the expected value of its
action a; at a state s, is called the Q-value and is defined
as Q" (st,a¢) = Ex[r(se,ar) + Yoy g 7" ~'r(se,af)).

We refer to it as off-policy when a policy, 7, is being trained
or evaluated on a data-set D consisting of episodes generated
by a different policy 7. In contrast, on-policy training is
when the learned policy, , itself generates the episodes.
In off-policy evaluation, learned policies {7y, 2, - - - } are
evaluated against a fixed D generated by some unknown 7.

2.1. Deep Q-Learning

In Q-learning, we learn a policy 7 by training a Q-function,
approximated by a neural network with parameters 6, to
minimize the average TD error.

2
& = (@ (sua) = r(si,a0) — Y max Q™ (s141,2))

(D
We then define 7(s;) = arg max, Q™ (s¢, a; 6). In continu-
ous action spaces, we may approximate max, Q" (s, a) by
using the cross-entropy method (CEM), as done in Quillen
et al. (2018) and Kalashnikov et al. (2018). Q™ can be
trained with on-policy interaction, or fit offline to a fixed

D with batch Q-learning. The learned 7 is then deployed
to a target environment that may differ from the training
environment. In this work, we treat the RL algorithm as a
black-box that produces learned Q-functions Q(s, a), and
seek to evaluate 7(s) = arg max, Q(s, a).

3. Off-Policy Evaluation via Classification

Formally, a deterministic binary reward MDP satisfies the
following properties: transitions P are deterministic, reward
r; = 0 at all intermediate steps, and final reward r; lies
in {0, 1}, indicating whether the final state is a failure or
success. In such an MDP, given (s, a;), we say a; is good
if the optimal policy 7* can achieve +1 return if initialized
at s;y1. Equivalently, there exists a sequence of future
actions that reaches a success state. Action a; is bad if no
such sequence exists. Under this definition, the return of
trajectory 7 is 1 if and only if all a; are good (see Appendix
A.1), letting us view return as a sequence of classification
problems.

Theorem 1. Given binary reward MDP M and policy
, let pi.x good(S) denote the state distribution w visits at
time t, given that actions ay, - - - ,a;_1 were all good. Let
A_(s) denote the set of bad actions at state s, and let ¢, =

E DacA (s) W(aIS)} be the per-step expectation

Pt,m,good
of ™ making its first mistake at time t, withe = 1/T ZiT:1 €4
the average of €; over time. Then R(w) > 1 — Te, and this
lower bound is tight.

This is proved by using behavioral cloning bounds from
imitation learning, proved by (Ross & Bagnell, 2010), using
properties of binary reward MDPs to improve the cost bound
from O(T?¢) to O(Te). See Appendix A for details.

A smaller € gives a higher lower bound on return, which
implies a better . This leaves estimating € from the D
collected by 7. There are two difficulties to doing so. One
is that our validation dataset is from 7, whose state distribu-
tion does not match the p;  gooq distribution that defines ¢;.
The other challenge is that we do not have negative labels,
so we cannot directly access to A_(s).

3.1. Distribution Mismatch Between 7, And p;  go04

Theroem 1 relies on estimating € against distribution
Pt,x,good from dataset D from m,. A natural approach
would be importance weighting (s, a) appropriately, but
we assume no knowledge of 7, and this is not well-defined
for deterministic policies 7(s) = argmax, Q(s,a). An-
other approach is to subsample D to transitions (s, a) where
a = m(s). This ensures an on-policy evaluation, and (Liu
et al., 2018) have found success with this approach, but
this can hit finite sample issues if 7, does not sample 7 (s)
frequently enough. This is especially unlikely in continuous
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action spaces.

Therefore, we assume estimating classification accu-
racy over D is sufficient to estimate classification over
{(s,m(s)) : s € S§}. This is admittedly a strong assumption,
but empirical results in Section 6 show surprising robustness
to distributional mismatch. We expect this assumption to
become worse for environments with long time horizons 7T,
where it is easier for 7 and 7, to visit very different states.

3.2. Missing Negative Labels

Recall (s, a;) is good if 7* can succeed from s 1, and bad
otherwise. Since 7* is at least as good as 7, whenever
succeeds, all (s, a;) in trajectory 7 must be good. However,
the converse is not true, since 7* could have succeeded from
(s¢, a;) where 7, failed. This is an instance of the positive-
unlabeled (PU) learning problem. We briefly summarize PU
learning, following the treatment from (Kiryo et al., 2017).

Let (X,Y’) be a labeled binary classification problem, with
Y € {£1}. Let g : X — R be some decision function,
andlet £ : R x {£1} — R be our loss function. In the RL
setting, X = S X A, labels {£1} = {good, bad}, and a
natural choice for g is g(s,a) = Q(s,a).

We want to estimate ¢, the probability 7 takes a bad action i.e.
generating a false positive. This is not the risk R(g), since
R(g) accounts for both false-positives and false-negatives.
If (s, m(s)) is predicted to be bad, but is actually good, it
does not impact reward - what matters is the ground truth
label. We want to bound just the false-positive risk.

Let 7, m, be the class priors m, = P(Y = +1), 7, =
P(Y = —1). The false positive risk R r,,(g) of classifier g
is the risk over just negative examples.

€ =Rppg) = mBxjy——1 [l(g(X), -1)] (@)

This can be estimated indirectly from positive labels. Since
mp(zly = —1) = p(z) — myp(zly = +1), for any f(z),
TBxpy——1 [f(X)] = Ex [f(X)] - mExjy=t1 [f(X)].
Let f(z) = £(g(x), —1) to estimate R .

e~ Exy [l(g(X), =) =mpExjy—11 [((g(X), =1)] 3)

Eqn. 3 is the core of all metrics this paper proposes, and
experiments are done with different choices of £ and 7).

3.3. Off-Policy Classification Score

The Off-Policy Classification (OPC) score is defined
by the negative loss when ¢ in Eqn. 3 is the 0-1
loss. Let b be a threshold, with ¢(Q(s,a),Y) =
3 (1 —Ysign(Q(s,a) — b)). This gives

OPC(Q) = TpEpos [1g(s,0)>6] — Batt [10(s,0)>6] @)

To ensure independence from the magnitude of Q(s,a), b
is fit separately for each Q-function to maximize O PC/(Q).
Given N transitions and Q(s,a) for all (s,a) € D, the
best b for each @ is computable in O(N log N) time. See
Appendix B for details.

3.4. Utilizing the OPC Score

We can use the OPC score to comparatively evaluate dif-
ferent models using a validation set D according to the
following procedure, which we test in our experiments:

e Collect data D using a behavior policy 7. For every
successful trajectory 7, label all (s, a) as positive. This
D is the validation dataset and is fixed for all models.

e Train several Q-functions Q™ with different RL algo-
rithms. The algorithm should estimate Q™ (s, a), using
m(s) = arg max, (s, a) as the final eval policy. This
is compatible with Q-learning and deterministic actor-
critic approaches, and can be applied to both batch
Q-learning and online Q-learning.

e Foreach Q7, evaluate Q™ over D using Eqn. 3, then se-
lect the Q™ with best score. One implementation detail
is that in our experiments, we have episodes of different
length. To avoid focusing on long episodes, transitions
(s,a) from an episode of length 7" are weighted by
1/T when estimating e.

3.5. SoftOPC Score

Alternatively, ¢ can be a soft loss function. We experi-
mented with £(Q(s,a),Y) = =Y Q(s,a), which is min-
imized when Q(s, a) is large for Y = +1 and small for
Y = —1. The negative of this loss is called the SoftOPC.

SOftOPC(Q) - 71—pIEpos [Q(87 a)] - ]Eall [Q(87 a’)] (5)

3.6. Baseline Metrics

Since we assume importance-sampling and model learn-
ing is infeasible, many common OPE baselines do not fit
our problem setting. As alternatives, we derive several Q-
learning based metrics, which also assume no knowledge of
7, and only requires a (s, a) estimate. In all baselines, aff
is the on-policy action arg max, Q7 (s¢, a).

Temporal-Difference Error A natural baseline is to use

the Q-learning training loss (the TD error) as the evaluation
metric. We compute the average TD error over D.

Er, [(Q7(sta0) = (r +9Q" (s141,87))°|  (6)

Discounted Sum of Advantages The difference of the
value functions of two policies 7 and 7 at state s; is given
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by the discounted sum of advantages (Kakade & Langford,
2002; Murphy, 2005) of 7 on episodes induced by 73:

T
V7 (s¢) = V7 (st) = En, [Z Vt/_tAﬂ(Stuat’)} (D

t'=t

where ~ is the discount factor and A™ the advantage func-
tion for policy 7, defined as A™(s;,ay) = Q7 (s¢, a;) —
Q™ (st,al). Since V™ is fixed, estimating (7) is sufficient
to compare 71 and mo. The 7 with smaller score is better.

T
Est'\‘ﬂ'b [Z ’Yt/itAﬂ' (St’ ) at’)] . (8)

t'=t
Monte-Carlo  Estimate  Corrected  with  the
Discounted Sum of  Advantages Estimating
Vm(s)) = Er[>, 7" “'ry] with the Monte-Carlo

return, substituting into Eqn. (7), and rearranging gives

T
V7 (st) = Eq, [Z 7 ey — A (sp, at/))‘| )

t'=t

With V™ (s;) + A™(s¢, a:) = Q™ (s¢, at), we can obtain an
approximate () estimate depending on the whole episode:

QMCC(Shatvﬂ') =

E.,

T
r; + Z Vt/_t(l't/ —A”(st/,ay))l (10)

t'=t+1

The MCC Error is the squared error to this estimate.
~ 2
Enr, (Q“(st7at) - QMCC(Suataﬂ')) (11)

Note that (11) was proposed before by Quillen et al. (2018)
as a training loss for a Q-learning variant, but not for the
purposes of off-policy evaluation.

Eqn. (6) and Eqn. (10) share the same optimal Q-function,
so assuming a perfect learning algorithm, there is no dif-
ference in information between these metrics. In practice,
the Q-function will not be perfect due to errors in function
approximation and optimization. Eqn. (10) is designed to
rely on all future rewards from time ¢, rather than just r;.
We theorized that using more of the “ground truth” from
D could improve the metric’s performance in imperfect
learning scenarios.

Each of these baselines is a different way to measure how
well (s, a) fits the data. However, it is possible to learn
a good 7 even when (s, a) poorly fits the data. If 7 is
defined as arg max, (s, a), then Q*(s,a) will produce
7* and have 0 TD error, but many other Q-functions will

also produce 7* with non-zero TD error. This motivates the
classification metrics: since 7’s behavior only depends on
the relative differences in Q-value, it makes sense to use
metrics defined by contrasting Q-values against each other,
rather than metrics based on error between the Q-values and
episode return. Figure 1 visualizes the differences between
the proposed metrics and baseline metrics.

Positive reward

: Classification

Q-value

Negative reward

Time in episode

Figure 1. A visual summary of the off-policy metrics. The two
solid curves represent Q(s,a) over two trajectories in the off-
policy data-set that succeed or fail. The dashed curve represents
the learned policy’s Q(s, a”™) along the s the positive trajectory
visits (the corresponding negative trajectory curves are omitted
for simplicity). Visually, the TD error can be interpreted as the
average horizontal difference, along the same (s, a). The sum of
advantages is the sum of vertical differences along the same time.
The classification metrics directly measure separation between
success and failure trajectories.

4. Related Work

Off-policy policy evaluation (OPE) predicts return of a
learned policy 7. from a fixed set of off-policy data D,
generated by one or more behavior policies 7. Prior works
(Precup et al., 2000; Dudik et al., 2011; Jiang & Li, 2015;
Liu et al., 2018; Theocharous et al., 2015; Hanna et al., 2017)
do so with importance sampling (IS) (Horvitz & Thompson,
1952), MDP modeling, or both.

Doing IS requires querying m.(als) and m,(als) for any
s € D, to correct for the shift in state-action distributions.
In RL, the cumulative product of IS weights along 7 is used
to weight its contribution to 7.’s estimated value (Precup
et al., 2000). Several variants have been proposed, such as
step-wise IS and weighted IS (Mahmood et al., 2014).

In MDP modeling, a model is fit to D, and 7, is rolled
out in the learned model to estimate average return (Man-
nor et al., 2007; Jiang & Li, 2015). The performance of
these approaches is worse if dynamics or reward are poorly
estimated, which tends to occur for image-based tasks. Im-
proving these models is an active research question in deep
RL (Babaeizadeh et al., 2018; Lee et al., 2018).
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IS-based estimators and model-based estimators can be
combined with established statistical approaches (Cassel
et al., 1976) to produce an improved unbiased estimator.
These doubly robust estimators have been applied to ban-
dits (Dudik et al., 2011; Dudik et al., 2014) and the sequen-
tial setting (Jiang & Li, 2015; Thomas & Brunskill, 2016),
and can be combined with bootstrap estimates of a model
ensemble to give empirical bounds (Hanna et al., 2017).

This paper aims to study OPE on a large image-based task,
with a continuous action space, where the environment shifts
at test-time. To our knowledge, no other OPE papers have
proposed approaches applicable when both importance sam-
pling and model learning are difficult or infeasible.

5. Applications of OPE to Generalization

The fundamental goal of off-policy policy evaluation is
about estimating performance in one distribution using data
from another. This is very similar to the problem of general-
ization, where we wish to estimate performance in train and
test environments. In this section, we discuss ways OPE can
be applied to measure generalization, and its importance for
doing so in real-world environments.

Reinforcement learning (RL) typically uses the same envi-
ronment for both training and testing (Mnih et al., 2015),
but recent work has discussed issues with this paradigm by
examining overfitting and memorization in deep reinforce-
ment learning. Several papers (Zhang et al., 2018b; Raghu
et al., 2018; Cobbe et al., 2018; Zhang et al., 2018a) have
shown deep RL agents can memorize input levels, then fail
to generalize to test-set levels. These approaches are not
directly related to off-policy evaluation, but share many of
the same difficulties: the distribution mismatch between
training data and the final environment makes it hard to
extrapolate training environment performance to test envi-
ronment performance. New RL benchmarks with explicit
train-test environment splits have been proposed to spur re-
search into generalization for deep RL (Nichol et al., 2018;
Cobbe et al., 2018).

However, simply defining a test environment does not by
itself provide a useful mechanism for model evaluation. Re-
cent work focuses on problems defined in simulation, where
it is easy to evaluate the policy in the test environment.
When developing for a real-world setting, where test envi-
ronment evaluation is expensive, off-policy evaluation is an
inescapable part of measuring generalization performance
in an efficient, tractable way.

5.1. Scenarios for Off-Policy Evaluation

We identify some common overfitting scenarios faced in
reinforcement learning, in which we can evaluate off-policy
metrics to measure generalization.

Figure 2. Robotics grasping simulation-reality gap. The state
RGB image shown for simulation (left) and reality (right).

1. Simulation-to-reality: Models trained on-policy in
simulation may not generalize to the real-world, since
simulators are not perfect and can have a consider-
able reality-gap (see Figure 2). Policies can over-fit to
the simulation environment, exploiting their inaccura-
cies and failing to generalize to the real-world without
transfer learning techniques (James et al., 2018).

2. Insufficient off-policy training data: Models trained
with off-policy data (collected by a behavior policy
mp) may over-fit if there is insufficient training data.
Without extra interaction, the model may memorize
the state-action pairs in the training data and fail to
generalize to new state-action pairs. This is rarely a
concern in standard RL benchmarks, since in these
benchmarks RL algorithms collect new on-policy data
with high enough frequency. However, choices in how
to store and replay old experience can impact perfor-
mance in ways that are hard to predict without policy
evaluation (Zhang & Sutton, 2017; Liu & Zou, 2017).

3. Mismatched off-policy training data: Even if the
model has arbitrary amounts of off-policy training data,
the behavior policy may miss important regions of the
state space, making it possible for the model to fail to
capture the target distribution. There is enough data
for the model to avoid memorizing training trajectories,
but the learned model can still overfit to overarching
regularities. For example, a robotics grasping model
trained with arbitrary amounts of data on a fixed set
objects may not generalize to a test set of objects.

All of these scenarios are, in principle, identifiable by off-
policy evaluation, as long as validation is done against an
appropriate sample of data sampled in the final testing envi-
ronment. We evaluate metrics across all such regimes.

6. Experiments

6.1. Binary Tree Environment

An open question in the metric is how to choose the positive
class prior m,. We examine these questions in a toy binary
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tree environment. The environment is a full binary tree of
k = 6 levels, where each node is a state, and actions are
{left,right}. Leaf nodes are terminal with reward 0 or 1. The
initial state distribution is uniform over all non-leaf nodes.
The validation dataset is collected by the uniformly random
policy. OPE metrics are commonly evaluated by their MSE
to episode return, but since we are not directly estimating
episode return, we instead use correlation between the OPE
metric and episode return as our final score.

We generate 1000 random Q-functions where (s, a) ~
UJ0, 1], define 7(s) = arg max, (s, a), then plot Spear-
man correlation for the SoftOPC and OPC for different 7.
Spearman correlation p is used over Pearson correlation r
to measure rank consistency. Plots are generated over two
extremes: only 1 leaf is a fail state, or only 1 leaf is a success
state. Figure 3 shows the SoftOPC outperforms OPC and
both outperform all baselines. Interestingly, prior 7w, = 1
performs best, even when almost all states are fail states.
One theory is that 7, should be picked as the upper bound
of the return R~ of the optimal policy on states that can
reach a positive outcome, which is always 1. See Appendix
C for details. We use 7, = 1 in all future experiments.

Binary Tree, 6 Levels, 1 Fail State Binary Tree, 6 Levels, 1 Success State

Spearman Correlatior

=iy
Spearman Correlation To Episode Return

Figure 3. Spearman correlation of SoftOPC, OPC, and baselines
with varying m,. Baselines do not depend on 7,. Correlations
further from O are better. Interestingly, it is easier to predict perfor-
mance when almost all trajectories lead to failure.

6.2. Atari Results

For Atari experiments, we chose Pong as our environment,
since it is well-studied environment that can be changed to
a binary reward env by truncating the episode after either
player fails to return the ball. The final reward is —1 or +1.

We train models using DQN (Mnih et al., 2015) and
DDQON (van Hasselt et al., 2016), varying hyperparame-
ters like learning rate, 7, and batch size. The validation
dataset is formed by taking the 38 DDQN checkpoints and
generating 30 episodes from each, giving 1140 episodes
total. Measuring both Pearson correlation and Spearman
correlation, we find the OPC outperforms the SoftOPC, with
R? =0.499, p = 0.72, compared to R? = 0.363, p = 0.75.
We attribute this to the 0-1 property of the OPC score. In
Figure 4, models trained with v = 0.9 instead of v = 0.99
are highlighted. Q-values for these models lies in a much

smaller region, and are hard to separate with the soft loss.
The 0-1 loss in OPC separates the Q-values for these models
more easily.
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Figure 4. Scatterplot of episode return (x-axis) against metric (y-
axis), for SoftOPC (top) and OPC (bottom). Each color is a dif-
ferent hyperparameter setting (explained in Appendix D). Green
points within the red rectangle are DQN, v = 0.9 models, and are
better separated by OPC.

7. Generalization Experiments

To evaluate generalization performance in a large-scale task,
we use simulated and real versions of a vision-based robotic
grasping task from (Kalashnikov et al., 2018). The task is
briefly summarized below.

The observation at each time-step is a 640 x 512 RGB image
of the robot and a bin of objects, cropped to 472 x 472 before
inference. The goal is to grasp any of the objects in that
bin. Actions are continuous moves of the gripper in space.
Reward is 0 except at the final timestep, where (s, ar) =
1 on a successful grasp and 0 otherwise. All models in this
section use the QT-Opt algorithm (Kalashnikov et al., 2018)
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Table 1. Summarized results of Experiments section. The R? of line of best fit and Spearman correlation p for each metric (leftmost
column) is evaluated in each environment (top row). These are: the toy tree MDP from Section 6.1, Pong from Section 6.2, simulated
grasping with train or target objects from Section 7.1, and real-world grasping from Section 7.2. Occasionally, some baselines correlate
well, but the proposed metrics (last two rows) are consistently among the best metrics for each environment. All results use 7, = 1.

Tree (1 Fail) Tree (1 Succ) Pong Sim Train Sim Target Real-World

R? p R? p R? p R’ p R? p R P
TD Error 0.006 -0.129 | 0.016 -0.147 | 0.048 -0.175 | 0.022 -0.372 | 0.105 -0.514 | 0.17 0.48
S AtAT 0.003  0.065 | 0.000 0.001 | 0.091 -0.319 | 0.735 0.813 | 0.744 0.782 | 0.12 0.50
MCC Error | 0.021 -0.175 | 0.063 -0.263 | 0.035 -0.355 | 0.000 0.331 | 0.058 -0.436 | 0.01 -0.15
OoPC 0.207 0475 | 0.210 0.499 | 0499 0.720 | 0490 0.861 | 0.350 0.660 | 0.81 0.87
SoftOPC 0.229  0.530 | 0.195 0.509 | 0.363 0.750 | 0.553 0.759 | 0476 0.768 | 0.91 0.94

with the same architecture and hyperparameters.

7.1. Simulation experiments

Per our discussion in Section 5.1, a model may overfit be-
cause of: (a) insufficient amounts of off-policy training data,
or, (b) because of a distribution mismatch between training
and test data. We first show we can induce both. Two sets
of 5 random objects are sampled. One object set is used for
training (Sim Train), and the other is used for testing (Sim
Target). The goal is to generalize to these target objects.’.

Simulation models are trained with batch Q-learning with-
out on-policy interaction with the environment. To generate
a dataset for batch Q-learning, we collected 950,000 simu-
lated grasps from a human-designed policy (60% success
rate) with e-greedy exploration (e = 0.1). 50,000 of these
grasps were set aside as a dedicated holdout set, leaving
900,000 training grasps. The same policy was used to col-
lect 10,000 grasps on the target objects, as a validation set.

We show insufficient amounts of off-policy training data and
mismatched off-policy training data. In Figure 5, we trained
two models with a limited 100k grasps dataset or a large
900k grasps dataset, then evaluated grasp success on the
same objects it was trained on. We see the the model overfits
to the limited dataset. Comparing TD error, we also see a
clear difference between the validation set (same objects)
and the target set (target objects), showing overfitting to
the training environment. With overfitting reproduced, we
evaluate which metrics track final performance most reliably
for both scenarios.

Following Section 6.2, we measure R? and p over all models
from both the 100k and 900k grasp training runs, giving
n = 1144 models total. Correlation and episode return
is estimated over both the training objects and the target
objects. Models from the first 100,000 steps of training are
excluded, since the Q-function heavily underfits the data at
the start of training, leading to outliers in all metrics.

We see that SoftOPC and OPC perform similarly and beat

'"Models taken from https://sites.google.com/
site/brainrobotdata/home/models.
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Figure 5. Overfitting to dataset and environment 7op: Grasp
success curve of model trained with 900k or 100k grasps. Model
lacking data oscillates in performance, even for objects the model
sees at train time. Botfom: TD error of the 100k grasp model on
offline data for training, holdout data for validation, and test data
on unseen target objects. As the model memorizes the training
set, train and holdout curves separate. Target object TD error is
consistently higher than both.

several baselines, and their correlation holds for the target
objects. The best metric is the discounted sum of advan-
tages. Plots of their performance can be seen in Figure 6
and Figure 7. Oddly, the discounted sum of advantages
correlates well in the opposite of the direction expected by
theory. It is unclear why this occurred, but one possibility is
that more negative advantages indicate Q-function overcon-
fidence, rather than true improvement in action selection.

7.2. Simulation-to-Reality Evaluation

For our final experiments, we evaluate simulation over-
fitting and generalization to the real-world. We examine
15 different models, trained to have varying degrees of ro-
bustness to the simulation-to-reality gap. These models are
described in detail in (James et al., 2018), which proposes
Randomized-to-Canonical Adaptation Networks (RCANSs)
to alleviate the simulation-to-reality gap. Among the 15
Q-functions are models trained purely in simulation, models
trained with domain randomization, models trained with
RCAN, and models trained with real robot data. These
Q(s,a) cover a wide range of real-world performance, with
real-world grasp success ranging from 17% to 91%, making
them a good real-world testbed. A useful off-policy metric
should predict real-world grasp success without additional
real-world interaction.


https://sites.google.com/site/brainrobotdata/home/models
https://sites.google.com/site/brainrobotdata/home/models

Off-Policy Evaluation of Generalization for Deep Q-Learning in Binary Reward Tasks

0.18 ' , Train Qbjects,SoftOPC | . .

017 - -
0.16 - =t -

0.15 - o . -

SoftOPC

014 -

013 -

012 - : -

0.11 - ) !
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12
Return

Figure 6. Scatterplot of SoftOPC in Sim Train environment. Each
data point is a different model checkpoint, corresponding to (return,
metric value).
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Figure 7. Overlay of SoftOPC (red) and return (blue) for Sim Tar-
get environment. Plot excludes the first 10° steps of training,
since SoftOPC is more stable after the Q-function has partially
converged. SoftOPC tracks peaks and valleys in episode return.

Real-world grasp success is evaluated with 6 real robots,
each grasping different objects. Each of the 6 robots execute
102 grasps for a total of 612 grasps. For the off-policy
metrics, an off-policy data-set is collected on the real robots.
This dataset had 400,000 grasps, of which roughly 40% are
successful. A subsampled dataset is used for validation.
Objects used in real-world grasp success evaluation were
not in this validation set, combining the test object shift
from Section 7.1 with sim-to-real domain shift.

Figure 8 shows scatterplots of each metric and Table 1 sum-
marizes the R? and p of each metric. Again, the SoftOPC
and OPC outperformed all baselines, even though real-world
dynamics are non-deterministic. The SoftOPC does slightly
better. We also see S~ A™ (s, a,/) correlates poorly, de-
spite results from Section 7.1. To study robustness to the

R 017 0 ricondence menal = _oata] 01 £ el + oot

55 (%)
\
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Real Grasp Succs
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Figure 8. Off-policy metrics versus real-world grasping suc-
cess. Left-to-right, top-to-bottom, scatterplots for: TD error,
Z'ytlA”(st/, ay ), OPC, and SoftOPC over a real-world vali-
dation set. Each data point is a different grasping model, where
y-axis is real-world grasp success. For each metric a least squares
fit is performed and the R? and the 95% confidence intervals are
shown. The OPC and SoftOPC are the only good indicators of
real-world model performance.

validation dataset used, we also evaluated the SoftOPC on
different subsamples of D. Appendix E shows correlation
was mostly unchanged.

8. Conclusion and Future Work

We propose classification-based off-policy evaluation met-
rics that can be used in any setting where we learn Q(s, a),
which includes settings where existing OPE metrics do not
apply. The proposed metrics work with any RL algorithm
that learns a Q-function, and can be applied even when
that actor is only implicitly defined. The metrics require
the special case of a deterministic, binary reward MDP, but
this class is wide enough to cover several environments,
including real-world robotics tasks. Empirically, we find
the SoftOPC and OPC scores correlate well with perfor-
mance across several environments, and successfully iden-
tify cases where Q-functions overfit to their training regime,
whether they have too little data or data from the wrong
distribution. These approaches successfully correlated with
return in the simulation-to-reality scenario, a critical set-
ting for robotics. Effective off-policy evaluation for the real
world on models trained in simulation enables development
of simulation-based RL algorithms with many fewer real-
world evaluations. The robustness of these classification
metrics to the dataset used gives increased confidence these
approaches can be generally useful. In future work, we
would like to evaluate these metrics on other binary-reward
tasks, consider extensions to tasks without binary rewards or
with stochasticity, and experiment with directly optimizing
against the proposed metrics.
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Appendix for Off-Policy Evaluation of Generalization for Deep Q-Learning in
Binary Reward Tasks

A. Classification Error Bound
A.1. Trajectory 7 Return 1 < all a; Good

For the forward direction, because 7 ends in a success state,
from any s, the optimal policy 7* could reach a success
state, so all (s, a;) must be good.

For the reverse direction, if all (s;,a;) are good, then
(s7,ar) must be good. Since sr1 is a terminal state with
no further actions, for (s, ar) to be good, we must have
r(sp,ar) = 1.

A.2. Proof of Theorem 1

By definition, 7 succeeds if and only if at every sy, it selects
a good ay. Since py ;i good 18 defined as the state distribution
conditioned on ay,--- ,a,_; being good, the failure rate
can be written as
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1 — R(m) Pr(m makes first mistake at time ¢) (1)
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This gives R(w) > 1 — Te as desired. The bound is tight
wheney = ey =+ =€ep_1 =0,ep =Te.

A.3. Connection to Behavioral Cloning

Since every policy that only picks good actions achieves
the optimal reward of 1, and ¢ is defined as the 0-1 loss
over states conditioned on not selecting a bad action, we can
view € as the 0-1 behavior cloning loss to an expert policy
7*. Applying Theorem 2.1 of (Ross & Bagnell, 2010) gives
a O(T?¢) cost, compared to the O(T¢) cost derived above.

The difference in bound comes because (Ross & Bagnell,
2010) derive their proof in a general MDP whose cost is
upper bounded by 1 at every timestep. If 7 deviates from
the expert, it receives cost 1 several times, once for every
future timestep. In binary reward MDPs, we only receive

this cost once, at the final timestep. Transforming the proof
to incorporate our binary reward MDP assumptions lets
us recover the O(T'¢) upper bound from Appendix A. We
briefly explain the updated proof, using notation from (Ross
& Bagnell, 2010) to make the connection more explicit.

Define ¢; as the expected 0-1 loss at time ¢ for m under
the state distribution of 7*. Note this is the same as our
definition of ¢;. The MDP is defined by cost instead of
reward: cost O for all timesteps except the final one, which is
cost 0 or 1. Let p; be the probability 7 hasn’t made a mistake
(w.r.t ) in the first ¢ steps, d; be the state distribution
conditioned on no mistakes in the first ¢ — 1 steps, and d
be the state distribution conditioned on 7 making at least
1 mistake. In a general MDP with 0 < C(s) < 1, total
cost J () is bounded by J(7) < Zz;l[pt_lEdt [Cr(s)] +
(1 — pt—1)], where the 1st term is cost while following the
expert and the 2nd term is a cost 1 if outside of the expert
distribution. In a binary reward MDP, since C'(s) = 0 for
all ¢ except t = T', we instead have

J(m) = pr—1Ea, [Cr(s7)] + (1 — pr—1) “4)

Note Eg,. [Cr(sT)] = er, and as shown in the original
pI'OOf, Pt > 1-— 22:1 €;. USil’lg pT—lEdT [CW(ST)] <
Eq,. [Cr(sT)] recovers the O(T'¢) bound, and again this is
tight whene; =--- =ep_1 = 0,ep = Te.

T

T-1
J(m) <Eay [Ca(sr)]+ D> e =Y er=Te (5
t=1 t=1

B. Efficiently Computing the OPC Score

OPC(Q) = 7T;DIEpos [1Q(s,a)>b] - IEutll [1Q(s,a)>b} (6)

Suppose we have N transitions, of which N T of them have
positive labels. Imagine placing each (s, a) on the number
line. Each (s, a) is annotated with a score, —1/N for
unlabeled transitions and 7, /N —1/N for positive labeled
transitions. We initialize a sweep line at b < minp Q(s, a).
Using this b as the threshold gives OPC score 7, — 1. Sweep
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this line across the number line until b > maxp Q(s, a).
The OPC score only updates when this line passes a (s, a)
in our dataset, and is updated based on the score annotated
at Q(s, a), so this runs in O(N) time. Given D, we sort the
N transitions in O(N log N), annotate them appropriately,
then compute the maximum over all OPC scores.

C. Arguments for Choosing 7, = 1

Empirically, we found a positive class prior of 7, = 1
produces an OPE metric that correlates best with return. In
this section, we speculate why this is the case.

Consider the practical computation of OPC presented in Ap-
pendix B. Suppose 73, the policy collecting our validation
set, succeeds with probability p. Then we have N transi-
tions, where pN of them have positive labels. Each Q(s, a)
is annotated with a score as described in Appendix B: —1/N
for unlabeled transitions and 7, /(pN) — 1/N for positive
labeled transitions.

The maximal OPC score will be the sum of all annotations
within the interval [b, 0o), for some b. For unlabeled transi-
tions, the annotation is —1/N, which is negative. Suppose
7p/(pPN) — 1/N was negative as well. If every annotation
is negative, then the optimal choice for b is b = oo, giving
OPC(Q) = 0. This argument holds no matter what Q(s, a)
we are evaluating, giving a score of 0 to every model, mak-
ing the OPC score entirely independent of episode return.
This degenerate case is clearly undesirable, and happens
when 7,/(pN) < 1/N, or equivalently 7, < p.

To avoid this, 7, must be larger than p = R(m). If we are
only allowed to pick a single prior 7, that must general-
ize to arbitrary behavior policies 73, then we should pick
7p > R(7*). In binary reward MDPs where 7* can always
succeed, this gives m, > R(7*) = 1, and since the prior
is a probability that should satisfy 0 < 7, < 1, choosing
mp = 1 is the only option.

To finish the argument, we must handle the case where we
have a binary reward MDP where R(7*) < 1. In a binary
reward MDP, the only way to have R(7*) < 1 is if the
sampled initial state s( is one where (sp, a) is bad for all
a. From these sg, and all future s; reachable from sg, the
actions 7 chooses do not matter - the final return will always
be 0. It is reasonable to assume we only wish to compute
the metric over states where our actions can impact reward,
and within this part of the state space, we have R(7*) = 1.

D. Full Atari Results

Figure 1 is the same Atari figure from the main paper, except
with a legend explaining each hyperparameter setting used.
From top to bottom, the abbreviations mean:

e DON: trained with DQN
e DDON: trained with Double DQN

e DON_gamma9: trained with DQN, v = 0.9 (default is
0.99).

e DQNZ2: trained with DQN, using a different random
seed

e DDQN2: trained with Double DQN, using a different
random seed

e DON_lrle4: trained with DQN, learning rate 104
(default is 2.5 x 10™%).

e DQON_b64: trained with DQN, batch size 64 (default is
32).

e DON_fixranddata: The replay buffer is filled en-
tirely by a random policy, then a DQN model is trained
against that buffer, without pushing any new data.

e DON_fixranddata: The replay buffer is filled en-
tirely by a random policy, then a Double DQN model
is trained against that buffer, without pushing any new

data.
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Figure 1. Scatterplot of episode return (x-axis) against metric (y-
axis), for SoftOPC (top) and OPC (bottom), with legend explaining
each color.
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E. SoftOPC Performance on Different
Validation Datasets

Our validation dataset was collected from two policies, a
poor policy with a success of 28%, and a better policy with
a success of 51%. We divided the dataset based on the
policy, then evaluated SoftOPC on both. Figure 2 shows
the fit on these subsets of the validation dataset. The fit
is slightly worse on the poor dataset, but the relationship
between SoftOPC and episode reward is still clear.

Fit confidence interval +e+ Data |

|— Fit, R? = 0.83
100 T

Poor Policy Data (28% success)

Real Grasp Success (%)

0.02 0.03 0.04 0.05 0.06 0.07 0.08

SoftOPC
—— Fit, R? =0.93 Fit confidence interval +e+ Data

100

Good Policy Data (51% success)

Real Grasp Success (%)

%0.05 0.10 0.15 0.20
SoftOPC

Figure 2. SoftOPC versus the real grasp success for different
data-collection behavior policies. Top shows SoftOPC over a
dataset from only the poor policy (28% success rate) and bottom
shows a SoftOPC over data only from the better policy (51% suc-
cess). A fitted regression line with its R? and confidence interval
is also shown.

F. Plots of Q-value Distributions

In Figure 3, we plot the Q-values of two real-world grasping
models. The first is trained only in simulation and has poor
real-world grasp success. The second is trained with a mix
of simulated and real-world data. We plot a histogram of
the average Q-value over each episode of validation set D.
The better model has a wider separation between successful
Q-values and failed Q-values.
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Mean success g-value: 0.354
2000 Mean fail g-value: 0.283 1
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Figure 3. Q-value distributions for successful and failed
episodes. (Top) Q-value distributions for successful and failed
episodes in an off-policy data-set according to a learned policy
with a poor grasp success rate of 36%. (Bottom) The same distri-
butions after the learned policy is improved by fine-tuning with
5000 grasps on the real robots, achieving a 84% grasp success rate.

G. SoftOPC or OPC?

We see SoftOPC and OPC correlate better with return than
our baseline metrics, but comparison between SoftOPC and
OPC is less clear. We suspect OPC performs better when the
compared Q-functions have systematically different magni-
tudes. For example, models trained with a smaller v will
have smaller Q-values over the entire state-action space.
These systematic differences bias the SoftOPC to favor Q-
functions with larger magnitudes.

In the tree environments, Q(s, a) € [0, +1] by construction.
In the grasping environments, Q(s, a) € [0, 1], due to the
network architecture ending in sigmoid(z), bounding out-
put to [0, 1]. In these experiments, SoftOPC did better. In
Pong, (s, a) was not constrained, and OPC did better.
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