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ABSTRACT

It is safe to assume that, for the foreseeable future, machine learning, especially
deep learning, will remain both data- and computation-hungry. In this paper, we
ask: Can we build a global exchange where everyone can contribute computation
and data to train the next generation of machine learning applications?
We present an early, but running prototype of DATABRIGHT, a system that turns
the creation of training examples and the sharing of computation into an invest-
ment mechanism. Unlike most crowdsourcing platforms, where the contributor
gets paid when they submit their data, DATABRIGHT pays dividends whenever a
contributor’s data or hardware is used by someone to train a machine learning
model. The contributor becomes a shareholder in the dataset they created. To en-
able the measurement of usage, a computation platform that contributors can trust
is also necessary. DATABRIGHT thus merges both a data market and a trusted
computation market.
We illustrate that trusted computation can enable the creation of an AI mar-
ket, where each data point has an exact value that should be paid to its creator.
DATABRIGHT allows data creators to retain ownership of their contribution and
attaches to it a measurable value. The value of the data is given by its utility in
subsequent distributed computation done on the DATABRIGHT computation mar-
ket. The computation market allocates tasks and subsequent payments to pooled
hardware. This leads to the creation of a decentralized AI cloud. Our experi-
ments show that trusted hardware such as Intel SGX can be added to the usual ML
pipeline with no additional costs. We use this setting to orchestrate distributed
computation that enables the creation of a computation market. DATABRIGHT is
available for download at https://github.com/ds3lab/databright.

1 INTRODUCTION AND MOTIVATION
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Training modern deep learning mod-
els require a vast amount of data
and computation, neither of which is
cheap to get. Although the availabil-
ity of crowdsourcing platforms such
as Mechanical Turk and cloud plat-
forms such as AWS, in principle, pro-
vides a baseline solution to harvest
labeled data and computation, there
are several limitations. On the data side, the currently access to data is opaque and there is no
incentive to share any, while workers are not incentivized to produce high-quality data product. On
the computation side, the price of computation on the cloud is still high, while on the other hand,
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vast amount of computation resources are being “wasted” for Bitcoin mining. In this work, we are
motivated by these limitations, and proposed DATABRIGHT, a decentralized market for data and
computation, illustrated in the figure on the right.

2 DECENTRALIZED OWNERSHIP OF DATA
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In traditional crowdsourcing, workers
get a (small) payment for their work
and their involvement in the task is
over. The people who create the data
have no stake in the final result and
thus little incentive to do a good job.
In DATABRIGHT, we take a different
view of data ownership. The owner-
ship of data always initially belongs
to the worker who creates the data,
who is then free to transfer it. When-
ever it gets used, the creators get paid
(i.e. the data pay a dividend). We be-
lieve this mechanism can incentivize workers to prioritize the quality and utility of the data over
the speed of its creation. In this section, we describe the data market implemented as decentralized
application (DApp) using smart contracts over Ethereum.

We provide a data market that allows everyone to be a data contributor. As a first step, a data
initiator sets up a data request. Data contributors collect data and store them at an address outside
the blockchain (either in IPFS or a local database). They then submit a data proposal containing
their wallet address and the address to their dataset. Data curators holding computational tokens
are allowed to see and vote on data proposals. They can also forward their voting rights (i.e. tokens)
temporarily to an oracle (e.g. an image classifier) that can vote in their stead. If a data proposal
reaches a vote threshold it gets accepted and stored as immutable entry into a data registry located on
the chosen blockchain. The computation market will use this registry to access datasets and channel
payments to the data contributors. Moreover, a new token is minted and the data contributor
becomes a shareholder in the data registry.

The DApp allows voting to be performed without the need of a third party and consists of three main
contracts:

1. CuratorToken keeps a list of all token owners, allowing them to vote on data proposals.
Tokens can be minted to turn data contributors into shareholders

2. DataAssociation is the main contract of DApp. It manages all proposals and can create
new ”Database” contracts. It is owned by all shareholders

3. Database contracts list all accepted data proposals for future queries via the computation
market.
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The enduring notion of ownership creates
a unique challenge — since data can be
easily copied, repackaged and resold, the
uncontrolled disclosure of data can eas-
ily dilute its value. Our view is that the
only way of safeguarding against theft is
to never disclose the whole data to unau-
thorized entities. Therefore, along with
the data market, DATABRIGHT also has a
trusted computation market to process the
data (see Section 3).

3 TRUSTED
COMPUTATION MARKET
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The computation market of DATABRIGHT
consists of a pool of computation devices,
each of which is owned by a contribu-
tor. Whenever a contributor’s device is
used for training a model, the contributor
gets paid, either by real money or through
a cryptocurrency. (Our testbed is imple-
mented over Ethereum.) The key chal-
lenge is providing trusted computation: the user, who pays to train her model, needs to have confi-
dence that the model returned by DATABRIGHT is actually the model she asked the system to train.
For example, if she is paying $100 to train a ResNet-18 for 100 epochs, she needs a way to prove
that DATABRIGHT does not only train 99 epochs, or worse, just returns a list of random numbers.

Recently, Zhang et al. (2017a) have proposed a trusted computation engine built on blockchain with
trusted hardware (Intel SGX), which can guarantee that each worker faithfully executes their code.
However, their design assumes that all workers have Intel SGX support enabled. In DATABRIGHT,
this assumption is not ideal: for instance, most computation to train a deep learning model happens
on NVIDIA GPUs which do not have Intel SGX support.

DATABRIGHT’s computation market uses a hybrid model, which assumes a small set of trusted
devices, which will be used for scheduling and verification, and a larger pool of untrusted workers,
e.g. GPUs, which will be used for the bulk of the work. We implement the following protections to
ensure work verification:

1. Triple modular redundancy (TMR). Users can choose to have untrusted computation be
protected with standard TMR. In a nutshell, trusted devices randomly sample untrusted
devices and form three redundancy groups, each of which conducts the same computation.
Trusted devices will only return the result to a user when all these redundancy groups return
the same result.

2. Periodical Reallocation. One possible attack is that an untrusted worker records the data
it receives, and resells it. To prevent this, the trusted workers will limit the amount of data
an untrusted worker can see to at most 5% of the whole training set.

3. Model Splitting. Another concern is that users may wish to avoid a worker having access
to the trained model. DATABRIGHT provides an optional way to avoid this by splitting the
models into pieces, and put each piece on a different randomly sampled untrusted worker.
The untrusted workers then communicate the activations and gradients of a single layer; no
worker has access to the full model.

3.1 EXPERIMENTS
SGX overhead Forward Pass Comm. Time Epoch Time

Standard Training, 1 GPU N/A 92 ms/batch 0 ms/batch 193 min
Standard Training, 2 GPUs N/A 52 ms/batch 0 ms/batch 118 min

No splitting, 1 GPU
176.66 ms/run

92 ms/batch 0 ms/batch 193 min
No splitting, 2 GPUs 46 ms/batch 2622 ms/batch 1749 min

2-Way Splitting, 2 GPUs 93 ms/batch 36 ms/batch 225 min

We illustrate the perfor-
mance overhead introduced
by our trusted computation
design. We trained a VGG-16 network on ImageNet with three workers – one trusted worker with
Intel SGX support, and two untrusted GPU machines. Machines are connected by a (slow) 1Gbps
network. When performing model splitting, we split into two pieces, at the fc6 layer and use batch
size 32. As shown in the table, executing the scheduling and transmission via Intel SGX/TLS in-
troduces almost negligible overhead. Parallelizing across two nodes (with no splitting) introduces
significant communication overhead, due to slow network connection. There is a vast literature
exists on reducing these costs Seide et al. (2014); Alistarh et al. (2016); Zhang et al. (2017b).

Model splitting introduces extra overheads compared with using just one GPUs. Part of it is not
fundamental and can be fixed by better system optimization — currently, when we split the model
in two ways, both GPUs are not always busy, and thus, the computation time can be 2× larger than
considering 2 GPUs on a single machine. We could use asynchronous training Lian et al. (2015) to
bring this overhead down. Another overhead is the triple modular redundancy. Using this mode in
DATABRIGHT introduces roughly 3× overhead to provide trusted compute over untrusted workers;
when the user chooses to split the model for better privacy, the current version of DATABRIGHT
introduces roughly 6× overhead, although we believe this can be significantly reduced through
careful optimization.
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