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Abstract
Recurrent neural networks (RNNs) are a pow-
erful tool for modeling sequential data. Despite
their widespread usage, understanding how RNNs
solve complex problems remains elusive. Here,
we characterize how popular off-the-shelf archi-
tectures (including LSTMs, GRUs, and vanilla
RNNs) perform document-level sentiment clas-
sification. Despite their theoretical capacity to
implement complex, high-dimensional computa-
tions, we find that all architectures converge to
highly interpretable, low-dimensional represen-
tations. We identify a simple mechanism, inte-
gration along an approximate line attractor, and
find this mechanism present across RNN archi-
tectures (including LSTMs, GRUs, and vanilla
RNNs). Overall, these results demonstrate that
surprisingly universal and human interpretable
computations can arise across a range of RNNs.

1. Introduction
Recurrent neural networks (RNNs) are a popular tool for se-
quence modelling tasks. These architectures are thought to
learn complex relationships in input sequences, and exploit
this structure in a nonlinear fashion. RNNs are typically
viewed as black boxes, despite considerable interest in better
understanding how they function.

Here, we focus on studying how recurrent networks solve
document-level sentiment analysis—a simple, but longstand-
ing benchmark task for language modeling (Liu, 2015;
Zhang et al., 2018). We demonstrate that popular RNN
architectures, despite having the capacity to implement
high-dimensional and nonlinear computations, in practice
converge to low-dimensional representations when trained
against this task. Moreover, using analysis techniques from
dynamical systems theory, we show that locally linear ap-
proximations to the nonlinear RNN dynamics are highly
interpretable. In particular, they all involve approximate
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low-dimensional line attractor dynamics–a useful dynam-
ical feature that can be implemented by linear dynamics
and used to store an analog value (Seung, 1996). Further-
more, we show that this mechanism is surprisingly consis-
tent across a range of RNN architectures.

2. Methods
2.1. Training

We trained four RNN architectures–LSTM (Hochreiter
& Schmidhuber, 1997), GRU (Cho et al., 2014), Update
Gate RNN (UGRNN) (Collins et al., 2016), and standard
(vanilla) RNNs–on binary sentiment classifcation tasks. We
trained each network type on each of three datasets: the
IMDB movie review dataset, which contains 50,000 highly
polarized reviews (Maas et al., 2011); the Yelp review
dataset, which contained 500,000 user reviews (Zhang et al.,
2015); and the Stanford Sentiment Treebank, which con-
tains 11,855 sentences taken from movie reviews (Socher
et al., 2013). For each task and architecture, we analyzed
the best performing networks, selected using a validation
set (see Appendix A for details).

2.2. Fixed point analysis

We analyzed trained networks by linearizing the dynamics
around approximate fixed points. Approximate fixed points
are state vectors {h∗1,h∗2,h∗3, · · · } which stay the same after
applying the RNN, that is, h∗i ≈ F (h∗i ,x=0) (Sussillo &
Barak, 2013). Briefly, we find these fixed points numerically
by first defining a loss function q = 1

N ‖h−F (h,0)‖22, and
then minimizing q with respect to hidden states, h, using
standard auto-differentiation methods (Golub & Sussillo,
2018). We ran this optimization multiple times starting from
different initial values of h. These initial conditions were
sampled randomly from the state activation visited by the
trained network, which was done to intentionally sample
states related to the operation of the RNN.

3. Results
For brevity, we explain our approach using the working
example of the LSTM trained on the Yelp dataset (Figs. 1-
3). We find similar results for all architectures and datasets,
these are shown in Appendix B.
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Figure 1. LSTMs trained to identify the sentiment of Yelp reviews explore a low-dimensional volume of state space. (a) PCA on LSTM
hidden states - PCA applied to all hidden states visited during 1000 test examples for untrained (light gray) vs. trained (black) LSTMs.
After training, most of the variance in LSTM hidden unit activity is captured by a few dimensions. (b) RNN state space - Projection of
LSTM hidden unit activity onto the top two principal components (PCs). 2D histogram shows density of visited states for test examples
colored for negative (red) and positive (green) documents. Two example trajectories are shown for a document of each type (red and green
solid lines, respectively). The projection of the initial state (black dot) and readout vector (black arrows) in this low-dimensional space are
also shown. Dashed black line shows a readout value of 0. (c) Approximate fixed points - Projection of approximate fixed points of the
LSTM dynamics (see Methods) onto the top PCs. The fixed points lie along a 1-D manifold (inset shows variance explained by PCA on
the approximate fixed points), parameterized by a coordinate θ (see Methods).

3.1. RNN dynamics are low-dimensional

As an initial exploratory analysis step, we performed princi-
pal components analysis (PCA) on the RNN states concate-
nated across 1,000 test examples. The top 2-3 PCs explained
∼90% of the variance in hidden state activity (Fig. 1a, black
line). The distribution of hidden states visited by untrained
networks on the same test set was much higher dimensional
(Fig. 1a, gray line), suggesting that training the networks
stretched the geometry of their representations along a low-
dimensional subspace.

We then visualized the RNN dynamics in this low-
dimensional space by forming a 2D histogram of the density
of RNN states colored by the sentiment label (Fig. 1b). This
visualization is reminiscent of integration dynamics along a
line attractor–a well-studied mechanism for evidence accu-
mulation in simple recurrent networks (Seung, 1996; Mante
et al., 2013)–and we reasoned that similar dynamics may be
used for sentiment classification.

The hypothesis that RNNs approximate line attractor dy-
namics during sentiment classification makes four specific
predictions, which we investigate and confirm in subsequent
sections. First, the fixed points form an approximately 1D
manifold that is aligned/correlated with the readout weights
(Section 3.2). Second, all fixed points are attracting and
marginally stable. That is, in the absence of input (or, per-
haps, if a string of neutral/uninformative words are encoun-
tered) the RNN state should rapidly converge to the closest
fixed point and then should not change appreciably (Sec-
tion 3.4). Third, locally around each fixed point, inputs
representing positive vs. negative evidence should produce
linearly separable effects on the RNN state vector along
some dimension (Section 3.5). Finally, these instantaneous
effects should be integrated by the recurrent dynamics along

the direction of the 1D fixed point manifold (Section 3.5).

3.2. RNNs follow a 1D manifold of stable fixed points

We numerically identified the location of ∼500 RNN fixed
points using previously established methods (Sussillo &
Barak, 2013; Golub & Sussillo, 2018). We then projected
these fixed points into the same low-dimensional space used
in Fig. 1b. Although the PCA projection was fit to the
RNN hidden states, and not the fixed points, a very high
percentage of variance in fixed points was captured by this
projection (Fig. 1c, inset), suggesting that that the RNN
states remain close to the manifold of fixed points. We call
the vector that describes the main axis of variation of the 1D
manifold m. Consistent with the line attractor hypothesis,
the fixed points appeared to be spread along a 1D curve
when visualized in PC space, and furthermore the principal
direction of this curve was aligned with the readout weights
(Fig. 1c). We further verified that this low-dimensional ap-
proximation was accurate by using locally linear embedding
(LLE; Roweis & Saul 2000) to parameterize a 1D manifold
of fixed points in the raw, high-dimensional data. This pro-
vided a scalar coordinate, θi ∈ [−1, 1], for each fixed point,
which was well-matched to the position of the fixed point
manifold in PC space (coloring of points in Fig. 1c).

3.3. Linear approximations of RNN dynamics

We next aimed to demonstrate that the identified fixed points
were marginally stable, and thus could be used to preserve
accumulated information from the inputs. To do this, we
used a standard linearization procedure (Khalil, 2001) to
obtain an approximate, but highly interpretable, description
of the RNN dynamics near the fixed point manifold. Given
the last state ht−1 and the current input xt, the approach
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Figure 2. Characterizing the top eigenmodes of each fixed point. (a) Same plot as in Fig. 1c (fixed points are grey), with three example
fixed points highlighted. (b) For each of these fixed points, we compute the LSTM Jacobian (see Methods) and show the distribution of
eigenvalues (colored circles) in the complex plane (black line is the unit circle). (c-d) The time constants (τ in terms of # of input tokens)
associated with the eigenvalues. (c) The time constant for the top three modes for all fixed points as function of the manifold coordinate
(θ). (d) All time constants for all eigenvalues associated with the three highlighted fixed points.

is to locally approximate the update rule with a first-order
Taylor expansion:

ht = F (h∗ + ∆ht−1,x
∗ + ∆xt)

≈ F (h∗,x∗) + Jrec∆ht−1 + Jinp∆xt (1)

where ∆ht−1 = ht−1 − h∗ and ∆xt = xt − x∗,
and {Jrec,Jinp} are Jacobian matrices of the system:
J rec
ij (h∗,x∗) = ∂F (h∗,x∗)i

∂h∗
j

and J inp
ij (h∗,x∗) = ∂F (h∗,x∗)i

∂x∗
j

.
We choose h∗ to be a numerically identified fixed point and
x∗ = 0, thus we have F (h∗,x∗) ≈ h∗ and ∆xt = xt.
Under this choice, equation (1) reduces to a discrete-time
linear dynamical system:

∆ht = Jrec∆ht−1 + Jinpxt. (2)

It is important to note that both Jacobians depend on which
fixed point we choose to linearize around, and should thus
be thought of as functions of h∗; for notational simplicity
we do not denote this dependence explicitly.

By reducing the nonlinear RNN to a linear system, we can
analytically estimate the network’s response to a sequence
of T inputs. In this approximation, the effect of each input
xt is decoupled from all others; that is, the final state is
given by the sum of all individual effects.1 We can restrict
our focus to the effect of a single input, xt (i.e. a single term
in this sum). Let k = T − t be the number of time steps
between xt and the end of the document. The total effect of
xt on the final RNN state becomes:

RΛkLJinpxt =

N∑
a=1

λkara`
>
a Jinpxt, (3)

1We consider the case where the network has closely converged
to a fixed point, so that h0 = h∗ and thus ∆h0 = 0.

where L = R−1, the columns of R (denoted ra) contain
the right eigenvectors of Jrec, the rows of L (denoted `>a )
contain the left eigenvectors of Jrec, and Λ is a diagonal
matrix containing complex-valued eigenvalues, λ1 > λ2 >
. . . > λN , which are sorted based on their magnitude.

3.4. An analysis of integration time constants.

From equation 3 we see that xt affects the representation
of the network through N terms (called the eigenmodes or
modes of the system). The magnitude of each mode after
k steps is given by the λka; thus, the size of each mode ei-
ther reduces to zero or diverges exponentially fast, with a
time constant given by: τa =

∣∣∣ 1
log(|λa|)

∣∣∣. This time constant
has units of tokens (or, roughly, words) and yields an inter-
pretable number for the effective memory of the system. Fig.
2 plots the eigenvalues and associated time constants and
shows the distribution of all eigenvalues at three represen-
tative fixed points along the fixed point manifold (Fig. 2a).
In Fig. 2c, we plot the decay time constant of the top three
modes; the slowest decaying mode persists after ∼1000
time steps, while the next two modes persists after ∼100
time steps, with lower modes decaying even faster. Since the
average review length for the Yelp dataset is ∼175 words,
only a small number of modes could represent information
from the beginning of the document.

Overall, these eigenvalue spectra are consistent with our
observation that RNN states only explore a low-dimensional
subspace when performing sentiment classification. RNN
activity along the majority of dimensions is associated with
fast time constants and is therefore quickly forgotten.
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Figure 3. Effect of different word inputs from the Yelp corpus on the LSTM state vector. (a) Instantaneous effect of word inputs, Jinpx,
for positive, negative, and neutral words (green, red, cyan dots). The green and red arrows point to the center of mass for the positive and
negative words, respectively. Blue arrows denote `1, the top left eigenvector. The PCA projection is the same as Fig. 1c, but centered
around each fixed point. Each plot denotes a separate fixed point (labeled in panel b). (b) Same plot as in Fig. 1c, with three example fixed
points highlighted (approximate fixed points in grey). Blue arrows denote r1, the top right eigenvector. In all cases r1 is aligned with the
orientation of the manifold, m, consistent with an approximate line attractor. (c) Average of `>1 Jinpx over 100 different words, shown for
positive, negative, neutral words. Histogram displays the distribution of this input projection over all fixed points. (d) Distribution of
r>1 m (overlap of the top right eigenvector with the fixed point manifold) over all fixed points. Null distribution is randomly generated unit
vectors of the size of the hidden state.

3.5. Left and right eigenvectors

Restricting our focus to the top eigenmode for simplicity
(there may be a few slow modes of integration), the effect
of a single input, xt, on the network activity (equation 3) be-
comes: r1`

>
1 Jinpx, where we have dropped the dependence

on t since λ1 ≈ 1, so the effect of x is largely insensitive to
the exact time it was input to system. Using this expression,
we separately analyzed the effects of specific words.

We first examined the term Jinpx for various choices of x
(i.e. various word tokens). This quantity represents the
instantaneous linear effect of x on the RNN state vector and
is shared across all eigenmodes. We projected the resulting
vectors onto the same low-dimensional subspace shown in
Fig. 1c. We see that positive and negative valence words
push the hidden state in opposite directions. Neutral words,
in contrast, exert much smaller effects on the RNN state
(Fig. 3).

While Jinpx represents the instantaneous effect of a word,
only the features of this input that overlap with the top few
eigenmodes are reliably remembered by the network. The
scalar quantity `>1 Jinpx, which we call the input projection,
captures the magnitude of change induced by x along the
eigenmode associated with the longest timescale. Again
we observe that the valence of x strongly correlates with
this quantity: neutral words have an input projection near

zero while positive and negative words produced larger
magnitude responses of opposite sign. Furthermore, this is
reliably observed across all fixed points. Fig. 3c shows the
average input projection for positive, negative, and neutral
words; the histogram shows the distribution of these average
effects across all fixed points along the line attractor.

Finally, if the input projection onto the top eigenmode is
non-negligible, then the right eigenvector r1 (which is nor-
malized to unit length) represents the direction along which
x is integrated. If the RNN implements an approximate line
attractor, then r1 (and potentially other slow modes) should
align with the principal direction of the manifold of fixed
points, m. We indeed observe a high degree of overlap
between r1 and m both visually in PC space (Fig. 3b) and
quantitatively across all fixed points (Fig. 3d).

4. Discussion
In this work we applied dynamical systems analysis to un-
derstand how RNNs solve sentiment analysis. We found a
simple mechanismintegration along a line attractorpresent
in multiple architectures trained to solve the task. Overall,
this work provides preliminary, but optimistic, evidence that
different, highly intricate network models can converge to
similar solutions that may be reduced and understood by
human practitioners.
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A. Additional Methods
A.1. RNN architecture and notation

An RNN is defined by a nonlinear update rule ht = F (ht−1,xt), which is applied recursively from an initial state h0 over
a sequence of inputs x1,x2, . . . ,xT . Let N and M denote the dimensionality of the hidden states and the input vectors,
so that ht ∈ RN and xt ∈ RM . In sentiment classification, T represents the number of word tokens in a sequence, which
can vary on a document-by-document basis. To process word sequences for a given dataset, we build a vocabulary and
encode words as one-hot vectors. These are fed to a dense linear embedding layer with an embedding size of M = 128
(xt are the embeddings in what follows). The word embeddings were trained from scratch simultaneously with the RNN.
We considered four RNN architectures—LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho et al., 2014), UGRNN
(Collins et al., 2016), and the vanilla RNN (VRNN)—each corresponding to a separate nonlinear update rule, F (·, ·). For
the LSTM architecture, ht consists of a concatenated hidden state vector and cell state vector so that N is twice the number
of computational units; in all other architectures N is equal to the number of units. The RNN prediction is evaluated at the
final time step T , and is given by ŷ = w>hT + b, where we call w ∈ RN the readout weights. In the LSTM architecture,
the cell state vector is not read out, and thus half of the entries in w are enforced to be zero under this notation.

Bag of words Vanilla RNN Update Gate RNN GRU LSTM
Yelp 2015 93.37% 92.96% 95.67% 95.84% 95.05%

IMDB 88.53% 87.08% 87.96% 86.86% 86.93%
Stanford Sentiment 79.74% 78.09% 77.74% 80.25% 80.09%

Table 1. Test accuracies across all RNN architectures and datasets.

A.2. Datasets

We examined three benchmark datasets for sentiment classification: the IMDB movie review dataset, which contains 50,000
highly polarized reviews (Maas et al., 2011); the Yelp review dataset, which contained 500,000 user reviews (Zhang et al.,
2015); and the Stanford Sentiment Treebank, which contains 11,855 sentences taken from movie reviews (Socher et al.,
2013). The Stanford Sentiment Treebank also contains short phrases with labeled sentiments; these were not analyzed.

A.3. Training

For each task and architecture, we performed a randomized hyper-parameter search and selected the best networks based on
a validation set. All models were trained using Adam (Kingma & Ba, 2014) with a batch size of 64. The hyper-parameter
search was performed over the following ranges: the initial learning rate (10−5 to 10−1), learning rate decay factor (0 to 1),
gradient norm clipping (10−1 to 10), `2 regularization penalty (10−3 to 10−1), the β1 (0.5 to 0.99), and β2 (0.9999 to 0.99)
parameters of the Adam optimization routine. We additionally trained a bag-of-words model (logistic regression trained
with word counts), as a baseline comparison. The accuracies of our final models on the held-out test set are summarized in
Table 1. We analyzed the best performing models for each combination of architecture type and dataset.

A.4. Fixed Points

For each model, we numerically identified a large set of fixed points {h∗1,h∗2,h∗3, · · · } such that h∗i ≈ F (h∗i ,x=0) (Sussillo
& Barak, 2013). Briefly, we accomplished this by first defining the loss function q = 1

N ‖h−F (h,0)‖22, and then minimizing
q with respect to hidden states, h, using standard auto-differentiation methods (Golub & Sussillo, 2018). We ran this
optimization multiple times starting from different initial values of h. These initial conditions were sampled randomly from
the state activation during the operation of the trained network, which was done to intentionally sample states related to the
operation of the RNN. We varied the stopping tolerance for q using 9 points logarithmically spaced between 10−9 and 10−5

running the optimization from 1000 different initial conditions for each tolerance. This allowed us to find approximate fixed
points of varying speeds. Values of q at numerical zero are true fixed points, while small but non-zero values are called slow
points. Slow points are often reasonable places to perform a linearization, assuming that

√
q, which is akin to speed, is slow

compared to the operation of the network.
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B. Supplemental figures
Below we provide figures summarizing the linear integration mechanism for each combination of architecture (LSTMs,
GRUs, Update Gate RNNs, Vanilla RNNs) and dataset (Yelp, IMDB, and Stanford Sentiment). Note that the first figure,
LSTMs trained on Yelp, reproduces the figures in the main text–we include it here for completeness. The description of
each panel is given in Figure 1, note that these descriptions are the same across all figures. We find that these mechanisms
are remarkably consistent across architectures and datasets.

0 128
Dimension

0

1

Va
ria

nc
e 

Ex
pla

ine
d

9 0 9
Principal component #1

9

0

9
Pr

inc
ipa

l c
om

po
ne

nt
 #

2

9 0 9
PC #1

9

0

9

PC
 #

2

0.8 0.0 0.8
Manifold coordinate ( )

101
102
103
104
105

Ti
m

e 
co

ns
ta

nt
 (

)

0.5 0.0 0.5
 PC #1

0.5

0.0

0.5

 P
C 

#2

0.3 0.0 0.3
Input projection

0

50

Fr
eq

ue
nc

y

9 0 9
PC #1

9

0

9

PC
 #

2

0.0 0.5 1.0
Manifold projection

0

25

Fr
eq

ue
nc

y

1

0

1

M
an

ifo
ld 

co
or

din
at

e 
(

)

Long-short term memory (LSTM), trained on Yelp

Figure 4. Summary plots for LSTM on Yelp reviews.
(upper left) PCA on RNN hidden states - PCA applied to all hidden states visited during 1000 test examples for untrained (light gray) vs.
trained (black) LSTMs. After training, most of the variance in LSTM hidden unit activity is captured by a few dimensions.

(upper middle left) RNN state space - Projection of RNN hidden unit activity onto the top two principal components (PCs).
2D histogram shows density of visited states for test examples colored for negative (red) and positive (green) documents. Star indicates
the initial hidden state.

(upper middle right) Approximate fixed points - Projection of approximate fixed points of the RNN dynamics (see Methods)
onto the top PCs. The fixed points lie along a 1-D manifold, parameterized by a coordinate θ (see Methods).

(upper right) Time constant (τ ) of memory as a function of position along the line attractor, θ.

(lower left) Instantaneous effect of word inputs, Jinpx, for positive (green), negative (red), and neutral (cyan) words. Blue
arrows denote `1, the top left eigenvector. The PCA projection is the same as Fig. 2c, but centered around each fixed point.

(lower middle left) Average of `>1 Jinpx over 100 different words, shown for positive, negative, neutral words.

(lower middle right) Same plot as in Fig. 2c, with an example fixed point highlighted (approximate fixed points in grey).
Blue arrows denote r1, the top right eigenvector.

(lower right) Distribution of r>1 m (overlap of the top right eigenvector with the fixed point manifold) over all fixed points.
Null distribution is randomly generated unit vectors of the size of the hidden state.
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Figure 5. Summary plots for GRU on Yelp reviews. See first supplemental figure (LSTM on Yelp) for description.
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Update Gate RNN (UGRNN), trained on Yelp

Figure 6. Summary plots for UGRNN on Yelp reviews. See first supplemental figure (LSTM on Yelp) for description.
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Vanilla RNN, trained on Yelp

Figure 7. Summary plots for VRNN on Yelp reviews. See first supplemental figure (LSTM on Yelp) for description. Note this VRNN has
an unstable oscillation as shown in distribution of hidden states in upper middle left PCA plot.

0 128
Dimension

0

1

Va
ria

nc
e 

Ex
pla

ine
d

10 0 10
Principal component #1

20

00

Pr
inc

ipa
l c

om
po

ne
nt

 #
2

10 0 10
PC #1

20

00

PC
 #

2

0.8 0.0 0.8
Manifold coordinate ( )

101
102
103
104
105

Ti
m

e 
co

ns
ta

nt
 (

)

1.5 0.0 1.5
 PC #1

1.5

0.0

1.5

 P
C 

#2

1 0 1
Input projection

0

14

Fr
eq

ue
nc

y

10 0 10
PC #1

20

00

PC
 #

2

0.0 0.5 1.0
Manifold projection

0

25

Fr
eq

ue
nc

y

1

0

1

M
an

ifo
ld 

co
or

din
at

e 
(

)

Long-short term memory (LSTM), trained on IMDB

Figure 8. Summary plots for LSTM on IMDB reviews. See first supplemental figure (LSTM on Yelp) for description.
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Gated recurrent unit (GRU), trained on IMDB

Figure 9. Summary plots for GRU on IMDB reviews. See first supplemental figure (LSTM on Yelp) for description.
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Update Gate RNN (UGRNN), trained on IMDB

Figure 10. Summary plots for UGRNN on IMDB reviews. See first supplemental figure (LSTM on Yelp) for description.



Reverse engineering recurrent networks for sentiment classification hints at universal mechanisms

0 128
Dimension

0

1

Va
ria

nc
e 

Ex
pla

ine
d

8 0 8
Principal component #1

8

0

8

Pr
inc

ipa
l c

om
po

ne
nt

 #
2

8 0 8
PC #1

8

0

8

PC
 #

2

0.8 0.0 0.8
Manifold coordinate ( )

101
102
103
104
105

Ti
m

e 
co

ns
ta

nt
 (

)

1.5 0.0 1.5
 PC #1

1.5

0.0

1.5

 P
C 

#2

1.2 0.0 1.2
Input projection

0

14

Fr
eq

ue
nc

y

8 0 8
PC #1

8

0

8

PC
 #

2
0.0 0.5 1.0
Manifold projection

0

30

Fr
eq

ue
nc

y

1

0

1

M
an

ifo
ld 

co
or

din
at

e 
(

)

Vanilla RNN, trained on IMDB

Figure 11. Summary plots for VRNN on IMDB reviews. See first supplemental figure (LSTM on Yelp) for description.
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Long-short term memory (LSTM), trained on Stanford Sentiment

Figure 12. Summary plots for LSTM on SST reviews. See first supplemental figure (LSTM on Yelp) for description.
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Gated recurrent unit (GRU), trained on Stanford Sentiment

Figure 13. Summary plots for GRU on SST reviews. See first supplemental figure (LSTM on Yelp) for description.

0 128
Dimension

0

1

Va
ria

nc
e 

Ex
pla

ine
d

6 0 6
Principal component #1

6

0

6

Pr
inc

ipa
l c

om
po

ne
nt

 #
2

6 0 6
PC #1

6

0

6

PC
 #

2

0.8 0.0 0.8
Manifold coordinate ( )

101
102
103
104
105

Ti
m

e 
co

ns
ta

nt
 (

)

0.5 0.0 0.5
 PC #1

0.5

0.0

0.5

 P
C 

#2

0.5 0.0 0.5
Input projection

0

25

Fr
eq

ue
nc

y

6 0 6
PC #1

6

0

6

PC
 #

2

0.0 0.5 1.0
Manifold projection

0

25

Fr
eq

ue
nc

y

1

0

1

M
an

ifo
ld 

co
or

din
at

e 
(

)
Update Gate RNN (UGRNN), trained on Stanford Sentiment

Figure 14. Summary plots for UGRNN on SST reviews. See first supplemental figure (LSTM on Yelp) for description.
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Vanilla RNN, trained on Stanford Sentiment

Figure 15. Summary plots for VRNN on SST reviews. See first supplemental figure (LSTM on Yelp) for description.


