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ABSTRACT

Formal verification techniques that compute provable guarantees on properties
of machine learning models, like robustness to norm-bounded adversarial pertur-
bations, have yielded impressive results. Although most techniques developed
so far require knowledge of the architecture of the machine learning model and
remain hard to scale to complex prediction pipelines, the method of randomized
smoothing has been shown to overcome many of these obstacles. By requiring
only black-box access to the underlying model, randomized smoothing scales to
large architectures and is agnostic to the internals of the network. However, past
work on randomized smoothing has focused on restricted classes of smoothing
measures or perturbations (like Gaussian or discrete) and has only been able to
prove robustness with respect to simple norm bounds. In this paper we introduce a
general framework for proving robustness properties of smoothed machine learning
models in the black-box setting. Specifically, we extend randomized smoothing
procedures to handle arbitrary smoothing measures and prove robustness of the
smoothed classifier by using f -divergences. Our methodology improves upon the
state of the art in terms of computation time or certified robustness on several image
classification tasks and an audio classification task, with respect to several classes
of adversarial perturbations.

1 INTRODUCTION

Predictors obtained from machine learning algorithms have been shown to be vulnerable to making
errors when the inputs are perturbed by carefully chosen small but imperceptible amounts (Szegedy
et al., 2014; Biggio et al., 2013). This has motivated significant amount of research in improving
adversarial robustness of a machine learning model (see, e.g. Goodfellow et al., 2015; Madry et al.,
2018). While significant advances have been made, it has been shown that models that were estimated
to be robust have later been broken by stronger attacks (Athalye et al., 2018; Uesato et al., 2018).
This has led to the need for methods that offer provable guarantees that the predictor cannot be forced
to misclassify an example by any attack algorithm restricted to produce perturbations within a certain
set (for example, within an `p norm ball). While progress has been made leading to methods that are
able to compute provable guarantees for several image and text classification tasks (Wong & Kolter,
2018; Wong et al., 2018; Raghunathan et al., 2018; Dvijotham et al., 2018; Katz et al., 2017; Huang
et al., 2019; Jia et al., 2019), these methods require extensive knowledge of the architecture of the
predictor and are not easy to extend to new models or architectures, requiring specialized algorithms
for each new class of models. Furthermore, the computational complexity of these methods grows
significantly with input dimension and model size.

To deal with these obstacles, recent work has proposed the randomized smoothing strategy for
verifying the robustness of classifiers. Specifically, Lecuyer et al. (2019) and Cohen et al. (2019)
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have shown that robustness properties can be more easily verified for the smoothed version of a base
classifier h producing labels in some set Y:

hs(x) = arg max
y∈Y

P
X∼µ(x)

[h(X) = y] , (1)

where the labels returned by the smoothed classifier hs are obtained by taking a “majority vote” over
the predictions of the original classifier h on random inputs drawn from a probability distribution
µ(x), called the smoothing measure. Lecuyer et al. (2019) showed that verifying the robustness
of this smoothed classifier is significantly simpler than verifying the original classifier h and only
requires estimating the distribution of outputs of the classifier under random perturbations of the
input, but does not require access to the internals of the classifier h. We refer to this as black-box
verification.

In this work, we develop a general framework for black-box verification that recovers prior work as
special cases, and improves upon previous results in various ways.

Contributions Our contributions are summarized as follows:

1. We formulate the general problem of black-box verification via a generalized randomized
smoothing procedure, which extends existing approaches to allow for arbitrary smoothing
measures. Specifically, we show that robustness certificates for smoothed classifiers can be
obtained by solving a small convex optimization problem when allowed adversarial perturbations
can be characterized via divergence-based bounds on the smoothing measure.

2. We prove that our certificates generalize previous results obtained in related work (Lecuyer
et al., 2019; Cohen et al., 2019; Li et al., 2019), and vastly extend the class of perturbations and
smoothing measures that can be used while still allowing certifiable guarantees.

3. We introduce the notion of full-information and information-limited settings, and show that the
information-limited setting that has been the main focus of prior work leads to weaker certificates
for smoothed probabilistic classifiers, and can be improved by using additional information (the
distribution of label scores under randomized smoothing).

4. We evaluate our framework experimentally on image and classification tasks, obtaining ro-
bustness certificates that improve upon other black-box methods either in terms of certificate
tightness or computation time on robustness to `0, `1 or `2 perturbations on MNIST, CIFAR-10
and ImageNet. `2 perturbations result from worst-case realizations of white noise that is common
in many image, speech and video processing. `0 perturbations can model missing data (missing
pixels in an image, or samples in a time-domain audio signal) while `1 perturbations can be
used to model convex combinations of discrete perturbations in text classification (Jia et al.,
2019). We also obtain the first, to the best of our knowledge, certifiably robust model for an
audio classification task, Librispeech (Panayotov et al., 2015), with variable-length inputs.

2 BLACK-BOX VERIFICATION FOR SMOOTHED CLASSIFIERS

Consider a binary classifier h : X → {±1} given to us as a black box, so we can only access the
inputs and outputs of h but not its internals. We are interested in investigating the robustness of
the smoothed classifier hs (defined in Eq. 1) against adversarial perturbations of size at most ε with
respect to a given norm ‖·‖. To determine whether a norm-bounded adversarial attack on a fixed
input x ∈ X with hs(x) = +1 could be successful, we can solve the optimization problem

min
‖x′−x‖≤ε

P
X′∼µ(x′)

[h(X ′) = +1] , (2)

and check whether the minimum value can be smaller than 1
2 . This is a non-convex optimization

problem for which we may not even be able to compute gradients since we only have black-box access
to h. While techniques have been developed to address this problem, obtaining provable guarantees
on whether these algorithms actually find the worst-case adversarial perturbation is difficult since we
do not know anything about the nature of h.

Motivated by this difficulty, we take a different approach: Rather than studying the adversarial attack
in the input space X , we study it in the space of probability measures over inputs, denoted by P(X ).
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Formally, this amounts to rewriting Eq. 2 as

min
ν∈{µ(x′):‖x′−x‖≤ε}

P
X′∼ν

[h(X ′) = +1] . (3)

This is an infinite dimensional optimization problem over the space of probability measures ν ∈ P(X )
subject to the constraint ν ∈ D = {µ(x′) : ‖x′ − x‖ ≤ ε}. While this set is still intractable to
deal with, we can consider relaxations of this set defined by divergence constraints between ν and
ρ = µ(x), i.e., D ⊆ {ν : D(ν‖ρ) ≤ εD} where D denotes some divergence between probability
distributions. We will show in Section 3 that for several commonly used divergences (in fact, for any
f -divergence; cf. Ali & Silvey, 1966), the relaxed problem can be solved efficiently.

2.1 A GENERAL FRAMEWORK FOR ROBUSTNESS CERTIFICATION

To formulate the general verification problem, consider a specification φ : X → Z ⊆ R: a generic
function over the input space (that typically is a function of the classifier output) that we want to verify
has certain properties. Unless otherwise specified, we will assume that X ⊆ Rd (we work in a d
dimensional input space). Our framework also involves a reference measure ρ (in the above example
we would take ρ = µ(x)) and a collection of perturbed distributions D (in the above example we
would take D = Dx,ε = {µ(x′) : ‖x′ − x‖ ≤ ε}).
Verifying that a given specification φ is robustly certified is equivalent to checking whether the
optimal value of the optimization problem

OPT(φ, ρ,D) := min
ν∈D

E
X∼ν

[φ(X)] , (4)

is non-negative. Solving problems of this form is the key workhorse of our general framework for
black-box certification of adversarial robustness for smoothed classifiers.

Using these ingredients we introduce two closely related certification problems: information-limited
robust certification and full-information robust certification. In the former case, we assume that we
are given only given access to PX∼ρ[φ(X) = +1],PX∼ν [φ(X) = +1]. In the latter case, we are
given full-access to specification φ. The definitions are below.
Definition 2.1 (Information-limited robust certification). Given reference distribution ρ ∈ P(X ),
probabilities θa, θb that satisfy θa, θb ≥ 0, θa + θb ≤ 1 and collection of perturbed distributions
D ⊂ P(X ) containing ρ, define the class of specifications S as

S =

{
φ : X → {−1, 0,+1} s.t. P

X∼ρ
[φ(X) = +1] ≥ θa, P

X∼ρ
[φ(X) = −1] ≤ θb

}
We say that S is information-limited robustly certified at ρ with respect toD if the following condition
holds: EX∼ν [φ(X)] ≥ 0 for all ν ∈ D, φ ∈ S.

Note since we don’t have access to φ, we need to prove that EX∼ν [φ(X)] ≥ 0 ∀ν ∈ D is satisfied
for all specifications in set S. Although the information-limited case may seem challenging because
we need to provide guarantees that hold simultaneously over a whole class of specifications, it turns
out that, for perturbation sets D specified by an f -divergence bound, this certification task can be
solved efficiently using convex optimization.
Definition 2.2 (Full-information robust certification). Given a reference distribution ρ ∈ P(X ), a
specification φ : X → Z ⊆ R and a collection of perturbed distributions D ⊂ P(X ) containing ρ,
we say that φ is full-information robustly certified at ρ with respect to D if the following condition
holds: EX∼ν [φ(X)] ≥ 0 for all ν ∈ D.

Most often we are dealing with the case where we have full access to the specification φ, thus we
should be able to certify using full-information robust certification. However, prior works, Cohen
et al. (2019) and Lecuyer et al. (2019), have only provided solutions to certify with respect to the
information-limited case where we cannot use all of the information about φ. The framework we
develop is a more general method that can be used in both information-limited and full-information
scenarios. We will demonstrate that our framework recovers certificates provided by Cohen et al.
(2019), Li et al. (2019) and dominates Lecuyer et al. (2019) in the information-limited setting
(see section 5). Further, it can utilize full-information about the specification φ to provide tighter
certificates for smoothed probabilistic classifiers (see section 6).
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2.1.1 ROBUSTNESS SPECIFICATION FOR SMOOTHED HARD CLASSIFIERS

We first note that the definitions above are sufficient to capture the standard usage of randomized
smoothing as it has been used in past work (e.g. Lecuyer et al., 2019; Cohen et al., 2019) to verify
the robustness of smoothed multi-class classifiers. Specifically, consider smoothing a classifier
h : X → Y with a finite set of labels Y using a smoothing measure µ : X 7→ P(X ). The resulting
randomly smoothed classifier hs is defined in Eq. 1. Our goal is to certify that the prediction hs(x) is
robust to perturbations of size at most ε measured by distance function1 d : X × X 7→ R+, i.e.,

hs(x
′) = hs(x) ∀x′ such that d(x, x′) ≤ ε . (5)

To pose this question within our framework, we choose the reference distribution ρ = µ(x), the
set of perturbed distributions Dx,ε = {µ(x′) : d(x, x′) ≤ ε}, and the following specifications. Let
c = hs(x). For every c′ ∈ Y \ {c}, we define the specification φc,c′ : X 7→ {−1, 0,+1} as follows:

φc,c′(x) =


+1 if h(x) = c ,

−1 if h(x) = c′ ,

0 otherwise .

Then, Eq. 5 holds if and only if every φc,c′ , c′ 6= c, is robustly certified at µ(x) with respect to Dx,ε
(see Appendix A.1).

2.2 CONSTRAINT SETS FROM F-DIVERGENCES

Dealing with the set Dx,ε directly is difficult due to its possibly non-convex geometry. In this section,
we discuss specific relaxations of this set, i.e., choices for sets D such that Dx,ε ⊆ D that are easier
to optimize over. In particular, we focus on a general family of constraint sets defined in terms of
f -divergences. These divergences satisfy a number of useful properties and include many well-known
instances (e.g. relative entropy, total variation); see Appendix A.2 for details.
Definition 2.3. (f -divergence constraint set). Given ρ, ν ∈ P(X ), their f -divergence is defined as

Df (ν‖ρ) = E
X∼ρ

[
f

(
ν(X)

ρ(X)

)]
,

where f : R+ 7→ R is a convex function with f(1) = 0. Given a reference distribution ρ, an
f -divergence Df and a bound εf ≥ 0, we define the f -divergence constraint set to be:

Df = {ν ∈ P(X ) : Df (ν‖ρ) ≤ εf} .

Technically, this definition depends on the Radon-Nikodym derivative of ν with respect to ρ, but we
ignore measure-theoretic issues in this paper for simplicity of exposition. For continuous distributions,
ν and ρ should be treated as densities, and for discrete distributions as probability mass functions.

Relaxations using f -divergence This construction immediately allows us to obtain relaxations of
Dx,ε. For example, by choosing f(u) = u log(u), we have the KL-divergence. Using KL-divergence
yields the following relaxation between norm-based and divergence-based constraint sets for Gaussian
smoothing measures, i.e. µ(x) = N (x, σ2I):

Dx,ε = {µ(x′) : ‖x− x′‖2 ≤ ε} ⊆
{
ν : KL(ν‖µ(x)) ≤ ε2/(2σ2)

}
.

Figure 1: Intersecting f -divergence con-
straints to obtain better relaxations DF (de-
picted by the orange region) of Dx,ε.

Tighter relaxations can be constructed by combining mul-
tiple divergence-based constraints. In particular, suppose
F is a collection of convex functions each defining an
f -divergence, and assume each f ∈ F has a bound εf
associated with it. Then we can define the constraint set
containing perturbed distributions where all the bounds
hold simultaneously (Fig. 1):

DF :=
⋂
f∈F

Df = {ν : ∀ f ∈ F Df (ν‖ρ) ≤ εf} .

1d is an arbitrary distance function (not necessarily a metric e.g. `0).
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In this paper, we work with the following divergences:
(1) Rényi: Rα(ν‖ρ) = log(1 +Df (ν‖ρ))/(α−1) where
f(x) = xα−1 (for α ≥ 1), andRα(ρ‖ν) = log(1−Df (ν‖ρ))/(α−1) with f(x) = 1−xα (for 0 ≤
α ≤ 1). The limit α→∞ yields the infinite order Rényi divergence R∞(ν‖ρ) = supx(ν(x)/ρ(x)).

(2) KL(ν‖ρ) = Df (ν‖ρ) with f(x) = x log(x).

(3) Hockey-Stick: DHS,β(ν‖ρ) = Df (ν‖ρ) with f(x) = max(x− β, 0)−max(1− β, 0).

It turns out that the Rényi and KL divergences are computationally attractive for a broad class of
smoothing measures, while the Hockey-Stick divergences are theoretically attractive as they lead to
optimal certificates in the information-limited setting. However, Hockey-Stick divergences are harder
to estimate in general, so we only use them for Gaussian smoothing measures.

2.3 COMPUTING F-DIVERGENCE BOUNDS

In general, our framework can be used with any family of smoothing measures and any family of
f divergences such that an upper bound on maxν∈Dx,ε Df (ν‖ρ) can be estimated efficiently. We
describe how f -divergence bounds can be obtained for several classes of smoothing measures:

Product measures Product measures are of the form µ(x) = ⊗di=1µi(xi) where X =
∏d
i=1 Xi

and µi is a smoothing measure on Xi. We note that the discrete smoothing measure used in (Lee
et al., 2019), the Gaussian measure used in (Cohen et al., 2019) and the Laplacian measure used
in (Li et al., 2019) are all of this form. For such measures, one can construct bounds on Rényi-
divergences subject to any `p norm constraint using a Lagrangian relaxation of the optimization
problem maxx′:‖x−x′‖p≤εRα(µ(x′)‖µ(x)) (see Appendix A.3 for details).

Norm-based smoothing measures Appendix A.9.1 also shows how we can obtain bounds on the
infinite-order Rényi divergence R∞, as well as on several classes of f -divergences, for norm-based
smoothing measures of the form µ(x)[X] ∝ exp(−‖X − x‖).

3 OUR CERTIFICATION PROCEDURES

We now show how to reduce the problems of full-information and information-limited robust black-
box certification to simple convex optimization problems for general constraint sets D defined in
terms of f -divergences. This allows us, by extension, to solve the problem for related divergences
like Rényi divergences. The following two theorems provide the main foundation for the verification
procedures in the paper.

Theorem 1 (Verifying full-information robust certification). Let DF be the constraint set defined by
F = {f1, . . . , fM} and εfi = εi. Define fλ(u) =

∑M
i=1 λifi(u) and denote its convex conjugate2

by f∗λ . The specification φ is robustly certified at ρ with respect to DF (cf. Definition 2.2) if and only
if the optimal value of the following convex optimization problem is non-negative:

max
λ1,...,λM≥0,κ

κ−
M∑
i=1

λiεi − E
X∼ρ

[f∗λ(κ− φ(X))] . (6)

The proof of Theorem 1, given in Appendix A.4, uses standard duality results to show that the dual
of the verification optimization problem has the desired form. We note that the special case where
M = 1 reduces to Proposition 1 of Duchi & Namkoong (2018), although the result is used in a
completely different context in that work.

To build a practical certification algorithm from Theorem 1, we must do two things: 1) compute
the optimal values of λ and κ; and 2) estimate the expectation in Eq. 6. Since the estimation of
the expectation cannot be done in closed form (due to the black-box nature of φ), we must rely on
sampling. In step 1 of Algorithm 1, we use N samples taken independently from ρ to estimate the
expectation and solve the “sampled” optimization problem using an off-the-shelf solver (Diamond

2For any function f : R+ 7→ R, its convex conjugate is defined as f∗(u) = maxv≥0 (uv − f(v)).
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Algorithm 1 Full information certification (see appendix A.9 for details of subroutines)
Inputs: Query access to specification φ : X → [a, b], sampling access to reference distribution ρ,
divergences fi and bounds εi, sample sizes N , Ñ , confidence level ζ.

1: κ∗, λ∗ ← ESTIMATEOPT(ρ, φ,N, {fi}Mi=1, {εi}Mi=1).
2: Eub ← UPPERCONFIDENCEBOUND(ρ, φ, Ñ , {fi}Mi=1, {εi}Mi=1, a, b, λ

∗, κ∗, ζ).
3: If κ∗ −

∑M
i=1 λ

∗
i εi − Eub ≥ 0 return CERTIFIED else return NOT CERTIFIED.

& Boyd, 2016). This gives us κ∗, λ∗, the estimated optimal values of κ and λ, respectively. Then
we take these values and compute a high-confidence lower bound on the objective function of Eq. 6,
which is then used to verify robustness. In particular, in step 2, we compute a high-confidence upper
bound Eub on the expectation term in the objective such that Eub ≥ EX∼ρ[f

∗
λ(κ∗ − φ(X))] with

probability at least ζ; this computation involves taking Ñ independent samples from ρ and finding a
confidence interval around the resulting empirical estimate of the expectation (for details, see Eq. 25
in Appendix A.9.1). Plugging in this estimate back into Eq. 6 gives the desired high-confidence lower
bound in step 3. Details of both subroutines ESTIMATEOPT and UPPERCONFIDENCEBOUND used
in Algorithm 1 are given in Algorithm 3 in Appendix A.9.2.

Our next theorem concerns the specialization of this verification procedure to the information-limited
setting.

Theorem 2 (Verifying information-limited robust certification). Let DF be as in Theorem 1, and
S and θa, θb be as in Definition 2.1. The class of specifications S is information-limited robustly
certified at ρ with respect to DF (cf. Definition 2.1) if and only if the optimal value of the following
convex optimization problem is non-negative:

min
ζa,ζb,ζc≥0

ζa − ζb

Subject to ζa + ζb + ζc = 1 , Dfi(ζ‖θ) ≤ εi i = 1, . . . ,M ,
(7)

where θ = (θa, θb, 1− θa − θb) and ζ = (ζa, ζb, ζc) are interpreted as probability distributions.

The proof of Theorem 2 is presented in Appendix A.5. It is based on the fact that in the information-
limited setting, it is possible to directly compute the expectation in Eq. 6, and in fact this expectation
only depends on φ via the probabilities θa and θb.

Theorem 2 naturally leads to a certification algorithm, presented in Algorithm 2. It simply uses
the same procedure as Cohen et al. (2019, Section 3.2) to compute a high-confidence lower bound
θa on the probability of the correct class under randomized smoothing and then solves the convex
optimization problem Eq. 7. Again, we can use an off-the-shelf solver CVXPY (Diamond & Boyd,
2016) in step 2 for the general M > 1 case, but closed-form solutions are also available for M = 1;
these are given in Table 4 in Appendix A.6.

Algorithm 2 Information-limited certification
Inputs: Query access to classifier h, correct label y, sampling access to reference distribution ρ,
divergences fi and bounds εi, sample sizes N , Ñ , confidence level ζ.

1: Sample X1, . . . , XN ∼ ρ and test3 whether y = arg maxy′∈Y PX∼ρ[h(X) = y′].
2: Sample X1, . . . , XÑ ∼ ρ and compute4 a bound PX∼ρ[h(X) = y′] ≥ θa with confidence ζ.
3: Obtain o∗ by solving Eq. 7 with θa ← θa and θb ← 1− θa.
4: If o∗ ≥ 0 return CERTIFIED else return NOT CERTIFIED.

4 THEORETICAL ANALYSIS OF CERTIFICATION METHODS

We now present theoretical results characterizing our certification methods and show the following:

3Using the algorithm from Hung & Fithian (2019).
4Using the algorithm from Clopper & Pearson (1934).
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1. For smoothed probabilistic classifiers, the full-information certificate dominates the information-
limited one.

2. In the information-limited setting, if we define the f -divergence relaxation DF using Hockey-
Stick divergences with specific parameters, then the computed certificate is provably tight.

4.1 ADVANTAGE OF FULL-INFORMATION CERTIFICATION

Consider a soft binary classifier H : X → [0, 1] that outputs the probability of label +1 and consider
a point x ∈ X with H(x) > 1/2. We define the specification φ(x) = H(x)− 1

2 . Then, the smoothed
classifier Hs(x) = EX∼µ(x)[H(X)] predicts label +1 for all x′ with ‖x′ − x‖ ≤ ε if and only if φ is
full-information robustly certified at µ(x) with respect to Dx,ε = {µ(x′) : ‖x′ − x‖ ≤ ε}. Note that
the optimization in Theorem 1 depends on the full distribution of φ(X) ∈ [−1/2, 1/2], X ∼ µ(x).
On the other hand, to certify this robustness in the information-limited setting is equivalent to taking
the specification φ(x) = 1[H(x) > 1/2] (the indicator function of the event H(x) > 1/2), in which
case the only information available is θa = Hs(x) = EX∼µ(x)[H(X)].

To compare the two approaches, consider the objective of Eq. 6 with a single f -divergence constraint
Df (ν‖ρ) ≤ ε. Then, we have

κ− λε− E
X∼µ(x)

[f∗λ(κ− φ(X))] = κ− λε− E
X∼µ(x)

[
f∗λ

(
κ−H(X) +

1

2

)]
= κ− λε− E

X∼µ(x)

[
f∗λ

((
κ+

1

2
− 1

)
H(X) +

(
κ+

1

2

)
(1−H(X))

)]
≥ κ− λε− E

X∼µ(X)

[
f∗λ

(
κ− 1

2

)
H(X) + f∗λ

(
κ+

1

2

)
(1−H(X))

]
= κ− λε− θaf∗λ

(
κ− 1

2

)
− (1− θa)f∗λ

(
κ+

1

2

)
,

where the third line follows from Jensen’s inequality. The proof of Theorem 2 shows that maximizing
the final expression above with respect to κ, λ is equivalent to the dual of the information-limited
certification problem Eq. 7. Thus, the information-limited setting computes a weaker certificate than
the full-information setting for soft classifiers:
Corollary 3. The optimization problem of Eq. 6 with the specification φ defined above has an
optimal value that is greater than or equal to that of the optimization problem defined in Eq. 7.

4.2 TIGHT RELAXATIONS FOR INFORMATION-LIMITED ROBUST CERTIFICATION

Ideally, we would like to certify robustness of specifications with respect to sets of the form Dx,ε =
{µ(x′) : d(x, x′) ≤ ε}. The following result shows that the gap between the ideal Dx,ε and the
tractable constraint sets DF can be closed in the context of information-limited robust certification
provided that we can measure hockey-stick divergences of every non-negative order β ≥ 0. The
proof is given in Appendix A.7.
Theorem 4. Let θa, θb, ρ,D, S be as in Definition 2.1. Define εβ = maxν∈DDHS,β(ν‖ρ) for all
β ≥ 0 and let β∗a, β

∗
b be chosen as follows:

β∗a, β
∗
b = arg max

βa≥βb≥0
1− βa(1− θa)− βbθb −

(
εβa + [1− βa]+

)
−
(
εβb + [1− βb]+

)
. (8)

Define the constraint set
DHS = {ν ∈ P(X ) : DHS;β∗a

(ν ‖ ρ) ≤ εβ∗a} ∩ {ν ∈ P(X ) : DHS;β∗b
(ν ‖ ρ) ≤ εβ∗b } .

Then, S is information-limited robustly certified at ρ with respect to D if and only if S is information-
limited robustly certified at ρ with respect to DHS. Thus, the optimal information-limited certificate
in this case can be obtained by applying theorem 2 to DHS.

5 CONNECTIONS WITH PRIOR WORK

Table 1 summarizes the differences between our work and prior work in terms of the set of smoothing
measures admitted, the offline computation cost of the certification procedure (which needs to
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be performed once for every possible perturbation size and choice of smoothing measure), the
perturbations considered, whether they can use information beyond θa, θb to improve the certificates
and whether they compute optimal certificates for a given smoothing measure in the information-
limited setting.

µ(x) Computation ‖·‖ Use additional Optimal
information?

Cohen et al. (2019) Gaussian O(1) `2 X Yes
Lee et al. (2019) Finite O(d3) `0 Only decision trees Yes

Support*
Li et al. (2019) Gaussian O(1) `2 X No

Laplacian `1
Lecuyer et al. (2019) Arbitrary O(1) All `p X No

Our work Arbitrary O(1) All `p Arbitrary classifiers Yes

Table 1: Comparison between black-box verification methods. * Technically, Lee et al. (2019) can handle
smoothing measures such that the likelihood ratios take a finite set of values, but most practical instances of this
correspond to finite-support distributions.

Cohen et al. (2019) study the problem of verifying hard classifiers smoothed by Gaussian noise, and
derive optimal certificates with respect to `2 perturbations of the input. Their results can be recovered
as a special case of our framework when applied to sets defined via constraints on hockey-stick
divergences. Theorem 4 shows that the optimal certificate in the information-limited setting can be
computed by applying theorem 2 to a constraint set with two hockey-stick divergences.

For the Gaussian measure µ(x) = N
(
x, σ2I

)
, the HS divergence DHS,β(µ(x)‖µ(x′)) can be

computed in closed form and is purely a function of the `2 distance ‖x− x′‖2. This enables us to
efficienctly compute the β∗a, β

∗
b in theorem 4. Thus, we obtain the following result (see Appendix

A.7.2 for a proof):
Corollary 5. Let ρ = N

(
x, σ2I

)
, Dx,ε = {N

(
x′, σ2I

)
: ‖x− x′‖2 ≤ ε} and 1 ≥ θa ≥ θb ≥ 0.

Let DHS be defined as in theorem 4. Then, applying theorem 2 to the constraint set DHS gives the
following condition for robust certification:

Ψg

(
Ψ−1
g (θa)− ε

σ

)
+ Ψg

(
Ψ−1
g (1− θb)−

ε

σ

)
≥ 1 , (9)

where Ψg is the CDF of a standard normal random variable N (0, 1). With straightforward algebra
(worked out in appendix A.7.2) , this can be shown to be equivalent to

Ψ−1
g (θa)−Ψ−1

g (θb) ≥
2ε

σ
,

which is the certificate from Theorem 1 of Cohen et al. (2019).

Lee et al. (2019) derive optimal certificates in the information-limited setting under the assumption
that the likelihood ratio between measures ν(X)

ρ(X) (where ν = µ(x′), ρ = µ(x)) can only take values
from a finite set. This is a restrictive assumption that prevents the authors from accommodating natural
smoothing measures like Gaussian or Laplacian measures. Further, the complexity of computing the
certificates in their framework is significant: O(d3) computation (where d is the input dimension)
is needed to certify smoothness to `0 perturbations. The authors also derive tighter certificates for
the special case of certain classes of decision trees by exploiting the tree structure. In contrast, our
framework can derive tighter certificates in the full-information setting for arbitrary classifiers.

Li et al. (2019) use properties of Rényi divergences to derive robustness certificates for classifiers
smoothed by Gaussian (resp. Laplacian) noise under `2 (resp. `1) perturbations. Their results can
be obtained as special cases of ours; in particular, the Rényi divergence certificates in Table 4 (in
Appendix A.6) recover the results of Lemma 1 of Li et al. (2019), but the latter are only applicable
for Gaussian and Laplacian smoothing measures.

Lecuyer et al. (2019) introduce the notion of pixel differential privacy (pixelDP) and show that
smoothing measures µ satisfying pixelDP with respect to a certain type of perturbations lead to
adversarially robust classifiers. We can show that pixelDP can be viewed as a special instance of our
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certification framework with two specific hockey-stick divergences, and that the certificates derived
from the pixelDP are provably dominated by the certificates from our framework (Theorem 1) with
the same choice of divergences (see Corollary 7 in Appendix A.7.3).

6 EXPERIMENTS

6.1 FULL-INFORMATION IMPROVES UPON INFORMATION-LIMITED CERTIFICATION
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Figure 2: Information-limited vs full-
information certificates for ImageNet for `2
perturbations. The dashed line represents
equal certificates and every point below the
dashed line has a stronger certificate from
the full information verification setting. We
run the comparison on 50 randomly selected
examples from the validation set. Each blue
dot in Figure 2 corresponds to one test point,
with its x coordinate representing the radius
for full information certificate (from Algo-
rithm 1) and y coordinate the information-
limited certificate (which is equivalent to the
certification procedure of Cohen et al., 2019).
The running time of the full-information cer-
tification procedure is .2s per example (ex-
cluding the sampling cost) while the limited-
information certification takes .002s per ex-
ample. Both procedures incur the same sam-
pling cost as they use the same number of
samples.

To compare full-information certificates with limited-
information certificates, we trained a ResNet-152 model
on ImageNet with data augmentation by adding noise
via sampling from a zero-mean Gaussian with variance
0.5 for each coordinate; during certification we sample
from the same distribution to estimate lower bounds on
the probability of the top predicted class. For the full-
information certificate, we use two hockey-stick diver-
gences for the certificate and tune the parameters β to
obtain the highest value in the optimization problem in
step 2 of Algorithm 1. For the infromation-limited certifi-
cate, our approach reduces to that of (Cohen et al., 2019)
and we follow the same certification procedure. We use
N = 1000, Ñ = 1000000, ζ = .99 for both certification
procedures.

Figure 2 shows the difference between the two certificates.
The certificate provided by the full-information method
is always stronger than the one given by the information-
limited method. The difference is often substantial – for
one of the test samples, the full-information setting can
certify robustness to `2 perturbations of radius ε = 9.42
in the full-information case while the limited-information
certificate can only be provided for perturbation radius
ε = 2.69.

6.2 SCALABILITY AND TIGHTNESS

In this section we consider `0 perturbations for both Ima-
geNet and Binary MNIST (that is, we consider the number
of pixels that can be perturbed without changing the pre-
diction). To test for scalability and tightness trade-offs of
our framework, we compare our methodology to that of
Lee et al. (2019), as their work obtains the optimal bound for `0. We computed certificates for a
single model for each classification task; for Binary MNIST we used the same model and training
procedure as Lee et al. (2019) and for ImageNet, we used the model released in the Github code
accompanying the paper of Lee et al. (2019). We use the discrete smoothing measure (appendix A.10)
with parameter p = 0.8 for Binary MNIST certification, and p = 0.2 for ImageNet certification.

In our experiments we ran the certification procedures on all test examples from the Binary MNIST
dataset, while for ImageNet, following prior work (Lee et al., 2019; Cohen et al., 2019), on every
100th example from validation set. The proportion of the examples for which ε accuracy can be
certified are reported in Table 2 for various values of ε. Comparing with the optimal certificates
obtained by the certification method of Lee et al. (2019), the table shows that our bounds remains
tight for Binary MNIST up until ε = 3, and we do so with 130 times speed-up. For ImageNet, our
bounds differ only about 7–15% in terms of accuracy, and we obtain this with approximately 20
million times speed-up.
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Dataset Certificate Smoothing Computation Certified Accuracy
Value Time

ε = 1 ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

Binary MNIST Lee et al. (2019) 0.8 3.68s 0.919 0.767 0.530 0.513 0.348 0.194 0.095
Ours 0.028s 0.919 0.767 0.530 0.296 0.162 0.080 0.015

ImageNet Lee et al. (2019) 0.2 4 days 0.488 0.418 0.310 0.250 0.244 0.234 0.224
Ours 0.028s 0.362 0.262 0.224 0.186 0.136 0 0

Table 2: Proportion of the examples with verified `0-robustness for different accuracy (ε) parameters.

6.3 CERTIFICATION FOR AUDIO CLASSIFICATION: LIBRISPEECH

Audio classification systems have been shown to be susceptible to adversarial attacks (Qin et al.,
2019). However, building audio classifiers that are provably robust to adversarial attacks has been
hard due to the complexity of audio processing architectures. We take a step towards provably robust
audio classifiers by showing that our approach can certify robustness of a classifier trained for speaker
recognition on a state-of-the-art model for this task. We focus on `0 perturbations that zero out a
fraction of the audio sample, as they correspond to missing data in an audio signal. Missing data can
occur due to errors in recording audio or packets dropped while transmitting an audio signal over a
network and is a common issue (Turner, 2010; Smaragdis et al., 2009).

In principle, the method of Lee et al. (2019) is applicable to compute robustness certificates, but at
an impractically large computational cost, since the computation needs to be repeated whenever an
input of a new length (for which a certificate has not previously been computed) arrives. Concretely,
this constitutes an O(d3) computation for the length d ranging from 38 to 522,320 (the set of audio
sequence lengths observed in the Librispeech test dataset (Panayotov et al., 2015)).

The results are shown in Table 3. To the best of our knowledge, these are the first results showing
certified robustness of an audio classifier. We believe this is a significant advance towards certification
of classifiers in audio and classifiers operating on variable-length inputs more generally.

Dataset Certificate Smoothing Computation Certified Accuracy
Value Time

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

Librispeech Ours
0.5

0.028s
0.511 0.225 0.091 0.091 0.091 0.091 0.091 0

0.7 0.885 0.634 0.405 0.405 0.405 0.405 0 0
0.9 0.872 0.772 0.711 0.711 0.711 0 0 0

Table 3: `0 robustness results for Librispeech (Panayotov et al., 2015). From the Librispeech dataset, we
created a corpus of sentence utterances from ten different speakers. The classification task is, given an audio
sample, to predict whom is speaking. The test set consisted of 30 audio samples for each of the ten speakers.
We use a DeepSpeaker architecture (Li et al., 2017), trained with the Adam optimizer (β1 = 0.9, β2 = 0.5) for
50,000 steps with a learning rate of 0.0001. The architecture is the same as that of Li et al. (2017), except for
changing the number of neurons in the final layer for speaker identification with ten classes. Three models were
trained with smoothing values of p = 0.5, p = 0.7, and p = 0.9, respectively, and we used the same values
for certification. Certification was performed using N = 1000, Ñ = 1000000, ζ = .99 using M = 1 Rényi
divergence, with α tuned to obtain the best certificate. The proportion of samples with certified robustness for
different accuracy values are reported, computed on 300 test set samples.

7 CONCLUSION

We have introduced a general framework for black-box verification using f -divergence constraints.
The framework improves upon state-of-the-art results on both image classification and audio tasks
by a significant margin in terms of robustness certificates or computation time. We believe that our
framework can potentially enable scalable computation of robustness verification for more complex
predictors and structured perturbations that can be modeled using f-divergence constraints.
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A APPENDIX

A.1 ADVERSARIAL SPECIFICATION FOR SMOOTHED CLASSIFIERS

Note that for any ν ∈ Dx,ε we have

E
X∼ν

[φc,c′(X)] = P
X∼ν

[h(X) = c]− P
X∼ν

[h(X) = c′] .

Therefore, EX∼ν [φc,c′(X)] ≥ 0 for all c′ ∈ Y \ {c} is equivalent to c ∈
arg maxy∈Y PX∼ν [h(X) = y]. For ν = µ(x′), this means that hs(x′) = c (assuming the argmax is
unique). In other words, EX∼ν [φc,c′(X)] ≥ 0 for all c′ ∈ Y \ {c} and all µ(x′) ∈ Dx,ε if and only if
hs(x

′) = c for all x′ such that d(x, x′) ≤ ε, proving the required robustness certificate.

A.1.1 ROBUSTNESS SPECIFICATION FOR SMOOTHED SOFT CLASSIFIERS

Consider a soft classifier H : X → P(Y) that for each input x returns a probability distribution H(x)
over the set of potential labels Y (e.g. H might represent the outputs of the soft-max layer of a neural
network). As in the case of hard classifiers, our methodology can be used to provide robustness
guarantees for smoothed soft classifiers obtained by applying a smoothing measure µ(x) to the input.
In this case, the smoothed classifier is again a soft classifier given by Hs(x) = EX∼µ(x)[H(X)].

Let x be a fixed input point and write p = Hs(x) ∈ P(Y) to denote the distribution over labels.
A number of robustness properties about the soft classifier Hs at x can be phrased in terms of
Definition 2.2. For example, let Y = {1, . . . ,K} and suppose that p1 ≥ p2 ≥ · · · ≥ pK so
that {1, . . . , k} are the top k labels at x. Then we can verify that the set of top k labels will not
change when moving the input from x to x′ with ‖x− x′‖ ≤ ε by defining the specifications
φi,j(z) = H(z)i −H(z)j for i ∈ [1, k] and j ∈ [k + 1,K], and showing that all of these φi,j are
robustly certified at µ(x) with respect to the set Dx,ε defined above. The case k = 1 corresponds to
robustness of the standard classification rule outputting the label with the largest score.

Another example is robustness of classifiers which are allowed to abstain. For example, suppose we
build a hard classifier h̃ out of Hs which returns the label with the maximum score as long as the
gap between this score and the score of any other label is at least γ; otherwise it produces no output.
Then we can certify that h̃ will not abstain and return the label c = arg maxy∈Y py at any point close
to x by showing that every φc′(z) = H(z)c −H(z)c′ − γ, c′ 6= c, is robustly certified at µ(x) with
respect to Dx,ε.

A.2 BACKGROUND ON F-DIVERGENCES

A number of well-known properties about f -divergences are used throughout the paper, both explicitly
and implicitly. Here we review such properties for the readers’ convenience. Proofs and further
details can be found in, e.g., (Csiszár et al., 2004; Liese & Vajda, 2006).

Recall that the f -divergences can be defined for any convex function f : R+ → R such that f(1) = 0.
We note that this requirement holds without loss of generality as the map x 7→ f(x)− f(1) is convex
whenever f is convex. Any f -divergence Df satisfies the following:

1. Df (ν‖ρ) ≥ 0.

2. Df (ρ‖ρ) = 0, and Df (ν‖ρ) = 0 implies ν = ρ whenever f is strictly convex at 1.

3. Df (F∗(ν)‖F∗(ρ)) ≤ Df (ν‖ρ) for any function F , where F∗(ρ) is the push-forward of ρ.

4. Df (ν‖ρ) = Df̄ (ρ‖ν) where f̄(u) = uf
(

1
u

)
is again convex with f̄(1) = 0.

A.3 BOUNDING RENYI DIVERGENCES

We being with the optimization problem

max
x′

Rα(µ(x′)‖µ(x))

subject to ‖x− x′‖p ≤ ε
(10)
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Since we have Rα(µ(x′)‖µ(x)) =
∑
iRα(µi(x

′
i)‖µi(xi)). The constraint can be rewritten as∑

i

|xi − x′i|P ≤ εp

Forming the Lagrangian relaxation, we obtain

max
x′:|x′i−xi|≤ε

∑
i

Rα(µi(x
′
i)‖µi(xi)) + γ

(∑
i

|x′i − xi|p − εp
)
.

where the constraint |x′i − xi| ≤ ε is implied by ‖x′ − x‖p ≤ ε. We can maximize separately over
each x′i to obtain

− γεp +
∑
i

max
x′i∈[xi−ε,xi+ε]

Rα(µi(x
′
i)‖µi(xi)) + γ|x′i − xi|p .

By weak duality, for any γ ≥ 0, this is an upper bound on Eq. 10. We can minimize this bound over
γ ≥ 0 to obtain the tightest bound.

The minimization over x′i for each i can be solved in closed-form or via as simple 1-dimensional
minimization problem for most smoothing measures.

A.4 PROOF OF THEOREM 1

For simplicity of exposition (and to avoid measure theoretic issues), we focus on the case where ν, ρ
have well defined densities ν(x), ρ(x) such that ρ(x) > 0 whenever ν(x) > 0.

We begin by rewriting the optimization problem in terms of the likelihood ratio r(X) = ν(X)
ρ(X) : We

have

E
X∼ν

[φ(X)] = E
X∼ρ

[r(X)φ(X)] , Dfi(ρ‖ν) = E
X∼ρ

[fi(r(X))] , E
X∼ρ

[r(X)] = 1 ,

where the first two equalities follow directly by plugging in ν(X) = ρ(X)r(X) and the third is
obtained using the fact that ν is a probability measure. Using these relations, the optimization over ν
can be rewritten as

min
r≥0

E
X∼ρ

[r(X)φ(X)]

subject to E
X∼ρ

[fi(r(X))] ≤ εi, E
X∼ρ

[r(X)] = 1 ,
(11)

where r ≥ 0 denotes that r(x) ≥ 0 ∀x ∈ X . The optimization over r is a convex optimization
problem and can be solved using Lagrangian duality as follows – we first dualize the constraints on r
to obtain

min
r≥0

E
X∼ρ

[r(X)φ(X)] +
∑
i

λi

(
E

X∼ρ
[fi(r(X))]− ε

)
+ κ

(
1− E

X∼ρ
[r(X)]

)

= min
r≥0

E
X∼ρ

[
r(X)φ(X) +

∑
i

λifi(r(X))− κr(X)

]
+ κ−

∑
i

λiε

= κ−
∑
i

λiεi − E
X∼ρ

[
max
r≥0

κr − rφ(X)−
∑
i

λifi(r)

]

= κ−
∑
i

λiεi − E
X∼ρ

[
max
r≥0

(
r(κ− φ(X))− fλ(r)

)]
= κ−

∑
i

λiεi − E
X∼ρ

[f∗λ(κ− φ(X))] .

By strong duality, it holds that maximizing the final expression with respect to λ ≥ 0, κ achieves
the optimal value in Eq. 11. Thus, if the optimal value is smaller than 0, the specification is not
robustly certified and if it is larger than 0, the specification is robustly certified. Finally, since we are
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ultimately interested in proving that the objective is non-negative, we can restrict ourselves to λ ≥ 0
such that

∑
i λi = 1 (since if the optimal λ added up to something larger, we could simply rescale

the values to add up to 1 and multiply κ by the same scaling factor without changing the sign of the
objective function).

This concludes the proof of correctness of the certificate Eq. 6.

A.5 PROOF OF THEOREM 2

For the next result, we observe that when φ is ternary valued, the optimization over κ, λ above can be
written as

max
κ,λ≥0

κ−
∑
i

λiεi − θaf∗λ(κ− 1)− θbf∗λ(κ+ 1)− θcf∗λ(κ) ,

where θa = PX∼ρ[φ(X) = +1], θb = PX∼ρ[φ(X) = −1], θc = PX∼ρ[φ(X) = 0].

Writing out the expression for f∗, we obtain

max
λ≥0,κ

min
γ≥0

κ−
∑
i

λiεi − θa

(
(κ− 1)γa −

∑
i

λifi(γa)

)
− θb

(
(κ+ 1)γb −

∑
i

λifi(γb)

)

− θc

(
κγc −

∑
i

λifi(γa)

)

= min
γ≥0

max
λ≥0,κ

κ(1− θaγa − θbγb − θcγc) +
∑
i

λi

 ∑
y∈{a,b,c}

θyfi(γy)− εi

+ θaγa − θbγb ,

where the second inequality follows from strong duality. The inner maximization is unbounded unless∑
y∈{a,b,c}

γyθy = 1 ,
∑

y∈{a,b,c}

θyfi(γy) ≤ εi .

One thing to note is that, we can rewrite these constraints in terms of ζ = θ � γ, i.e. ζy = θyγy
for y ∈ {a, b, c}. These constraints ensure that ζ is a probability distribution over {+1, 0,−1} and
furthermore ∑

y∈{a,b,c}

θyfi(γy) = Dfi(ζ‖θ) .

Thus, the second constraint above is equivalent to Dfi(ζ‖θ) ≤ εi. Writing the optimization problem
in terms of ζ, we obtain

min
ζa,ζb,ζc≥0

ζa − ζb

subject to Dfi(ζ‖θ) ≤ εi i = 1, . . . ,M ,

ζa + ζb + ζc = 1 .

A.6 CLOSED-FORM CERTIFICATES FOR THE INFORMATION-LIMITED SETTING

In this section we present closed-form certificates for the information-limited setting which can be
derived from Theorem 2 for M = 1. The results are summarized in Table 4. In the next subsections
we present the derivation of the certificates for Hockey-Stick and Rényi divergences. The certificates
for the KL and infinite Rényi divergence can be derived by taking limits of the Rényi certificate (as
α→ 1,∞ respectively).

A.6.1 CALCULATION OF CERTIFICATE FOR HOCKEY-STICK DIVERGENCE

The function f(u) = max(u− β, 0)−max(1− β, 0) is a convex function with f(1) = 0. Then, we
have

f∗λ(u) = max
v≥0

(uv − λmax(v − β, 0)) + λmax(1− β, 0)

=

{
max(βu, 0) + λmax(1− β, 0) if u ≤ λ ,

∞ if u > λ .
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Divergence constraint f(u) Certificate
KL divergence
KL(ν‖ρ) ≤ εKL u log(u) εKL ≤ − log

(
1−

(√
θa −

√
θb
)2)

Rényi divergences (α ≥ 0)
Rα(ν‖ρ) ≤ εR,α sign(α− 1)(uα − 1)

εR,α ≤ − log(1− θa − θb + 2η)

η =
(
θa

(1−α)+θb
(1−α)

2

)( 1
1−α )

Infinite Rényi divergence
R∞(ν‖ρ) ≤ εR,∞ – εR,∞ ≤ − log(1− (θa − θb))
Hockey-stick divergences (β ≥ 0)
DHS,β(ν‖ρ) ≤ εHS,β

[u− β]+ − [1− β]+ εHS,β ≤
[
β(θa−θb)−|β−1|

2

]
+

Table 4: Certificates for various f -divergences for the information-limited setting. Note that the Rényi
divergences are not proper f -divergences, but are defined as Rα(ν‖ρ) = 1

α−1 log(1 +Df (ν‖ρ)).
The infinite Rényi divergence, defined as supx log(ν(x)/ρ(x)), is obtained by taking the limit
α→∞. All certificates depend on the gap between θa and θb. Notation: [u]+ = max(u, 0).

The certificate given by Eq. 6 in Theorem 1 for this divergence in the case of a smoothed hard
classifier takes the form

max
κ∈R,λ≥0

(
κ− E

X∼ρ
[f∗λ(κ− φ(X))]

)
− λε ≥ 0 ,

where the specification takes the values

φ(X) =


+1 w.p. θa ,

−1 w.p. θb ,
0 w.p. 1− θa − θb .

Plugging in the expression for f∗ the objective function above takes the form

κ− β
(
θa[κ− 1]+ + θb[κ+ 1]+ + (1− θa − θb)[κ]+

)
− λ(ε+ max(1− β, 0)) ,

where we use the notation [u]+ = max(u, 0) and assumed the constraints κ ≤ λ − 1 since the
objective is −∞ otherwise. If β ≤ 1, the objective is increasing monotonically in κ, so the optimal
value is to set κ to its upper bound λ− 1. Plugging this in, the possible values of the derivative with
respect to λ are 

β(1− θb)− ε if 0 ≤ λ < 1 ,

βθa − ε if 1 < λ < 2 ,

−ε if λ > 2 .

Thus, if ε ≤ βθa, the maximum is attained at 2, if βθa ≤ ε ≤ β(1− θb), the maximum is attained at
1, else the maximum is attained at 0, leading to the certificate:

−1 if ε ≥ β(1− θb) ,

β(1− θb)− ε− 1 if βθa ≤ ε ≤ β(1− θb) ,

β(1 + (θa − θb))− 2ε− 1 if ε ≤ βθa .

Thus, the certificate is non-negative only if

ε ≤ max

(
β(1 + (θa − θb))− 1

2
, 0

)
.

The case β ≥ 1 can be worked out similarly, leading to

ε ≤ max

(
β(−1 + (θa − θb)) + 1

2
, 0

)
.

The two cases can be combined as

ε ≤ max

(
β(θa − θb)− |β − 1|

2
, 0

)
.
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A.6.2 CALCULATION OF CERTIFICATE FOR RÉNYI DIVERGENCE

We consider the cases α ≥ 1 and α ≤ 1 separately.

Case 1 (α ≥ 1) If α ≥ 1, the function f(u) = (uα − 1) is a convex function with f(1) = 0. Then,
we have

f∗λ(u) = max
v≥0

uv − λ(vα − 1) =

{
λ if u ≤ 0

λ+ λ(α− 1)
(
u
λα

) α
α−1 if u ≥ 0

= λ+ λ(α− 1)

(
max(u, 0)

λα

) α
α−1

.

Suppose we have a bound on the Rényi divergence Rα(ν‖ρ) ≤ ε. Then we know Df (ν‖ρ) ≤
exp((α− 1)ε)− 1. Let β = α

α−1 and

B = θa(max(0, κ− 1))
β

+ θb(max(0, κ+ 1))
β

+ (1− θa − θb)(max(0, κ))
β
.

Then the certificate Eq. 6 simplifies to (after some algebra)

max
λ≥0,κ

κ− λ exp((α− 1)ε)−Bλ1−β (α− 1)

αβ
.

Setting the derivative with respect to λ to 0 and solving for λ, we obtain

λ =
1

α

(
B

exp((α− 1)ε)

)( 1
β )

,

and the optimal certificate reduces to

max
κ

κ−B
1
β exp

(
ε

β

)
.

For this number to be positive, we need that κ ≥ 0 and

κ

B
1
β

≥ exp

(
ε

β

)
.

The LHS above evaluates to(
θa max(0, 1− γ)

β
+ θb max(0, 1 + γ)

β
+ 1− θa − θb

)− 1
β

.

where γ = 1
κ ≥ 0. Maximizing this expression with respect to γ, we obtain

γ =
θα−1
a − θα−1

b

θα−1
a + θα−1

b

,

so that the certificate reduces to(
2βθaθb

(
θα−1
a + θα−1

b

)(− 1
α−1 )

+ 1− θa − θb
)( 1

β )
≥ exp

(
ε

β

)
.

Taking logarithms now gives the result.

Case 2 (0 ≤ α ≤ 1) When 0 ≤ α ≤ 1, the function f(u) = (1− uα) is a convex function with
f(1) = 0. Then, we have

f∗λ(u) = max
v≥0

uv − λ(1− vα) =

{
−λ+ λ

1
1−α (1− α)

(−u
α

)(− α
1−α ) if u ≤ 0 ,

∞ otherwise .

Further, a bound Rα(ν‖ρ) ≤ ε implies

Df (ν‖ρ) ≤ 1− exp((α− 1)ε) .
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Then the certificate from Eq. 6 reduces to

max
κ,λ≥0

κ+ λ exp((α− 1)ε)− (1− α)λ
1

1−αα
α

1−α

(
θa(1− κ)

− α
1−α + θb(−1− κ)

− α
1−α + θc(−κ)

− α
1−α
)

with the constraint κ ≤ −1 (otherwise the certificate is −∞). Setting the derivative with respect to λ
to 0 and solving for λ, we obtain

λ =
exp
(
(α− 1)ε

(
1−α
α

))
αω

,

where

ω =
(
θa(1− κ)

− α
1−α + θb(−1− κ)

− α
1−α + θc(−κ)

− α
1−α
)( 1−α

α )
.

Plugging this back into the certificate and setting β = α
1−α , we obtain

κ+
exp
(
− ε
β

)
ω

.

For this number to be positive, we require that

1

−κω
≥ exp

(
ε

β

)
.

The LHS of the above expression evaluates to(
θa(1 + γ)

(−β)
+ θb(1− γ)

(−β)
+ 1− θa − θb

)(−1
β )

,

where γ = − 1
κ . Maximizing this expression over γ ∈ [0, 1], we obtain the final certificate to be1− θa − θb + 2

(
θ1−α
a + θ1−α

b

2

)( 1
1−α )

(− 1
β )

≥ exp

(
ε

β

)
.

Taking logarithms, we obtain

ε ≤ − log

1− θa − θb + 2

(
θ1−α
a + θ1−α

b

2

)( 1
1−α )

 .

A.7 INFORMATION-LIMITED ROBUST CERTIFICATION AND TIGHT RELAXATIONS

A.7.1 PROOF OF THEOREM 4

At a high level, the proof shows that, in the information-limited case, to achieve robust certification
under an arbitrary set of constraints D it suffices to know the “envelope” of D with respect to all
hockey-stick divergences of order β ≥ 0, i.e. the function β 7→ maxν∈DDHS,β(ν‖ρ) captures all
the necessary information to provide information-limited robust certification with respect to D.

We start by considering the following optimization problem:

min
Ψ:X 7→{−1,0,+1},ν∈D

E
X∼ν

[Ψ(X)]

subject to E
X∼ρ

[1[Ψ(X) = +1]] ≥ θa ,

E
X∼ρ

[1[Ψ(X) = −1]] ≤ θb .

(12)

In the information-limited setting, this problem attains the minimum expected value over φ ∈ S.
Here 1[φ(X) = 1] denotes the indicator function.
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It will be convenient to write this in a slightly different form: Rather than looking at the outputs of Ψ
as the +1, 0,−1, we look at them as vectors in R3:

Z =

{(
1
0
0

)
,

(
0
1
0

)
,

(
0
0
1

)}
and define

a =

(
1
0
−1

)
, a+ =

(
1
0
0

)
, a− =

(
0
0
1

)
.

Then, we can write the optimization problem Eq. 12 equivalently as

min
Ψ:X 7→Z,ν∈D

E
X∼ν

[
aTΨ(X)

]
subject to E

X∼ρ

[
a+

TΨ(X)
]
≥ θa ,

E
X∼ρ

[
a−

TΨ(X)
]
≤ θb .

(13)

We first consider the minimization over Ψ for a fixed value of ν. We begin by observing that since the
objective is linear, the optimization over Ψ can be replaced with the optimization over the convex hull
of the set of Ψ that satisfy the constraints (Bubeck, 2013). Since each input x ∈ X can be mapped
independently of the rest, the convex hull is simply the cross product of the convex hull at every x, to
obtain the constraint set{

Ψ : X 7→ P(Z) such that E
X∼ρ

[
aT+Ψ(X)

]
≥ θa, E

X∼ρ

[
aT−Ψ(X)

]
≤ θb

}
.

Therefore, the optimization problem reduces to

min
Ψ:X 7→P(Z)

E
X∼ν

[
aTΨ(X)

]
subject to E

X∼ρ

[
a+

TΨ(X)
]
≥ θa ,

E
X∼ρ

[
a−

TΨ(X)
]
≤ θb .

(14)

This is a convex optimization problem in Ψ. Denote

r(X) =
ν(X)

ρ(X)
.

Considering the dual of this optimization problem with respect to the optimization variable Ψ, we
obtain

min
Ψ

E
X∼ρ

[
aTΨ(X)r(X)

]
− λa

(
E

X∼ρ

[
a+

TΨ(X)
]
− θa

)
+ λb

(
E

X∼ρ

[
a−

TΨ(X)
]
− θb

)
= min

Ψ
λaθa − λbθb + E

X∼ρ

[
(r(X)a− λaa+ + λba−)

>
Ψ(X)

]
= min

Ψ
λaθa − λbθb + E

X∼ρ

( r(X)− λa
0

−r(X) + λb

)T
Ψ(X)

 .

Since we can choose Ψ(x) independently for each x ∈ X , we can minimize each term in the
expectation independently to obtain

min
Ψ(x)∈P(Z)

(
r(x)− λa

0
r(x) + λb

)T
Ψ(x) = min(r(x)− λa, 0,−r(x) + λb) .

This implies that the Lagrangian evaluates to

λaθa − λbθb + E
X∼ρ

[min(r(X)− λa, 0, r(X) + λb)] .

We now consider two cases:
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Case 1 (λa ≥ λb ≥ 0) In this case, we can see that

min(r(X)− λa, 0,−r(X) + λb) = min(r(X)− λa, 0) + min(−r(X) + λb, 0)

= r(X)− λa −max(r(X)− λa, 0)−max(r(X)− λb, 0) .

Then, the Lagrangian reduces to

λaθa − λbθb + E
X∼ρ

[r(X)− λa]− E
X∼ρ

[max(r(X)− λa, 0)]− E
X∼ρ

[max(r(X)− λb, 0)]

= 1− λa(1− θa)− λbθb − (DHS,λa(ν‖ρ) + max(1− λa, 0))− (DHS,λb(ν‖ρ) + max(1− λb, 0)) .

Case 2 (λb ≥ λa ≥ 0) In this case, we can see that

min(r(X)− λa, 0,−r(X) + λb) = min(r(X)− λa,−r(X) + λb)

= r(X)− λa + 2 min

(
0,
λa + λb

2
− r(X)

)
= r(X)− λa − 2 max

(
r(X)− λa + λb

2
, 0

)
.

Then, the Lagrangian reduces to

λaθa − λbθb + E
X∼ρ

[r(X)− λa]− 2 E
X∼ρ

[
max

(
r(X)− λa + λb

2
, 0

)]
= 1− λa(1− θa)− λbθb − 2

(
D

HS,
λa+λb

2

(ν‖ρ) + max

(
1− λa + λb

2
, 0

))
.

We know that 1− θa ≥ θb and λb ≥ λa. If λb > λa, by choosing λ′a = λa + κ and λ′b = λb − κ for
some small κ > 0, we know that the the sum of the first three terms would reduce while the final
term would remain unchanged. Thus, at the the optimum in this case, we can assume λa = λb and
we obtain

1− λa(1− θa)− λaθb − 2(DHS,λa(ν‖ρ) + max(1− λa, 0)) .

Final analysis of the Lagrangian Combining the two cases we can write the dual problem as

max
λa≥λb≥0

1− λa(1− θa)− λbθb − (DHS,λa(ν‖ρ) + max(1− λa, 0))

− (DHS,λb(ν‖ρ) + max(1− λb, 0)) .
(15)

By strong duality, the optimal value of the above problem precisely matches the optimal value of
Eq. 14 (and hence Eq. 12). Thus, information limited robust certification with respect to D holds if
and only if Eq. 15 has a non-negative optimal value for each ν ∈ D. Since we have that

max
ν∈D

DHS,λa(ν‖ρ) = ελa , max
ν∈D

DHS,λb(ν‖ρ) = ελb ,

information-limited robust certification holds if and only if the optimal value of

max
λa≥λb≥0

1− λa(1− θa)− λbθb − (ελa + max(1− λa, 0))− (ελb + max(1− λb, 0)) (16)

is non-negative. Further, since the optimal value only depended on the value of DHS,β(ν‖ρ) for
β ≥ 0, it is equivalent to information-limited robust certification with respect to DHS.

The above argument also shows that in this case, information-limited robust certification with respect
to D is equivalent to requiring that the following convex optimization problem has a non-negative
optimal value:

max
λa≥λb≥0

1− λa(1− θa)− λbθb −
(
ελa + [1− λa]+

)
−
(
ελb + [1− λb]+

)
. (17)

Let λ∗a, λ
∗
b be the optimal values attained. Since this certificate depends only on the value of two

Hockey-stick divergences at λ∗a, λ
∗
b , it must coincide with the application of theorem 2 to the constraint

set DHS defined by constraints on these hockey-stick divergences (as we know that 2 computes the
optimal certificate for any constraint set defined only by a set of f-divergences). This observation
completes the proof.
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A.7.2 GAUSSIAN SMOOTHING MEASURES

Theorem 4 gives us the optimal limited-information certificate problem provided that we can compute

max
x′:d(x,x′)≤ε

DHS,β(µ(x′)‖µ(x))

for each β ≥ 0. In particular, when µ is a Gaussian measure µ(x) = N
(
x, σ2I

)
, we can leverage the

following result from Balle & Wang (2018).

Lemma 6. Let Ψg be the CDF of a standard normal random variable N (0, 1). For any β ≥ 0 and
x ∈ Rd we have

max
x′:‖x−x′‖2≤ε

DHS,β(µ(x′)‖µ(x)) = Ψg

(
ε

2σ
− log(β)σ

2ε

)
− βΨg

(
− ε

2σ
− log(β)σ

2ε

)
− [1− β]+ .

Applying Eq. 17 to the expression in Lemma 6 proves Corollary 5.

Proof of Corollary 5. With the notation from Theorem 4 we have, for β ≥ 0,

εβ = Ψg

(
ε

2σ
− log(β)σ

2ε

)
− βΨg

(
− ε

2σ
− log(β)σ

2ε

)
−max(1− β, 0) .

Plugging this expression into Eq. 17 allows us to verify information-limited robust certification of
N
(
x′, σ2I

)
with respect to Dx,ε = {N

(
x′, σ2I

)
: ‖x− x′‖2 ≤ ε} by solving

max
λa≥λb≥0

1− λa(1− θa)− λbθb

−
(

Ψg

(
ε

2σ
− log(λa)σ

2ε

)
− λaΨg

(
− ε

2σ
− log(λa)σ

2ε

))
−
(

Ψg

(
ε

2σ
− log(λb)σ

2ε

)
− λbΨg

(
− ε

2σ
− log(λb)σ

2ε

))
.

Eq. 9 then follows from setting the derivatives of this expression to 0 with respect to λa, λb and
imposing the condition that the optimal solution is non-negative.

To check that Corollary 5 is equivalent to the optimal certification in (Cohen et al., 2019, Theorem
1) we first recall that, in our notation, their result can be stated as: the class of specifications
S in Definition 2.1 is information-limited robustly certified at ρ = N

(
x, σ2I

)
with respect to

Dx,ε = {N
(
x′, σ2I

)
: ‖x− x′‖2 ≤ ε} if and only if

2ε

σ
≤ Ψ−1

g (θa)−Ψ−1
g (θb) . (18)

The equivalence between Eq. 9 and Eq. 18 now follows from the identity 1−Ψg(θ) = Ψg(−θ) and
the monotonicity of Ψg:

Ψg

(
Ψ−1
g (θa)− ε

σ

)
+ Ψg

(
Ψ−1
g (1− θb)−

ε

σ

)
≥ 1

⇐⇒ Ψg

(
Ψ−1
g (θa)− ε

σ

)
≥ 1−Ψg

(
Ψ−1
g (1− θb)−

ε

σ

)
⇐⇒ Ψg

(
Ψ−1
g (θa)− ε

σ

)
≥ Ψg

( ε
σ
−Ψ−1

g (1− θb)
)

⇐⇒ Ψ−1
g (θa)− ε

σ
≥ ε

σ
−Ψ−1

g (1− θb)

⇐⇒ Ψ−1
g (θa) + Ψ−1

g (1− θb) ≥
2ε

σ

⇐⇒ Ψ−1
g (θa)−Ψ−1

g (θb) ≥
2ε

σ
.
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A.7.3 RELATION TO PIXELDP

Pixel differential privacy (pixelDP) was introduced in Lecuyer et al. (2019) using the same similarity
measure between distributions used in differential privacy: a distribution-valued function G : Rd →
P(Z) satisfies (ε, τ)-pixelDP with respect to `p perturbations if for any ‖x− x′‖p ≤ 1 it holds that
DDP,eε(G(x)‖G(x′)) ≤ τ , where

DDP,eε(G(x)‖G(x′)) = sup
E

(
P

X∼G(x)
[X ∈ E]− eε P

X′∼G(x′)
[X ′ ∈ E]

)
(19)

and the supremum is over all (measurable) subsets E of Z . In particular, Lecuyer et al. show that
using a smoothing measure µ satisfying pixelDP with respect to `p leads to adversarially robust
classifiers against `p perturbations.

To show that their result fits as a particular instance of our framework, take ρ = µ(x) and fix ε ≥ 0
and τ ∈ [0, 1]. Due to the symmetry of the constraint ‖x− x′‖p ≤ 1, if µ satisfies (ε, τ)-pixelDP with
respect to `p perturbations, then we have the relaxation condition {µ(x′) : ‖x− x′‖p ≤ 1} ⊆ Dε,τ ,
where

Dε,τ = {ν : DDP,eε(ν‖ρ) ≤ τ and DDP,eε(ρ‖ν) ≤ τ} . (20)

Now we recall that Barthe & Olmedo (2013) noticed that DDP,eε is equivalent to the hockey-stick
divergence DHS,β of order β = eε. Thus, since f -divergences are closed under reversal (property
4 in Appendix A.2), we see that the constraint set Dε,τ can be directly written in the form DF (cf.
Section 2.2).

The main result in Lecuyer et al. (2019) is a limited-information black-box certification method for
smoothed classifiers. The resulting certificate for, which provides certification with respect to Dε,τ ,
is given by

τ ≤ θa − e2εθb
eε + 1

. (21)

For comparison, the certificate we obtain for the relaxation {ν : DDP,eε(ν‖ρ) ≤ τ} of Dε,τ (HS
certificate in Table 4) already improves on the certificate by Lecuyer et al. whenever θa − θb ≥
(β − 1)(1− θa − θb), which, e.g., always holds in the binary classification case. Furthermore, since
Theorem 2 provides optimal certificates for D, we have the following result.
Corollary 7. The optimal certificates for the constraint set D (cf. Eq. 20) obtained from Theorem 2
are stronger than those obtained from Eq. 21.

A.8 EFFICIENT SAMPLING AND F-DIVERGENCE COMPUTATION FOR NORM-BASED
SMOOTHING MEASURES

Lemma 8. The smoothing measure µ : X 7→ P(X ) with density µ(x)[z] ∝ exp(−‖z − x‖) satisfies

max
‖δ‖≤ε

R∞(µ(x+ δ)‖µ(x)) ≤ ε .

if ‖x‖ is any norm. Further, if f is convex function with f(1) = 0 such that f
(

1
u

)
is convex and

monotonically increasing in u, then

max
‖δ‖≤ε

Df (µ(x+ δ)‖µ(x)) ≤ max
‖δ‖=ε

E
X∼µ(0)

[f(exp(−‖X − δ‖+ ‖X‖))] . (22)

Proof. By the triangle inequality, we have

µ(x′)[z]

µ(x)[z]
= exp(‖z − x‖ − ‖z − x′‖) ≤ exp(‖x− x′‖)

so that
R∞(µ(x′)‖µ(x)) ≤ ‖x− x′‖ .

Similarly, for f that satisfy the conditions of the theorem, it can be shown that Df (µ(x′)‖µ(x)) is
convex in x′ so that its maximum over the convex set ‖x′ − x‖ ≤ ε is attained on the boundary.
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For several norms, the optimization problem in Eq. 22 can be solved in closed form. These include
`1, `2, `∞ norms and the matrix spectral norm and nuclear norm (the final two are relevant when X is
a space of matrices). The results are documented in Table 5. Thus, every f -divergence that meets the
conditions of Lemma 8 can be estimated efficiently for these norms. In particular, the divergences
that are induced by the functions f̃(u−α) for any monotonic convex function f̃ and α ≥ 0 satisfy
this constraint. This gives us a very flexible class of f -divergences that can be efficiently estimated
for these norm-based smoothing measures.

Constraint on δ Bound on Eq. 22 Sampling from X ∼ µ(0)

‖δ‖1 ≤ ε E
X∼µ1(0)

[f(exp(‖X − εe0‖1 − ‖X‖1))] Xi ∼ Lap(0, 1) iid

‖δ‖2 ≤ ε E
X∼µ2(0)

[f(exp(‖X − εe0‖2 − ‖X‖2))] X = Ru

R ∼ Γ(d, 1)
u ∼ U(∂B2)

‖δ‖∞ ≤ ε E
X∼µ∞(0)

[f(exp(‖X − ε1‖∞ − ‖X‖∞))] X = Ru

R ∼ Γ(d+ 1, 1)
u ∈ U(B∞)

‖δ‖nuc ≤ ε E
s∼µ1(0)
U,V∼U(O)

[
f
(
exp
(∥∥U [[s]]V T − ε [[e0]]

∥∥
nuc
− ‖s‖1

))]
X = U [[s]]V T

s ∼ µ1, U, V ∼ U(O)

‖δ‖? ≤ ε E
s∼µ∞(x)
U,V∼U(O)

[
f
(
exp
(∥∥U [[s]]V T − ε [[e0]]

∥∥
?
− ‖s‖∞

))]
X = U [[s]]V T

s ∼ µ∞, U, V ∼ U(O)

Table 5: Bounds on f -divergences: e0 is the vector with 1 in the first coordinate and zeros in all other
coordinates and 1 is the vector with all coordinates equal to 1. µp refers to the smoothing measure
induced by the `p norm, U(S) refers to the uniform measure over the set S, O is the set of orthogonal
matrices and Bp = {‖z‖p ≤ 1} is the unit ball in the `p norm.

Efficient sampling The only other requirement for obtaining a certificate computationally is to be
able to sample from µ(x) to estimate θa, θb. Since µ(x) is log-concave, there are general purpose
polynomial time algorithms for sampling from this measure. However, for most norms, more efficient
methods exist, as outlined below.

The random variable X ∼ µ(x) can be obtained as X = x + Z with Z ∼ µ(0). Thus, to sample
from µ(x) for any x it is enough to be able to sample from µ(0). For ‖·‖1, this reduces to sampling
from a Laplace distribution which can be done easily. For ‖·‖∞, (Steinke & Ullman, 2016) give
the following efficient sampling procedure: first sample r from a Gamma distribution with shape
d+ 1 and mean d+ 1, i.e. r ∼ Γ(d+ 1, 1), and then sample each Zi, i ∈ [d], uniformly from [−r, r].
Theorem 9 gives a short proof of correctness for this procedure. Theorem 10 also has a similar result
for the case of ‖·‖2 and Table 5 lists the sampling procedures for several norms.

Theorem 9. The random variable Z ∈ Rd obtained by first sampling R ∼ Γ(d+ 1, 1) and then
sampling each Zi, i ∈ [d], uniformly from [−R,R] has density ∝ e−‖z‖∞ .

Proof. We first compute the normalization constant for a density of the form ∝ e−‖z‖∞ as follows:∫
Rd
e−‖z‖∞dz =

∫ ∞
0

(∫
Rd

1[‖z‖∞ = t]dz

)
e−tdt =

∫ ∞
0

2ddtd−1e−tdt = d!2d .

Next we show the density of Z satisfies pZ(z) = e−‖z‖∞/(d!2d) by noting that conditioned on
R = r we have pZ|R=r(z) = 1[‖z‖∞ ≤ r]/(2r)d because of the uniform sampling used in each
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coordinate, and integrating over R sampled from a Gamma distribution with shape d+ 1 and mean
d+ 1 yields

pZ(z) =

∫ ∞
0

pZ|R=r(z)pR(r)dr =

∫ ∞
0

1[‖z‖∞ ≤ r]
(2r)d

rde−r

d!
dr =

1

d!2d

∫ ∞
‖z‖∞

e−rdr =
e−‖z‖∞

d!2d
.

Theorem 10. The random variable Z ∈ Rd obtained by first sampling Z ′ ∼ N (0, I) and R ∼
Γp(d, 1) and then taking Z = R Z′

‖Z′‖2
has density ∝ e−‖z‖

p
2 . Here Γp(d, a) denotes the generalized

Gamma distribution of order p > 0 with shape d and scale a.

Proof. First note that W = Z′

‖Z′‖2
∼ U(B2); i.e. it is uniform on the `2 ball of radius 1. Therefore,

RW is uniform on the `2 ball of radius R and the conditional density of Z given R is given by
pZ|R=r(z) =

1[‖z‖2=r]Γ(d/2)

2πd/2rd−1 . Since R has density pR(r) ∝ rd−1e−r
p

, we get

pZ(z) =

∫ ∞
0

pZ|R=r(z)pR(r)dr

∝
∫ ∞

0

1[‖z‖2 = r]Γ(d/2)

2πd/2rd−1
rd−1e−r

p

dr

∝ e−‖z‖
p
2 .

A.9 ALGORITHM FOR FULL-INFORMATION CERTIFICATION

In this section we describe the subroutines used in Algorithm 1. First we describe a generic procedure
to provide high-probability confidence intervals for estimating expectations, then we give a detailed
description of the subroutines.

A.9.1 HIGH-CONFIDENCE ESTIMATES OF EXPECTED VALUES

Let Z1, . . . , ZN be independent, identically distributed random variables with range R and mean m.
Let the empirical mean be Z̄ = 1

N

∑N
i=1 Zi and the empirical variance be σ̄2 = 1

N

∑N
i=1(Zi − Z̄)2.

Applying Bernstein’s inequality to the sum and the sum of the squares of these random variables, we
get the empirical Bernstein bound (Audibert et al., 2009), which states that with probability at least
1− ζ,

|Z̄ −m| ≤
√

2σ̄2 log(3/ζ)

N
+

3R log(3/ζ)

t
. (23)

The main benefit of the above inequality is that as long as the variance of the sample Z1, . . . , ZN is
small, the convergence rate becomes essentially O(1/N) instead of the standard O(1/

√
N). Also,

since Eq. 23 only contains empirical quantities apart from the range R, it can be used to obtain
computable bounds for the expectation µ: with probability at least 1− ζ,

Z̄ −
√

2σ̄2 log(3/ζ)

N
− 3R log(3/ζ)

N
≤ m ≤ Z̄ +

√
2σ̄2 log(3/ζ)

N
+

3R log(3/ζ)

N
. (24)

A.9.2 SUBROUTINES FOR ALGORITHM 1

The bound in Eq. 24 can be applied to approximate the expectation in Eq. 6 with high probability for
given values of λ and κ. More specifically, if the function f∗λ(κ − φ(·)) is bounded with range R,
then taking N samples X1, . . . , XN independently from ρ, and defining Zi = f∗λ(κ− φ(Xi)), and
Z̄ and σ̄2 as above, Eq. 24 implies that with probability at least 1− ζ,

E
X∼ρ

[f∗λ(κ− φ(Xi))] ≤ Z̄ +

√
2σ̄2 log(3/ζ)

N
+

3R log(3/ζ)

N
. (25)
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Plugging in this bound to Eq. 6 gives a high-probability lower bound for the function to be maximized
for any given λ and κ.

Details of the above procedures are given in Algorithm 3. We use an off-the-shelf convex optimization
solver (Diamond & Boyd, 2016) in the ESTIMETEOPT subroutine.

Algorithm 3 Subroutines for Algorithm 1

function ESTIMATEOPT(ρ, φ,N, {fi}, {εi})
Sample X1, . . . , XN ∼ ρ and obtain κ∗ and λ∗ by solving Eq. 6 with EX∼ρ[f

∗
λ(κ− φ(X))]

replaced by 1
N

∑N
i=1 f

∗
λ

(
κ− φ

(
Xi
))

and the additional constraints f∗λ∗(κ−a) <∞, f∗λ∗(κ−b) <
∞.

return κ∗, λ∗.
end function
function UPPERCONFIDENCEBOUND(ρ, φ, Ñ , {fi}Mi=1, {εi}Mi=1, a, b, λ, κ, ζ)

Sample X1, . . . , XÑ ∼ ρ and compute Zi ← f∗λ
(
κ− φ

(
Xi
))

for i = 1, . . . , Ñ .

Set Z̄ ←
∑Ñ
i=1 Z

i

N .

Set σ̄ ←
∑Ñ
i=1(Z

i−Z̄)
2

N .
Set R = maxx∈(a,b) f

∗
λ(κ− x)−minx∈(a,b) f

∗
λ(κ− x).

Set

Eub ← Z̄ +

√
2σ̄2 log(3/ζ)

Ñ
+

3R log(3/ζ)

Ñ
.

return Eub.
end function

A.10 `0 SMOOTHING MEASURE

We can also handle discrete perturbations in our framework. A natural case to consider is `0
perturbations. In this case, we assume that X = Ad where

A = {1, . . . ,K}

is a discrete set. Then, we can choose

µ(x)[z] =

d∏
i=1

p1[zi=xi]

(
q

K − 1

)1[zi 6=xi]

(26)

where p+ q = 1, p ≥ q ≥ 0, and p denotes the probability that the measure retains the value of x
and q

K−1 denotes a uniform probability of switching it to a different value. In this case, it can be
shown that for every α > 0 that

Rα(µ(x′)‖µ(x)) = ‖x− x′‖0

 log

(
p
(

q
(K−1)p

)(α)

+ q
K−1

(
(K−1)p

q

)(α)

+
(
K−2
K−1

)
q

)
α− 1


so that we can derive a certificate with respect to `0 perturbations using any set of Rényi divergences
(or combinations of theses).

This can be extended to structured discrete perturbations by introducing coupling terms between the
perturbations:

µ(x)[z] ∝
d∏
i=1

p1[zi=xi]

(
q

K − 1

)1[zi 6=xi]

exp

(
d−1∑
i=1

η1[zi = xi]1[zi+1 = xi+1]

)
.

This would correlate perturbations between adjacent features (which for example may be useful to
model correlated perturbations for time series data). Since this can be viewed as a Markov Chain,
Rényi divergences between µ(x), µ(x′) are still easy to compute.
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A.11 COMPARISON WITH LECUYER ET AL. (2019) ON `1 PERTURBATIONS

Here we compare our certificates to Lecuyer et al. (2019) on the MNIST, CIFAR-10 and ImageNet
datasets. The smoothing distribution is as described in A.8; a zero mean Laplacian distribution with
smoothing value defined by the scale of the distribution. We first describe the hyperparameters used
in training and certification for each of the datasets. For all datasets, images were normalized into a
[0,1] range.

MNIST hyperparameters: We trained a standard three layer CNN ReLU classifier for 50,000
steps with a batch size of 128 and a learning rate of 0.001. The smoothing value during training
was set to 1.0. For certification we use N = 1K, Ñ = 10M, ζ = .99, and sweep over a range of
smoothing values between 0.5 and 1.5 and report the best certificate found. Certified accuracy is
reported on 1,000 MNIST test set images.

CIFAR-10 hyperparameters: We trained a Wide ResNet classifier for 50,000 training steps with
a batch size of 32 and a learning rate of 0.001. The smoothing value during training was set to 0.2.
For certification we use N = 1K, Ñ = 1M, ζ = .99, and sweep over a range of smoothing values
between 0.1 and 0.5 and report the best certificate found. Certified accuracy is reported on 1,000
CIFAR-10 test set images.

ImageNet hyperparameters: We trained a ResNet-152 classifier for 1 million training steps with
a batch size of 16 and an initial learning rate of 0.1 that is decayed by a factor of ten every 25,000
steps. The smoothing value during training was set to 0.1. For certification we use N = 1K, Ñ =
100K, ζ = .99, and sweep over a range of smoothing values between 0.05 and 0.25 and report the
best certificate found. Certified accuracy is reported on 500 ImageNet validation set images.

Table 6: `1 comparison with Lecuyer et al. (2019) on MNIST.

Certificate Certified Accuracy

ε = 1 ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

Lecuyer et al. (2019) 0.772 0.548 0.424 0.061 0 0 0
Ours 0.860 0.716 0.584 0.447 0.325 0.201 0.017
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(a) CIFAR-10: `1 robustness
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(b) ImageNet: `1 robustness

Figure 3: Certified accuracy under `1 perturbations on CIFAR-10 and ImageNet.

Results for MNIST can be seen in Table 6, CIFAR-10 and ImageNet results are shown in Figure 3.
We significantly outperform Lecuyer et al. (2019) on all three datasets.
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