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ABSTRACT

Universal approximation property of neural networks is one of the motivations
to use these models in various real-world problems. However, this property is
not the only characteristic that makes neural networks unique as there is a wide
range of other approaches with similar property. Another characteristic which
makes these models interesting is that they can be trained with the backpropagation
algorithm which allows an efficient gradient computation and gives these universal
approximators the ability to efficiently learn complex manifolds from a large
amount of data in different domains. Despite their abundant use in practice, neural
networks are still not well understood and a broad range of ongoing research is to
study the interpretability of neural networks. On the other hand, topological data
analysis (TDA) relies on strong theoretical framework of (algebraic) topology along
with other mathematical tools for analyzing possibly complex datasets. In this
work, we leverage a universal approximation theorem originating from algebraic
topology to build a connection between TDA and common neural network training
framework. We introduce the notion of automatic subdivisioning and devise
a particular type of neural networks for regression tasks: Simplicial Complex
Networks (SCNs). SCN’s architecture is defined with a set of bias functions along
with a particular policy during the forward pass which alternates the common
architecture search framework in neural networks. We believe the view of SCNs
can be used as a step towards building interpretable deep learning models. Finally,
we verify its performance on a set of regression problems.

1 INTRODUCTION

It is well-known that under mild assumptions on the activation function, a neural network with one
hidden layer and a finite number of neurons can approximate continuous functions. This characteristic
of neural networks is generally referred to as the universal approximation property. There are various
theoretical universal approximators. For example, a result of the Stone-Weierstrass theorem Stone
(1948); Cotter (1990) is that multivariate polynomials are dense in the space of continuous real
valued functions defined over a hypercube. Another example is that the reproducing kernel Hilbert
space (RKHS) associated with kernel functions with particular properties can be dense in the same
space of functions. Kernel functions with this property are called universal kernels Micchelli et al.
(2006). A subsequent result of this theory is that the set of functions generated by a Gaussian process
regression with an appropriate kernel can approximate any continuous function over a hypercube
with arbitrary precision. Although multivariate polynomials and Gaussian processes also have this
approximation property, each has practical limitations that cause neural networks to be used more
often in practice compared to these approaches. For instance, polynomial interpolations may result a
model that overfits to the data and suffers from a poor generalization, and Gaussian processes often
become computationally intractable for a large number of training data Bernardo et al..

Neural networks, with an efficient structure for gradient computation using backpropagation, can be
trained using gradient based optimization for large datasets in a tractable time. Moreover, in contrast
to existing polynomial interpolations, neural networks generalize well in practice. Theoretical and
empirical understanding of the generalization power of neural networks is an ongoing research Novak
et al. (2018); Neyshabur et al. (2017).

Topological Data Analysis (TDA), a geometric approach for data analysis, is a growing field which
provides statistical and algorithmic methods to analyze the topological structures of data often
referred to as point clouds. TDA methods mainly relied on deterministic methods until recently where
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Figure 1: General view of an SCN: Left: without applying any transformation to its input, an SCN
locates the position of input in the input space through a set of nested simplexes. Right: architecture
of an SCN: vi are a given set of visible vertices of a primary simplex in the input space that the
sample falls inside. A network of hidden vectors hi are then used to parameterize a sequence of
nested simplexes for locating the input. Each hi is a convex combination of a subset of its preceding
vectors. In parallel, another network is used to generate SCN’s output utilizing the output of SCN at
all vi and hi, combined with a group of bias values bi.

statistical approaches were proposed for this purpose Carriere et al. (2017); Chazal & Michel (2017).
In general, TDA methods assume a point cloud in a metric space with an inducing distance (e.g.
Euclidean, Hausdorff, or Wasserstein distance) between samples and build a topological structure
upon point clouds. The topological structure is then used to extract geometric information from data
Chazal & Michel (2017). These models are not trained with gradient based approaches and they are
generally limited to predetermined algorithms whose application to high dimensional spaces may be
challenging Chazal (2016).

In this work, by leveraging geometrical perspective of TDA, we provide a class of restricted neural
networks that preserve the universal approximation property and can be trained using a forward pass
and the backpropagation algorithm. Motivated by the approximation theorem used to develop our
method, Simplicial Complex Network (SCN) is chosen to refer these models. SCNs do not require an
activation function and architecture search in the way that conventional neural networks do. Their
hidden units are conceptually well defined, in contrast to feed-forward neural networks for which the
role of a hidden unit is yet an ongoing problem. SCNs are discussed in more details in later sections.

Our contribution can be summarized in building a novel class of neural networks which we believe
can be used in the future for developing deep models that are interpretable, and robust to perturbations.
The rest of this paper is organized as follows: Section 2 is specified for the explanation of SCNs and
their training procedure. In section 3, related works are explained. Sections 4, 5, and 6 are specified
to experiments, limitations, and conclusion.

2 SIMPLICIAL COMPLEX NETWORKS

We first describe some necessary notation in the section 2.1. In section 2.2, we discuss the barycentric
subdivision and the simplicial approximation theorem. In section 2.3, we modify the barycentric
subdivision in order to develop an approach that allows us to learn a subdivision of the input space
into small simplexes. We then introduce a general framework for defining an SCN for regression
tasks that simultaneously learns a subdivision of the input space and a piece-wise linear mapping
where the linear pieces are defined on each simplex of the subdivision.

2.1 NOTATION

We consider a dataset D = {(x(i),y(i))}Ni=1 of N i.i.d. input/output pairs, where for each
1 ≤ i ≤ N , x(i) ∈ Rd and y(i) ∈ Rk. Let fθ denotes a mapping from the input to the
output space in which θ represents its parameters. In a regression task, we wish to minimize
J(θ) = E(x(i),y(i))∼D[L(fθ(x

(i)),y(i))], where L is a given loss function.

We indicate a d dimensional simplex (d-simplex) with vertices v0, ...,vd with the notation
[v0,v1, ...,vd]. For simplicity of the presentation, we further assume that each x(i) lies inside
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Figure 2: (a) Second barycentric subdivision of a 2-simplex. (b) First barycentric subdivision of a
3-simplex. (c), (d) Nested set of simplexes to get a sample simplex (shown in black) from: (c) the
second barycentric subdivision of a 2-simplex, (d) the first barycentric subdivision of a 3-simplex.

a d-simplex σ = [v0,v1, ...,vd], where v0 is the origin, and v1, ...vd are the standard basis vectors.
Similarly, we assume each y(i) also lies in the standard probability k-simplex.

2.2 SIMPLICIAL APPROXIMATION

Simplicial approximation theorem allows the approximation of continuous functions using simplicial
mappings. Before stating the theorem, we borrow a few definitions from the algebraic topology
literature.

Definition 1. (simplicial complex) A simplicial complex K is a set of simplexes such that: 1) Every
face of a simplex of K is in K. 2) The intersection of any two simplexes in K is a face of each of
them. (A simplicial complex can be informally defined as a set of simplexes glued together through
their faces.)

Definition 2. (simplicial mapping) A mapping between two simplicial complexes is called simplicial
mapping if the images of the vertices are vertices.

We also use the definition of a standard subdivisioning method which is used to break a d-simplex (or
any other simplicial complex) into arbitrary small simplexes with the same dimension.

Definition 3. (barycentric subdivision) Barycentric subdivision (BCS) of a d-simplex K consists of
(d + 1)! d-simplexes. Each d-simplex [v0,v1, ...,vd] out of these (d + 1)! simplexes is associated
with a permutation p0,p1, ...,pd of the vertices of K such that vi denotes the barycenter (centroid)
of p0,p1, ...,pi where 1 ≤ i ≤ n.

Figure 2(a), (b) visualize examples of BCS for a 2-simplex, and a 3-simplex. Note that i-th BCS is
the result of applying BCS to each simplex in the (i− 1)-th BCS. Using these definitions, simplicial
approximation theorem can be stated as follows,

Theorem 1. (Simplicial Approximation Theorem) Let X and Y be two simplicial complexes and
f : X → Y be a continuous function. Then for an arbitrary ε, there exist sufficiently large k and l
and a simplicial mapping g : X(k) → Y (l) approximating f such that supx∈X‖f(x)− g(x)‖ < ε.
X(k) and Y (l) represent the k-th and l-th barycentric subdivision of X and Y , respectively.

In the appendix A, we provide a short topological proof for this theorem. Although the theorem
provides a general approximation framework, its approximation is through using BCS of the input
and output spaces. Each time BCS is applied, the number of simplexes is multiplied by (d+ 1)! and
simplexes in higher order subdivisions become flatter and flatter Diaconis & Miclo (2011). This fact
limits the use of this subdivision algorithm in practice. Moreover, BCS subdivides input or output
space completely independent of the data. In the next section, we modify the BCS to a data-driven
approach which allows us to learn a suitable subdivision given data.

Apart from BCS, in TDA, building simplicial complexes from data is often based on deterministic
approaches. For instance, Vietoris-Rips complex Carlsson et al. (2006); Attali et al. (2013) is the set
of all simplexes which their vertices are data points that their pair distances are less than a threshold.
Čech complex Attali et al. (2013); Kerber & Sharathkumar (2013), is the set of all those simplexes
that completely lie in a closed ball with specific radius. While these non-parametric data driven

3



Under review as a conference paper at ICLR 2020

methods can extract rich topological structures of the data using mathematical tools such as persistent
homology, they are not often used as standard features in machine learning algorithms immediately
Chazal & Michel (2017); Attali et al. (2013). In the next section, we modify BCS to a parametric
framework that allows automation of the subdivisioning process and it can be used directly during
the training of an SCN.

2.3 AUTOMATIC SUBDIVISION

In the Algorithm 1, we have shown the process of generating a random simplex from the set of all
simplexes in BCS of a d-simplex. The algorithm gives an uncommon view for identification of a
simplex in the BCS which is through a set of nested simplexes. We modify this view to a data driven
approach in a way that BCS is a special case of the modified version.

In the Algorithm 1, for a random permutation P ,N0 ⊃ N1 ⊃ ... ⊃ Nd form a nested set of simplexes.
This fact is visualized in Figure 2(c), (d). Nd indicates the simplex in the BCS that corresponds to
P . Knowing the nested sequence uniquely determines a simplex in the BCS. Also, we note that
each Ni can be obtained by replacing one of the vertices of Ni−1 with a new vertex inside or on the
boundary (closure) of it. Thereby, since the new vertex is in the closure of Ni−1, it can be represented
as a convex combination of the vertices of Ni−1. The weights of these convex combinations can be
computed in a straightforward way as shown in the Algorithm 1. Note that these weights are specified
to the BCS.

To build a data driven approach initially we eliminate two restrictions of the Algorithm 1. First,
we allow the number of repeats to be any arbitrary integer l rather fixing it to d. This number is
later referred as the subdivision depth. Second, at each repeat, we let the weights to freely have any
arbitrary values as long as they can be used as a convex combination weights. This removes the
restriction of having deterministic weights specified for BSC. This modification allows us to learn the
weights through an optimization process.

A natural approach to make the subdivision process data-driven is to, instead of randomly sampling a
simplex as in the Algorithm 1, sample a simplex with the probability proportion to the likelihood
that it contains data and update the subdivision parameters accordingly. However, the number of
all possible simplexes grows exponentially as l increases, thereby making the computation of all
these probabilities intractable. Alternatively, we sample from data and identify the simplex in the
subdivision that contains the sample and use that simplex in an stochastic optimization framework
to update the subdivision towards a desired one. But how can we identify the simplex that contains
a given sample? Our parameterization of the subdivisioning process using the nested sequence of
simplexes along with the following lemma help to locate the input using a forward pass,

Lemma 1. Let x denote a sample inside a d-simplex σ = [v0, ...,vd]. Assume x =
∑d
i=0 wivi is

represented as a convex combination of the vertices of σ. Let h =
∑d
i=0 w

′
ivi be another point in

the simplex written in the same format. Indicating the simplex with vertices of σ except vi replaced
by h with σ−i, x lies in the simplex σ−j where j = arg mini

wi

w′i
.

Proof. x can be represented with the following convex combination which results the lemma,

x = (
∑
i 6=j

(wi −
wj
w′j
w′i)vi) +

wj
w′j

h

Assume a sample x =
∑d
i=0 wivi represented as a convex combination of vertices of a given

d-simplex σ = [v0,v2, ...,vd]. Similar to the steps of Algorithm 1 and based on our view for
identification of the target simplex through a nested set of simplexes, at the first step, a point is added
inside the simplex using a convex combination of vertices of σ with weights w1. Then lemma 1 can
be used to locate the x in the σ and accordingly replace one of its vertices with the new vertex. This
process is repeated with the new d-simplex up to l times to extract the simplex in the subdivision that
contains x. Having the final simplex and a given cost function, parameters of the subdivision can be
updated accordingly using the backpropagation and gradient descent framework. The procedure is
formally shown in the Algorithm 2.
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We refer the general procedure described in Algorithm 2 to as automatic subdivision. Note that the
barycentric subdivision can be a particular outcome of the automatic subdivisioning.

Algorithm 1 Generating a simplex in barycentric
subdivision of a d-simplex

input: d-simplex σ = [v0,v2, ...,vd], permu-
tation P = (p0, p1, ..., pd)

initialize: N0 = σ,w = 1
d, j = 0

repeat
compute u =

∑d
i=0

wi

(d+1)−jvi
Set wpj = 0
Set Nj+1 = Nj with pj-th vertex replaced
by u
j = j + 1

until j = d

return: Nd

Algorithm 2 One gradient step in automatic sub-
divisioning of a d-simplex using one data sample

input: d-simplex σ = [v0,v2, ...,vd], sample
x =

∑d
i=0 wxivi,Θ = {w1, ...,wl}, Loss L

initialize: N0 = σ, j = 0
repeat

Compute u =
∑d
i=0 wjiNji

Set k = argmini
wxi

wji

Set Nj+1 = Nj with k-th vertex replaced
with u
Set wx as convex combination weights of x
represented with vertices in Nj+1

j = j + 1
until j = l
Θ = Θ− α∇ΘL(Θ)
Project each wi ∈ Θ on the standard d-simplex

2.4 SIMPLICIAL COMPLEX NETWORKS

As theorem 2 states, any continuous function from a simplicial complex to another can be approxi-
mated with a simplicial mapping from BCSs of the input space to BCSs of the output space. In the
last section we explained how we can subdivision the input space through the automatic subdivision
process where BCS was a particular outcome. In this section, we develop SCNs to parameterize a
class of simplicial mappings with trainable values on vertices of the input space subdivision and it is
defined linearly on the d-simplexes of the subdivision using the evaluations at its vertices, resulting a
piece-wise linear simplicial mapping. Parameters of this simplicial mapping are then optimized for
function approximation or a regression tasks. We leverage a same technique used in the previous
section to parameterize the SCN output.

Recalling our initial assumption that inputs lie in a d-simplex σ = [v0, ...,vd] (v0 representing the
origin and other vi are the standard basis vectors), a given input x can be represented with the
following convex combination,

x = (1−
d∑
i=1

xi)v0 +

d∑
i=1

xivi (1)

In the previous section, we showed that how the position of x can be found in σ through the
subdivisioning process. SCN’s output at x is calculated using the values of its mapping at the
vertices of σ and added vertices during locating x. Simplicial mapping at the m-th added vertex is
defined recursively using its preceding vertices. Assuming that the m-th added vertex represented
as hm =

∑d
i=0 wm,iui, where ui are vertices of the preceding simplex in the nested sequence of

simplexes used to locate x and wm,i are its corresponding convex combination weights, the value of
the simplicial mapping at hm is defined as,

f(hm) =

d∑
i=0

wm,if(ui) + bm(hm) (2)

In other words, f(hm) is defined using a convex combination of f(ui) with the same weights, added
with a bias which is a function of hm. A geometrical view of equation 2 for a 2-simplex is shown
in the Appendix C. Using our proof of simplicial approximation theorem in the appendix A, it is
straightforward to show that as long as we consider each bm is an arbitrary function of the hm, the
simplicial mapping holds the universal approximation property. In our experiments, however, we
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used a primitive model for biases and defined them as constant parameters. We will empirically
show that even this simple model for biases can result complicated simplicial mappings and accurate
approximations.

All in all, an SCN is defined using the mentioned process (Figure 1 visualizes a general architecture).
Parameters that should be learned are bias function parameters, and the weights that we used
to subdivision the input space. All these parameters can be updated using the backpropagation
algorithm. Another point that must be noted here is that, as shown in Figure 1, inputs to h2, ...,hl
are not specified. Even though we described how to obtain the value of these inputs using lemma
1, the order that the vertices of the preceding simplex are combined is not specified. We refer to
the policy on the ordering of the vertices used to fed to the next convex combination as the SCN’s
network policy.

Specifying the depth, network policy, and the bias functions fully determines the architecture of an
SCN. To train an SCN, the derivative of the loss function over mini-batches is taken with respect
to the weights and the bias function parameters, and these parameters are updated using a gradient
descent approach such as stochastic gradient descent, or Adam Kingma & Ba (2014). General
training process for an SCN is shown in the Algorithm 3. Note that after updating weights of the
network, for each hidden node, a projection of weights is used such that their summation is equal to
1. This projection can be avoided through use of logits and the Softmax function in parameterizing
the weights.

Algorithm 3 training procedure for a general SCN

S = [v0, ...,vd], l = depth, θb, θW (bias function, and weight params), P (network policy),
(x =

∑d
i=0 wxi

Si, y) (input/output pair), α (learning rate)
// forward pass
for m ∈ {1, ..., l} do

Permute S using P
hm =

∑d
i=0 wm,i.Si

f(hm) =
∑d
i=0 wm,if(Si) + bm(S; θb)

Extract j and update wx using x, S, and lemma 1
Sj = hm

end for
f(x) =

∑d
i=0 wxif(Si)

// backward pass and parameter updates
θb = θb − α∇θbL(f(x), y)
θW = θW − α∇θWL(f(x), y)
for m ∈ {1, ..., l} do

project wm on the standard d-simplex
end for

3 RELATED WORK

In TDA, Persistent homology methods are commonly used to extract features that are robust to
perturbations of the input Otter et al. (2017); Adams et al. (2017). A range of works use these
features in a feed-forward architecture. For instance, in Liu et al. (2016), persistence landscape, a
topological summary of data, is used to develop persistent layers. These layers are used in a neural
network architecture along with convolutional layers and the resulting architecture is applied to the
problem of music tagging Law et al. (2009), and multi-label classification Firouzi et al. (2017). A
similar approach is applied in Umeda (2017) for the time series classification Xi et al. (2006). Cang
& Wei (2017) introduces TopologyNet, an architecture that uses a persistent homology method for
3D biomolecular structures to extract features suitable for convolutional layers. Hofer et al. (2017)
proposes a trainable layer to learn suitable representation from persistence diagram of the data. This
layer which extracts topological signatures from the data is used along with a common neural network
architecture and their approach achieved the state-of-the-art in a specific task on classification of
social network graphs at the time.
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(a) (b) (c)

Figure 3: Approximation of summation of two dimensional Gaussian functions with an SCN. (a)
target function, (b) approximated function using an SCN with a depth of 4, (c) the learned subdivision
on the input space.

Although aforementioned methods try to improve the performance of neural networks through using
topological scenarios, the TDA geometrical perspective vanishes as they are aligned with commonly
used architectures. In addition, a specific persistent homology method is applied for a determined
task. SCNs are single-model architectures that can be trained with the common forward and backward
passes. In addition, no specific persistent homology is used to extract the topological geometry of the
inputs, which enables its generalization to other domains.

4 EXPERIMENTS

We perform regression tasks in order to evaluate the performance and the complexity of functions
that SCN can learn. Mean squared error was used as the loss function in all the experiments. In some
cases, an SCN with a few number of parameters can estimate a function better than a neural network
with fully connected layers even with around 10 times more parameters. In the appendix B, with a
straightforward derivation, we also show that how does an SCN without a hidden unit reformulates
the linear regression problem.

4.1 APPROXIMATING SUM OF GAUSSIAN FUNCTIONS

As a primary experiment, we approximate sum of three Gaussian functions with an SCN with a
depth of 4 and constant parameters as the biases. The resulting simplicial mapping and the learned
subdivision is shown in Figure 3. 1

4.2 TWO MORE TOY EXPERIMENTS

We compare the performance of using an SCN in the problem of learning particular structures to
the results obtained by a neural network with fully-connected layers and ReLU activations. This
is a more general experiment done in Anil et al. (2018) to learn the absolute value function. The
experiment was used in Anil et al. (2018) to show the limitations of specific activation functions for
neural networks in learning some of the basic functions. Here, we show that SCN can learn more
complicated structures even with constant parameters as its bias functions. Models are trained using
Adam Kingma & Ba (2014) with learning rate 0.001, and a same mini-batch size. Figure 4 represents
the comparison. More details about the experiments, and a binary classification experiment on the
MNIST dataset can be found in the appendix F.

4.3 MEMORY ANALYSIS

Several works have proposed approaches to improve the memory efficiency of training deep and very
deep neural networks Behrmann et al. (2018a); Srivastava et al. (2015); Chen et al. (2016); Gomez
et al. (2017). Particularly, a reversible architecture Chang et al. (2018); Behrmann et al. (2018a);
Gomez et al. (2017) may result an O(1) memory cost of activation in terms of the number of layers.
Although due to non-existence of activation function in SCNs the term reversibility is not applicable

1More accurate approximations and complicated subdivisions using deeper SCNs is provided in the ANONY-
MOUS link.
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(a) (b) (c) (d)

Figure 4: Comparison of an SCN with a fully-connected neural network architecture in approximation
of specific functions: (a) and (c) indicate the target and fitted functions, (b) and (d) indicate the
comparison in terms of log loss.

here, to backpropagate through the SCN’s architecture it is required to store only d out of d + 1
vectors and their function evaluations, which were used to extract the last hidden node and evaluate
its function value, latest convex weights for the input in the forward pass, and an array of integers
with a length of l indicating the order that nodes were removed during the forward pass. Storing
these values is enough for the gradient computation of the network parameters. Interestingly, it is not
needed to store the weights of the network and function evaluations at the previous nodes as they all
can be extracted with these information (proof in the Appendix E). This approach trades the cost of
memory with an additional computational cost and can be helpful in training very deep SCNs.

5 LIMITATIONS

In some conditions, the bias function for a hidden node may outputs high norm vectors. In these
conditions, output may not be close to a smooth curve. Accordingly, SCN’s output not behave well in
practice and potentially overfits to data. In case of using a conventional neural networks, to increase
the stability of the output, one approach is to enforce Lipschitz constraints Anil et al. (2018); Arjovsky
et al. (2017); Gouk et al. (2018); Behrmann et al. (2018b). Enforcing Lipschitz constraints in an SCN
can be done through their bias functions. The simplest approach is perhaps to clip the values of the
bias functions to a predetermined interval.

In some cases, input weights to a hidden node might converge to degenerate values with the value
one in one position and zero elsewhere. In these cases, the corresponding layer does not change
the learned subdivision and it may be assumed as a redundant layer. We refer to this phenomena
as weight drifting. In situations that we have a deep SCN architecture with higher than the true
required capacity, these layers with a bias value close to zero may be helpful to automatically adjust
the capacity of the model and prevent SCN from overfitting.

Throughout this work we assumed that inputs lie in a given d-simplex. The assumption was used just
for the sake of presentation. It can be assumed that samples lie in any given simplicial complex, not a
specific d-simplex. The vertices of any simplex in the simplicial complex that a sample falls in can
be used as the primary nodes in the network.

Choosing an appropriate network policy for SCNs may be assumed as a challenging task in different
domains. In our experiments, we observed that even simple policies result a proper function approxi-
mation. In fact, in one dimensional case, a direct use of the Stone-Weierstrass theorem can be used to
prove that SCNs are universal approximators even with random policies and fixed weights. In our
experiments, the sensitivity of SCNs to the choice of their bias function observed to be larger than the
network policy.

6 CONCLUSION AND FUTURE WORK

In this work, we have used techniques from topological data analysis to build a class of neural network
architectures with the universal approximation property which can be trained using the common
neural network training framework. Topological data analysis methods are based on the geometrical
structure of the data and have strong theoretical analysis. SCNs are made using the geometrical view
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of TDA and we believe that they can be used as a step towards building interpretable deep learning
models.

Most of the experiments in the paper are synthetic. More practical applications of the paper is
considered as an immediate continual work. Moreover, throughout this work, bias functions of the
simplest kinds (constant parameters) were used. We mentioned earlier that a bias function may be an
arbitrary function of its input to keep the universal approximation property of SCNs. A natural idea
is to use common neural network architectures as the bias function. In this case, backpropagation can
be continued to the bias function parameters as well. This is also considered as another continuation
of this work.
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A PROOF OF SIMPLICIAL APPROXIMATION THEOREM

We provide a short topological proof of the approximation theorem we used in main text. Some
mathematical precision is dropped throughout the proof.
Theorem 2. (Simplicial Approximation Theorem) Let X and Y be two simplicial complexes. Let
f : |X| → |Y | be a continuous function. Then for an arbitrary ε, there exist sufficiently large k and l
and a simplicial mapping g : |X(k)| → |Y (l)| approximating f such that supx∈X‖f(x)− g(x)‖ < ε.

Proof: In order to prove this theorem we use the following definition:
Definition 4. (Star) Let K be a simplicial complex and v ∈ K a vertex of K. The star of v
represented by St(v) is defined as the union of interior of all simplexes of K that contain v as a
vertex. Note that St(v) is an open set. Figure 5 pictures an example for star of a vertex.

v

Figure 5: Star of a vertex v of a simplicial complex (gray region)

Choose l in order that the diameter of simplexes of Y (l) is less than ε. Let W denotes the Y (l)

vertices. Since f is a continuous function, pre-image of an open set in an open set. Therefore, for
each w ∈ W , f−1(St(w)) is an open set. {f−1(St(w))}w∈W is an open covering for |X|. Let δ
represents the Lebesgue number of this covering. Choose k such that the diameter of simplexes of
X(k) be less than δ

2 . Denote the vertices of X with V . It can be shown that for each v ∈ V , diameter
of St(v) is less than δ (proof is shown in figure 6). So, for each v ∈ V , there exist a w ∈ W such
that St(v) ⊂ f−1(St(w)). We define the simplicial map g such that g(v) = w. Also, note that
f(St(v)) ⊂ St(w).

Now we prove that g approximates f as desired. Let σ ∈ X(k) be a simplex in A. Let v1, v2, ..., vp
denote the vertices of this simplex. For any x ∈ σ and a vertex vi, i ∈ {1, 2, ..., p}, x is in
the St(vi). So, f(x) is in the ∩pi=1f(St(vi)). Using the last note in the previous paragraph,
we have x ∈ ∩pi=1St(g(vi)). This fact means that f(x) lies in the simplex that its vertices are
f(v1), f(v2), ..., f(vp).

We now extend the definition of g for all non-vertex elements of X . Let x ∈ |X| be a non-vertex
element represented as a convex combination of a number of vertices of V as x = Σtivi. We define
g(x) as,

g(x) = g(Σtivi) = Σtig(vi)

Straightforward steps can be used to prove that g is a continuous simplicial mapping. Using the facts
in the last two paragraphs, we conclude that for each x ∈ |X| and a simplex σ ∈ X containing x,
both f(x), and g(x), lie in the simplex with vertices {g(v)}v∈σ. Due to the initial choice of l, we
know that diameter of this simplex is less than ε, which means supx∈X‖f(x)− g(x)‖ < ε. �

B REFORMULATION OF LINEAR REGRESSION PROBLEM USING AN SCN
WITHOUT HIDDEN NODES

In case that an SCN has no hidden node (no subdivisioning process), it can be viewed as linear
regression reformulation. A real valued linear function f : ∆d → R from a d-dimensional simplex
∆d = [v0, ...,vd], can be specified by the values of f at each vi. These values are represented by
f(vi).

Assume a data matrixX ∈ RN×d ofN samples within ∆d, and their corresponding output in a vector
y. We formulate the linear regression problem with training a weight w that minimizes ||Xw − y||22.

11



Under review as a conference paper at ICLR 2020

A
B

v

Figure 6: Let A,B be two simplexes containing v. Using triangle inequality for a distance function d,
for each a ∈ A, b ∈ B we have: d(a, b) ≤ d(a, v) + d(v, b) < δ

2 + δ
2 < δ. This fact shows that the

diameter of St(v) is less than or equal to δ.

We represent the coefficients of representing samples in X as a convex combination of v0, ...,vd
in a matrix C ∈ RN×(d+1) with a rank of at most d, where i-th row indicates the corresponding
coefficients for i-th sample. Then the linear regression problem can be reformulated as,

||Cf − y||22
where f is a (d+ 1) dimensional vector representing the function value at vi as its i-th element. With
a straightforward computation, One can verifies that the optimal w or f can be computed from the
optimal value of the other one.

C GEOMETRIC VISUALIZATION OF EQUATION 2

Figure 7: A geometrical view of how does equation 2 evaluates the simplicial mapping at m-th added
point using its preceding vertices ui. A same convex combination of ui used to generate hm is
applied to the corresponding f(ui). This value added with a bias term determines f(hm).

D PROOF OF LEMMA 1

x can be represented with the following convex combination which results the lemma,

x = (
∑
i 6=j

(wi −
wj
w′j
w′i)vi) +

wj
w′j

h

E RETRIEVING PREVIOUS LAYERS PARAMETERS

In contrast to Dinh et al. (2014); Gomez et al. (2017), no separation of input into blocks is needed
for SCNS to extract outputs of the previous layers. Retrieving the values for previous in SCN is
a result of the fact that knowing all weights, all vertices except one, and the resulting vector of a
convex combination is enough to extract the missing vertex. Formally, let x =

∑d
i=0 wivi represents

a convex combination (
∑d
i=0 wi = 1, and ∀0 ≤ i ≤ d : wi 6= 0). Assuming vj is unknown, it can be
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computed simply as,

vj =
1

wj
(x−

∑
i 6=j

wivi)

.

Assume an SCN with a depth of l. Given the SCN’s last layer weights wl, the bias functions b1, ..., bl,
and its network policy P , the following algorithm shows that knowing the last d hidden nodes, their
function values, and an array indicating the order of vertices that was removed during the forward
pass to locate x, is enough to extract all the previous function values, hidden nodes, and also the
weights. For simplicity of the algorithm, u0, ...,ul+d is used as indicators for v0, ...,vd,h1, ...,hl
with the same order.

Algorithm 4 Retrieving preceding layers and parameters for the backward pass of an SCN

given ul+d,ul+d−1, ...,ul+1, f(ul+d), f(ul+d−1), ..., f(ul+1), and convex weights wx of
representing the input x as the convex combination of ul+d,ul+d−1, ...,ul, array a =
[a1, ..., al−d] of integers storing the indices of ui were removed during the forward pass with
the exact order.
j = 0
repeat
ul−j = 1

w
(ul−j)
x

(x−
∑d−1
i=0 w

(ul+d−i)ul+d−i)

Extract wl−j as the convex combination weights of representing ul+d−j using
ul+d−j−1, ...,ul−j

Extract w(ul+d−j−i)
l−j , (∀0 ≤ i ≤ d) (element of wl−j that is assigned to ul+d−j−i) using the

network policy P , and al−d−j .
btemp = bl−j(hl−j , ...,hl+d−j)

f(hl−j) = 1

w
(ul+d−j)

l−j

(f(x)− btemp −
∑d
i=1 w

(hl+d−j−i)
l−j f(hl−j−i))

Update wx to the convex combination weights of x represented using
ul+d−j−1, ...,ul−j ,ul−j−1

j+ = 1
until j = d− 1

F EXPERIMENTAL DETAILS

We provide the details of the experiments in the main text as well as results of a binary classification
experiment on MNIST as a primary proof of concept for practical usages of SCNs.

In all the three toy experiments, the neural network consisted of two fully connected layers with 300
and 2 hidden neurons respectively. ReLU activations was used for both layers. The SCN model had a
depth of 4. Accordingly, the network had 4 bias functions which all were constant parameters. A
learning rate of 0.001, mini-batches of size 100 were used. The network policy was random. Thereby,
preceding nodes were assigned randomly to the next convex combination weights (recall the fact that
in one dimensional case, SCNs are universal approximators even with a random policy and fix convex
combination weights. Thereby the optimization can be done through their biases only). In the sum
of Gaussians experiment, inputs lied in a 2-simplex with vertices (0, 0), (0, 1), and (1, 0) as the way
that SCNs are presented throughout the paper. Similarly, in the one dimensional case inputs lied in
the interval (1-simplex) [0, 1].

To provide an observation that SCNs can be used in practice, we did a primary experiment on
the MNIST data set. The aim was the binary classification of zeros and ones. We lessened the
dimensionality of the data to 20 using PCA. We compared SCN to a simple logistic regression, and a
neural network with the same architecture used in our synthetic experiments. Logistic regression can
be seen as an SCN without any hidden nodes followed by a Sigmoid. We used a single unit SCN
where its bias function was again a single constant parameter. Models were trained using the binary
cross entropy loss and a same learning rate and mini-batch size were used in training the models. The
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performance is shown in the Figure 8 and the test accuracy and the number of parameters are shown
in the Table 1. Although the performance of the SCN with a single hidden unit is not as good as the
neural network with fully connected layers, SCN could improve the accuracy of logistic regression
by around 7% with adding a single hidden node to its architecture. Scaling up the SCN architecture
to higher dimensional spaces is considered as a continuation of the paper.

Figure 8: Accuracy of the models on the binary classification of zeros and ones in MNIST.

Table 1: Binary classification on MNIST

Model # of parameters accuracy

2-layer Fully Connected NN 6300 99.61± 0.16
SCN (1 hidden unit) 41 89.00± 1.01
Logistic Regression 21 82.11± 2.85
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