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Abstract

Binarized Neural Networks are paving a way towards the deployment of deep
neural networks with less memory and computation. In this report, we present
a detailed study on the paper titled "Latent Weights Do Not Exist: Rethink-
ing Binarized Neural Network Optimization" by Helwegen et al. [2019] which
proposes a new optimization method for training BNN called BOP. We first
investigate the effect of using latent weights in BNN for analyzing prediction
performance in terms of accuracy. Next, a comprehensive ablation study on
hyperparameters is provided. Finally, we explore the usability of BNN in de-
noising autoencoders. Code for all our experiments are available at https:
//github.com/nancy-nayak/rethinking-bnn/

1 Introduction

In the era of Artificial Intelligence, deep learning methods are finding itself useful in a variety of tasks.
This is not only limited to image or speech processing using supervised learning, game playing using
reinforcement learning but to more complex tasks ranging from self driving car to smart personal
assistants to autonomous drones helping with household work. The main challenge of using deep
learning in computationally complex tasks is that it requires a big complex network which in turn
requires huge memory to save its parameters and high computational power. These big networks are
often trained with one or many power hungry GPUs. However, in order to enter a mass deployment of
solutions, methods that can run low power devices are desirable. In order to satisfy the need of good
performance of these networks but deployed with less resources in terms of memory and compute,
Courbariaux et al. [2015] proposed Binaryconnect in which the learnt parameters are limited +1 or
−1. Later Courbariaux et al. [2016] introduced binary neural networks (BNN) where activation also
is a binarization function. The main problem of training BNN is that the gradient of binarization
function is almost zero everywhere. This was mitigated by utilizing a special kind of function called
straight through estimator (STE) Hinton [2012] . To train these neural networks with binary weights,
a popular choice is to use Adam optimizer Kingma and Ba [2014]. During the training process, real
weights are updated using one of the traditional optimizers during backpropagation and during the
forward propagation, only a binarized version (sign) of these real weights (latent weights) are used
for prediction and subsequent loss calculations.

In this paper (Helwegen et al. [2019]), the authors have developed an novel optimization method,
Binary Optimizer (BOP), for training BNN. The main insight which underpins this development
is the observation that latent weights are not necessary for gradient based optimization of BNNs.
Instead of updating latent weights using one of the traditional optimizers, the authors proposed to
use accumulated momentum to gradients inorder to flip between the binary weights possible for
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each parameter. They empirically demonstrate the performance of BOP on CIFAR10 and Imagenet
datasets.

In this study, we explore the capabilities of the proposed optimizer for training BNNs through
comprehensive ablation studies.

1.1 Outline of this study

In order to verify the claims presented in the paper and to assess the applicability of the proposed
methods to tasks other than classification, we focus on the following questions in this report.

1. Does the use of latent weights instead of binary weights in BNN result in better performance?

2. The Binary Optimizer proposed in the paper has two hyper-parameters to tune. We provide
a comprehensive ablation study of the impact of these two parameters in the context of both.

3. Most of the prior work in binary neural networks used batchnormalization at the output
of each layer to stabilize training. We propose layernormalization as an alternative for
batchnormalization and show that it can have slightly better performance for a proper choice
of hyperparameters.

4. Most of the previous works in binary neural networks concentrate on classification tasks,
possibly due to the reduced representative power of neural networks with binarized weights.
We study the applicability of binary neural networks outside to classification tasks. We
present initial results on using BNNs for denosing autoencoders.

2 How do Latent weights perform with respect to binary weights?

Previous works claimed that binary weight vector is an extremely quantized i.e. binarized version
of the latent weights. Many of the previous works consider binary weights as an approximation of
real latent weights. According to approximation viewpoint, using latent weights instead of binary
weights along with binary activations should result in better accuracy than BNN. Authors of this
paper (Helwegen et al. [2019]) claimed that using latent weights in BNN may not always result
into higher accuracy. In this section, we study this claim with experiments conducted on multiple
architectures with different datasets.

We consider the task of classification of images as the case for this study. Three neural network
architectures are considered:

1. A fully connected dense neural network (referred as FullyCon here on).

2. Convolutional Neural Network based on popular LeNet architecture (referred as LENET5
here on).

3. Convolutional Neural Network based in VGGNet architecture which is also considered by
the authors (referred as ConvNet).

The architecture of each of the three networks are shown in Table 1, Table 2 and Table 3 respectively.
For convolutional layers, the filter sizes of (5, 5) and (3, 3) are used for LENET5 and ConvNet
respectively. The "Activation" mentioned in Table 1, Table 2 and Table 3 are the activation applied to
the output of the corresponding layer. For all of the three cases, there is no binarization activation
applied to the input layer. We provide the results on training these architectures in MNIST and
CIFAR10 datasets till the training accuracy saturates.

Table 1: Architecture of FullyCon
Layer No. of neurons Batch normalization Activation Dropout rate

Dropout+DenseFC-binary 4096 Yes Binary tanh 0.5
Dropout+DenseFC-binary 4096 Yes Binary tanh 0.5
Dropout+DenseFC-binary 4096 Yes Binary tanh 0.5
DenseFC-binary+L2SVM loss 10 Yes None -
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Table 2: Architecture of LENET5
Layer No. of filters/neurons Batch normalization Activation

Binary 2D Convolutional 20 Yes Binary tanh
Binary 2D Convolutional + Maxpool 20 Yes Binary tanh
Binary 2D Convolutional 50 Yes Binary tanh
Binary 2D Convolutional + Maxpool 50 Yes Binary tanh
Flatten - - -
Binary DenseFC 500 Yes Binary tanh
Binary DenseFC+Square hinge loss 10 Yes None

Table 3: Architecture of ConvNet
Layer No. of filters/neurons Batch normalization Activation

Binary 2D Convolutional 128 Yes Binary tanh
Binary 2D Convolutional + Maxpool 128 Yes Binary tanh
Binary 2D Convolutional 256 Yes Binary tanh
Binary 2D Convolutional + Maxpool 256 Yes Binary tanh
Binary 2D Convolutional 512 Yes Binary tanh
Binary 2D Convolutional + Maxpool 512 Yes Binary tanh
Flatten - - -
Binary DenseFC 1024 Yes Binary tanh
Binary DenseFC 1024 Yes Binary tanh
Binary DenseFC+Square hinge loss 10 Yes None

The results are provided for MNIST and CIFAR10 datasets are provided in Table 4) and Table 5
respectively. We trained the models by backpropagating losses due to binary weights during the
training process. At the end of training, the accuracy of using binary weights and latent weights are
reported.

Table 4: Effect of latent weights for MNIST
Binary NN with MNIST dataset Fully Connected LENET5

Training accuracy(%) at 500th epoch 100.00 99.99
Test accuracy(%) with binary weights 98.35 99.20
Test accuracy(%) with latent weights 99.01 98.12

Table 5: Effect of latent weights for CIFAR10
Binary NN w/ CIFAR10 dataset ConvNet LENET5

Training accuracy(%) at 100th epoch 100.00 85.16
Test accuracy(%) with binary weights 81.72 64.99
Test accuracy(%) with latent weights 50.52 54.62

We can observe from the experiment that, in general, latent weights when applied to BNN does
not perform better than binary weights, verifying authors’ claim. Hence, the alternate view point
of seeing binary weights as approximation of real latent weights Courbariaux et al. [2015, 2016],
Rastegari et al. [2016], Zhuang et al. [2019] is not necessarily true. Even though BNN is trained with
latent weights, mostly (except MNIST) the BNN with latent weights achieves a lower accuracy than
using binary weights.

3 Ablation studies on the effect of hyperparameters

In this section, we present results of the ablation studies on the effect of hyper parameters τ and γ.
The paper Helwegen et al. [2019] considers a binary convolutional architecture called BVGG net as
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given in Simonyan and Zisserman [2014] inspired from the architecture of ConvNet in Courbariaux
et al. [2016] we discussed before. The authors have shown that the main action which matters for
BOP is flipping weights. The question boils down to the following: based on a sequence of gradients,
whether to flip a weight or not. BOP should pay attention to the consistency and the strength (absolute
value) of the gradient signals. In BOP the consistent signal is selected by looking at exponential
moving average of gradients.

mt = (1− γ)mt−1 + γgt = γ

t∑
r=0

(1− γ)(t−r)gr (1)

where gt is the gradient at time t, mt is exponential moving average and γ is the adaptivity rate. The
weight flip is determined by comparing the moving average with a threshold called τ :

wi
t =

{
−wi

t−1 if |mi
t| ≥ τ and sign(mi

t) = sign(mi
t−1)

wi
t−1 otherwise

(2)

The two hyper parameter for BOP are τ and γ. In this section we show the results of the experiments
on BVGG net with BOP as optimization method and with CIFAR10 dataset. To use the dataset for
training a binary network, in our work similar modifications are done to the dataset as Helwegen et al.
[2019]. We use batch normalization to normalize the activations with a minibatch size of 64.

A non zero threshold γ avoids rapid flip of weights when the gradient reverses on a weight flip. One
thing to note here is that high value of τ can result in never flipping of weights even though there
is pressure from a consistent gradient signal. As given in the paper, a higher adaptivity rate γ gives
more adaptive moving average which implies that if a new gradient signal pressurizes a weight to flip,
it take lesser time steps to do so.
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Figure 1: Ablation studies for τ and γ for Batch Normalization

Keeping τ same (10−8) we see the effect of different γ in Fig (1a). From eq (1) it is clear that with
the increase in the value of γ, mt fluctuates more. A high γ(= 0.01) gives very poor performance as
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high adaptivity rate makes weight to flip in less time steps if a gradient signal starts pressurizing it.
Even though in the very beginning of the training, the accuracy trend is steep in case of γ = 0.01,
within a short period of time the accuracy converges to 40%. A low γ(= 10−6) provides stable
training process but it takes long time to fully converge to final accuracy. From the plots we found for
τ = 10−8, γ = 10−5 performs best and converges to training accuracy 92.15%.

Fig (1b) gives training accuracy and loss for different threshold τ and a fixed γ(= 0.0001). As
explained in the paper, τ should be a non zero real number but not so big that the weight flipping is
hindered. In our simulation result, networks with τ in the range of 10−8 perform nearly same.

4 Layer Normalization

Till date in most of the works in the line of BNN, batch normalization is used between consecutive
non-linear layers in order to stabilize the training. The aim of batch normalization is to normalize the
inputs with the global mean and variance but calculating mean and variance of activations for the
whole dataset is very costly. So batch normalization is done in small batches and the estimated mean
and variances vary from one minibatch to other. The main challenge of using batch normalization is
limitation in batch size. If the batch size is very small the variance of the estimates would be very
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Figure 2: Comparison of BN and LN with τ = 10−8 and γ = 10−5 in Binary VGG net with
CIFAR10 dataset and BOP optimizer

high which makes it difficult to use batchnorm in online learning. Also in case of recurrent neural
network, use of batchnorm is difficult as the layer statistics change at each timestep. In this section,
we look into Layer Normalization as an alternative solution to avoid these problems Lei Ba et al.
[2016].

Layer Normalization works by normalizing across the activation (features) passed between two
consecutive layers instead of over a mini batch. In LayerNorm, the statistics are calculated across
each feature and are independent of other example. We propose to use Layer Normalization instead
of batch normalization as an alternate way of stabilizing training. In Fig 2, we provide a comparison
of training performances of layernorm and batchnorm for τ = 10−8 and γ = 10−5. It is clear that
layernorm performs slightly better than batchnorm for this choice of hyper parameter.

In Fig. 3, we provide a comprehensive ablation study for the effect of hyper parameters of BOP in
conjuction with Layer Normalization. From Fig (3a), we can observe that for fixed τ(= 10−8) the
performance of BVGG net is best for γ = 10−5 and the explanation follows from the batchnorm
ablation studies. Similarly, as shown in Fig (3b) for fixed γ, τ in the range of 10−8 has nearly same
performance.

The above studies conclude that Layer Normalization can be used as a viable alternative to Batch
Normalization in the case of training Binary Neural Networks. This can be especially useful in the
cases where BNN has to be trained in an online fashion (as in the case of deep reinforcement learning)
where acquiring a minibatch of sufficient size to alleviate the affect of noise variance in estimation is
either costly or undesirable.
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Figure 3: Ablation studies for γ and τ for Layer Normalization

5 Using BNNs Beyond Classification: Denoising binary Autoencoder

Most of the works on BNN till date focus on classification tasks as a benchmark for evaluating the
performance of BNNs. In this section we explore the usage of BNNs in denoising auto encoder (AE),
called Binary AE, referred as BAE. The architecture we consider for this experiment is given in Table
6. Convolution represents 2D convolution layer for AE and quantized 2D convolution layer for BAE.
Kernel size of convolution and deconvolution layers is (3, 3) and pool size of max pool layers is (2, 2)
for both AE and BAE. In this AE architecture first three layers make up the encoder and last three the
decoder part. At the first layer of the encoder and decoder, real valued inputs are used. STE-sign
function is used as activation on current layer inputs for BAE except for the last layer. The last layer
is a deconvolution layer with tanh activation. Mean square loss is minimized with BOP and a metric

Table 6: Architecture for Denoising Binary Auto Encoder
Layer No. of filters Batch normalization Activation on input

Convolution + Maxpool 32 Yes -
Convolution + Maxpool 16 Yes STE-sign
Convolution + Maxpool 8 Yes STE-sign
Deconvolution + Upsampling2D 8 Yes -
Deconvolution + Upsampling2D 16 Yes STE-sign
Deconvolution + Upsampling2D 32 Yes STE-sign
Deconvolution 3 Yes tanh

called peak signal to noise ratio (PSNR) is calculated to see the performance of the network during
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training and testing.

PSNR = 10 ∗ log10
(
max2

mse

)
(3)

where max is the maximum possible pixel value of the image and mse is the mean square error
between original image and the image output from the network. For traditional AE, the architecture is
exactly same except the each layer is trained on real weights with relu activation (instead of STE-sign
in BAE) except for the last layer. As the architecture of AE is similar to binary AE except few
changes, we do not repeat the architecture.
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Figure 4: Training PSNR (dB); At the end of training, PSNR for AE: 14.76dB, BAE w/ Adam:
9.25dB and BAE w/ BOP: 9.66dB

In order to use CIFAR10 dataset for training, we scale the (32, 32) images to (−1,+1) say imorg.
The shape of the images are referred as imshape. Then a random normal N (0, 1) noise is added with
a noise factor f = 0.1 and the results are clipped between (−1,+1) again resulting in a noisy image
referred as imnoi.

imnoi = clip ((imorg + f ∗W ), 0, 1) where W ∼ N (0, 1, imshape) (4)

We perform three sets of experiments, all using batch normalization to stabilize the training with a
minibatch size of 64. The sets are as follows:

1. Traditional AE with Adam optimizer (with learning rate lr = 10−3, β1 = 0.99, β2 = 0.999)
2. BAE with Adam optimizer with same hyper parameters
3. BAE with BOP optimizer (τ = 10−8, γ = 10−5)

In Fig 4 the training loss and training PSNR is shown for all three cases. From the graphs we see
that, BAE with BOP seems to be better than BAE with Adam for this task and the training converges
faster. The test PSNRs of all three cases are as follows:

1. AE with Adam: 14.87 dB
2. Binary AE with Adam: 9.10 dB
3. Binary AE with BOP: 9.30 dB

However, the results are not impressive for both of the BAE cases. We plot 5 noisy samples of the
CIFAR10 test dataset and the recovered images from the above three cases in Fig. 5. The reason
behind degraded reconstructions for both of the BAE cases are: binary activations cannot pass enough
information between the layers to develop a faithful reconstruction. Hence only a reduced finite set
of information can be passed between intermediate layers of encoder and decoder. This could be the
reason for not so good performance of BAE. We see a huge scope of improvement for BNN in case
of BAE as well as other use cases.

6 Concluding Remarks

To summarize our work, we started with studying the effect of using latent weights on BNN. From
our observations, it can be concluded that for most of the cases latent weights on BNN do not perform
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Figure 5: Comparison of recovered images by AE with Adam, BAE with Adam and BAE with BOP

better than binary weights. This conclusion aligns with the authors’ claim that binary weight cannot
be considered as an approximation of latent weights. We also present an ablation study for the choices
of two hyper parameters τ and γ for BOP optimizer. Our comprehensive experimental analysis shows
the effect of each of these hyper parameters in the optimization procedure. Next, while most of
the works only considered batch normalization, we introduce Layer normalization as an alternative
way of normalization and it shows impressive results. An ablation study on the effects of optimizer
hyper parameters shows that LayerNorm can provide improved results in some cases. Finally to
explore the applicability of BNN in other use cases, we consider Binary AutoEncoders (BAE). The
performance of BOP for BAE is then compared with BAE with Adam and AE with Adam. Though
a very preliminary results with BAE are shown in our report, BOP shows better PSNR than Adam
when used for training binary neural networks.
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