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Abstract

We present a general framework for solving a large class of learning problems
with non-linear functions of classification rates. This includes problems where
one wishes to optimize a non-decomposable performance metric such as the F-
measure or G-mean, and constrained training problems where the classifier needs
to satisfy non-linear rate constraints such as predictive parity fairness, distribution
divergences or churn ratios. We extend previous two-player game approaches
for constrained optimization to an approach with three players to decouple the
classifier rates from the non-linear objective, and seek to find an equilibrium of the
game. Our approach generalizes many existing algorithms, and makes possible new
algorithms with more flexibility and tighter handling of non-linear rate constraints.
We provide convergence guarantees for convex functions of rates, and show how
our methodology can be extended to handle sums-of-ratios of rates. Experiments
on different fairness tasks confirm the efficacy of our approach.

1 Introduction

In many real-world machine learning problems, the performance measures used to evaluate a clas-
sification model are non-linear functions of the classifier’s prediction rates. Examples include the
F-measure and G-mean used in class-imbalanced classification tasks [1–5], metrics such as predictive
parity used to impose fairness goals [6], the win-loss-ratio used to measure classifier churn [7],
KL-divergence based metrics used in quantification tasks [8, 9] and score-based metrics such as the
PR-AUC [10]. Because these goals are non-linear and are non-continuous in the model parameters, it
becomes very challenging to optimize with them, especially when they are used in constraints [11].

Prior work on optimizing generalized rate metrics has largely focused on unconstrained learning
problems. These approaches fall under two broad categories: surrogate-based methods that replace
the classifier rates with convex relaxations [12–17], and oracle-based methods that formulate multiple
cost-sensitive learning tasks, and solve them using an oracle [18–22, 11]. Both these approaches
have notable deficiencies. The first category of methods rely crucially on the surrogates being close
approximations to the rate metric, and perform poorly when this is not the case (see e.g. experiments
in [20]). The use of surrogates becomes particularly problematic with constrained training problems,
as relaxing the constraints with convex upper bounds can result in solutions that are over-constrained
or infeasible [23]. The second category of methods assume access to a near-optimal cost-sensitive
oracle, which is usually unrealistic in practice.

In this paper, we present a three-player approach for learning problems where both the objective
and constraints can be defined by general functions of rates. The three players optimize over model
parameters, Lagrange multipliers and slack variables to produce a game equilibrium. Our approach
generalizes many existing algorithms (see Table 2), and makes possible new algorithms with more
flexibility and tighter handling of non-linear rate constraints. Specifically, we give a new method
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(Algorithm 2) that can handle a wider range of performance metrics than previous surrogate methods
(such as e.g. KL-divergence based metrics that only take inputs from a restricted range), and can be
applied to constrained training problems without the risk of over-constraining the model because it
needs to use surrogates less. To our knowledge, this is the first practical, surrogate-based approach
that can handle constraints on generalized rate metrics.

We show convergence of our algorithms for objectives and constraints that are convex functions of
rates. This result builds on previous work by Cotter et al. [23, 24] for handling linear rate constraints,
and additionally resolves an unanswered question in their work on the convergence of Lagrangian
optimizers for non-zero-sum games. We also extend our framework to develop a heuristic (Algorithm
3) for optimizing performance measures that are a sum-of-ratios of rates (e.g. constraints on predictive
parity and F-measure), and demonstrate their utility on real-world tasks.

Related work: Many fairness goals can be expressed as linear constraints on a model’s prediction
rates [16, 25]. Recent work has focused on optimizing with linear rate constraints by computing an
equilibrium of a game between players who optimize model parameters ✓ and Lagrange multipliers
� [26–28, 23, 24]. Of these, the closest to us is the work of Cotter et al. (2019) [23], who propose
the idea of having only the ✓-player optimize a surrogate objective, and having the �-player use the
original rates. We adapt and build on this idea to handle general functions of rates. Other game-based
formulations include the approach of Wang et al. [29] for optimizing multivariate evaluation metrics.
Their setup is very different from ours, with their players optimizing over (distributions on) all
possible labelings of the data. Moreover, they do not handle constraints on the classifier.

There has also been a concentrated effort on optimizing performance measures such as the F-measure
that are fractional-linear functions of rates [18–20, 30, 31]. Many of these works exploit the pseudo-
convex structure of the F-measure, but this property is absent for the problems that we consider where
we need to handle sums or differences of ratios. Pan et al. [32] provide a heuristic approach for
unconstrained sums-of-ratios, and recently Celis et al. [33] handle constraints that are sums-of-ratios,
but do so by solving a large number of linearly constrained sub-problems, with the number of
sub-problems growing exponentially with the number of rates. In contrast, we provide a practical
algorithm that handles both objectives and constraints that are sums-of-ratios of rates.

2 Problem Setup

Let X ✓ Rd and Y = {±1} be the instance and label spaces. Let f✓ : X ! R be a prediction model,
parameterized by ✓ 2 ⇥. Given a distribution D over X ⇥ Y , we define the model’s rate on D as:

R(✓;D) = E(X,Y )⇠D

⇥
I
�
Y = sign(f✓(X))

 ⇤
.

For example, if DA denotes the distribution over a sub-population A ✓ X , then R(✓;DA) gives
us the accuracy of f✓ on this sub-population. If D+ denotes a conditional distribution over the
positively-labeled examples, then R(✓;D+) is the true-positive rate TPR(✓) of f✓ and 1�R(✓;D+)
is the false-negative rate FNR(✓) of f✓. Similarly, if D� denotes a conditional distribution over
the negatively-labeled examples, then TNR(✓) = R(✓;D�) is the true-negative rate of f✓, and
FPR(✓) = 1�R(✓;D�) is the false-positive rate of f✓. Further, the true-positive and false-positive
proportions are given by TP(✓) = pTPR(✓) and FP(✓) = (1� p) FPR(✓), where p = P(Y = 1);
we can similarly define the true negative proportion TN and false negative proportion FN.

We will consider several distributions D1, . . . , DK over X ⇥ Y , and use the short-hand Rk(✓)
to denote the rate function R(✓;Dk) 2 [0, 1]. We will denote a vector of K rates as: R(✓) =
[R1(✓), . . . , RK(✓)]>. We assume we have access to unbiased estimates of the rates R̂k(✓) =
1
nk

Pnk

i=1 I
�
yki = sign(f✓(xk

i ))
 

, computed from samples S = {(xk
1 , y

k
1 ), . . . , (x

k
nk
, yknk

)} ⇠ Dk.

We will also consider stochastic models which are defined by distributions over the model parameters
⇥. Let �⇥ denote the set of all such distributions over ⇥, where for any µ 2 �⇥, µ(✓) is the
probability mass on model ✓. We define the rate Rk for a stochastic model µ to be the expected value
for random draw of a model from µ, so Rk(µ) = E✓⇠µ [Rk(✓)].

Generalized Rate Metrics as Objective. In many real-world applications the performance of a
model is evaluated by a function of multiple rates:  (R1(✓), . . . , RK(✓)) for some  : [0, 1]K ! R.
For example, a common evaluation metric used in class-imbalanced classification tasks is the G-mean:
GM(✓) = 1 �

p
TPR(✓)TNR(✓), which is a convex function of rates [34, 35]. Similarly, a popular
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Table 1: Examples of generalized rate metrics.  is either convex (C), pseudo-convex (PC) or a sum
or difference of ratios (SR). p = P(Y = 1) and p̂ is the predicted proportion of positives. wins
(losses) is the fraction of correct (wrong) predictions by the new model among examples where it
disagrees with the old model. A and B refer to different protected groups or slices of the population.

Measure Definition  Type
G-mean [34, 35] 1�

p
TPR⇥ TNR 1�

p
z1 z2 C

H-mean [36] 1� 2
1/TPR+1/TNR 1� 2

1/z1+1/z2
C

Q-mean [5] 1�
p

FPR2 + FNR2 1�
p

z21 + z22 C
KLD [8, 9] p log(pp̂ ) + (1� p)log( 1�p

1�p̂ ) p log( p
z1
) + (1� p)log( 1�p

z2
) C

F-measure [37] 1� 2TP
2TP + FP + FN 1� 2z1

2z1+z2+z3
PC

Predictive parity [6] TPA
TPA+FNA

�
TPB

TPB+FNB

z1
z1+z2

�
z3

z3+z4
SR

F-measure parity 2TPA
2TPA+FPA+FNA

�
2TPB

2TPB+FPB+FNB

2z1
2z1+z2+z3

�
2z4

2z4+z5+z6
SR

Churn [7] winsA
lossesA

�
winsB
lossesB

z1
z2
�

z3
z4

SR

PR-AUC [10] 1 � 1
M

PM
m=1

TPm
TPm+FPm

, where TPm, FPm are evaluated
at the largest threshold ⌧ at which recall of f✓(X) + ⌧ is � m+0.5

M

evaluation metric used in text retrieval is the F-measure: F1(✓) = 2TP(✓)
2TP(✓)+ FP(✓)+ FN(✓) , which is a

fractional-linear or pseudo-convex function of rates [38]. See Table 1 for more examples. One can
consider directly optimizing these performance measures during training:

min
✓2⇥

 (R1(✓), . . . , RK(✓)) . (P1)

Generalized Rate Metrics as Constraints. There are also many applications, where one wishes
to impose constraints defined by non-linear function of rates, for example to ensure group-
specific fairness metrics. Examples include: (i) Predictive parity fairness: Fair classification
tasks where one wishes to match the precision of a model across different protected groups [6]:��� TPA(✓)

TPA(✓)+ FPA(✓) �
TPB(✓)

TPB(✓)+ FPB(✓)

���  ✏. One may also want to match e.g. the F-measure of a model
across different groups. (ii) Distribution matching: Fairness or quantification tasks where one wishes
to match the distribution of a model’s outputs across different protected groups [9, 15]. One way to
achieve this is to constrain the KL-divergence between the overall class proportion p and proportion
of predicted positives for each group p̂A [11], i.e. to enforce KLD(p, p̂A)  ✏, where KLD is convex
in p̂A. (iii) Churn: Problems where one wishes to replace a legacy model with a more accurate model
while limiting the changed predictions between the new and old models (possibly across different
slices of the user base). This is ideally framed as constraints on the win-loss ratio’s [24], which can
be expressed as ratios of rates [7]. These and related problems can be framed generally as:

min
✓2⇥

g(✓) s.t. �j (R1(✓), . . . , RK(✓))  0, 8j 2 [J ], (P2)

for some objective function g : ⇥ ! R, and J constraint functions �j : [0, 1]K ! R. We also
consider a special case of (P2) with an objective and a constraint that is a sum-of-ratios of rates:

min
✓2⇥

MX

m=1

h↵m,R(✓)i

h�m,R(✓)i
s.t.

2MX

m=M+1

h↵m,R(✓)i

h�m,R(✓)i
 �, (P3)

for coefficients ↵m,�m 2 RK
+ , 8m 2 [2M ] and slack � 2 R.

Our setup can also be used to optimize score-based metrics, such as the area under the precision-
recall curve (PR-AUC), that summarize the performance of a score model f✓ : X ! R across
multiple thresholds. We use the approach of Eban et al. [10] to (approximately) express PR-AUC as
a Riemann summation of the precision of f✓ at thresholds ⌧1, . . . , ⌧M 2 R at which the recall of f✓
is 0.5

M , 1.5
M , . . . , M�0.5

M resp. This results in a formulation similar to (P3). See Appendix E for details.

We next provide a three-player framework for solving (P1)–(P3). We note that our formulations can be
equivalently regarded as two-player games where one player is in charge of the parameters that need
to be minimized, and the other player is in charge of the parameters that need to be maximized. We
however find the three-player viewpoint to be a useful way to think about the problem algorithmically
in that the three sets of optimization parameters can use different algorithms (see Table 2).
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Table 2: Algorithms for (P1)–(P3) with 3 players. Frank-Wolfe [20], SPADE [14], NEMSIS [15] are
previous algorithms. Alg. 1–3 are the proposed methods. Each player can do Best Response (BR),
Online Gradient Descent (OGD) or Follow-The-Leader (FTL), and the game is zero-sum (ZS) or not.
The first five algorithms find an approximate Nash or Coarse-Correlated (C.C.) equilibrium assuming
 and �j’s are convex. Since (P3) is non-convex in the rates, Alg. 3 may not find an equilibrium.

Player Objective Player Strategy
Alg. P ⇠ � ✓ ⇠ � ✓ ZS Equil
F-W P1 -

�
min
⇠

L1(⇠; ·)
�
+ L2(✓; ·) L2 - FTL BR 3 Nash

SPADE P1 L1 L1 + L̃2 L̃2 BR OGD OGD 3 Nash
NEMSIS P1 -

�
min
⇠

L1(⇠; ·)
�
+ L̃2(✓; ·) L̃2 - FTL OGD 3 Nash

Alg. 1 P1-2 L1 L1 + L2 L2 BR OGD BR 3 Nash
Alg. 2 P1-2 L1 L1 + L2 L̃2 BR OGD OGD 7 C. C.
Alg. 3 P3 L1 L1 + L2 L̃2 OGD OGD OGD 7 -

3 Generalized Rate Metric Objective

We first present algorithms for the unconstrained problem in (P1). We assume  is strictly convex,
and is L-Lispchitz w.r.t. the `1-norm. For simplicity, we assume that  is monotonically increasing
in all arguments and that r (0) = 0, although our approach easily extends to more general metrics
that are e.g. monotonically increasing in some arguments and monotonically decreasing in others.

Game Formulation. We equivalently re-write (P1) to de-couple the rates Rk from the non-linear
function  by introducing auxiliary variables ⇠1, . . . , ⇠K 2 [0, 1]:

min
✓2⇥, ⇠2[0,1]K

 (⇠1, . . . , ⇠K) s.t. Rk(✓)  ⇠k, 8k 2 [K]. (1)

A standard approach for solving (1) is to write the Lagrangian for the problem with Lagrange
multipliers �1, . . . ,�K 2 R+ for the K constraints:

L(✓, ⇠;�) =  (⇠) +
KX

k=1

�k (Rk(✓) � ⇠k) =  (⇠) �
KX

k=1

�k⇠k

| {z }
L1(⇠;�)

+
KX

k=1

�k Rk(✓)

| {z }
L2(✓;�)

.

Then one maximizes the Lagrangian over � 2 RK
+ , and minimizes it over ✓ 2 ⇥ and ⇠ 2 [0, 1]K :

max
�2RK

+

min
✓2⇥

⇠2[0,1]K

L1(⇠;�) + L2(✓;�), (2)

Notice that L1 is convex in ⇠ (by convexity of  ), while L1 and L2 are linear in �. We pose this
max-min problem as a zero-sum game played with three players: a player who minimizes L1 + L2

over ✓, a player who minimizes L1 + L2 over ⇠, and a player who maximizes L1 + L2 over �. Each
of the three players can now use different optimization algorithms customized for their problem. If
additionally the Lagrangian was convex in ✓, one could solve for an equilibrium of this game and
obtain a solution for the primal problem (1). However, since L2 is a weighted sum of rates Rk(✓), it
need not be convex (or even continuous) in ✓.

To overcome this difficulty, we expand the solution space from deterministic models ⇥ to stochastic
models �⇥ [26, 23, 24, 39], and re-formulate (2) as a problem that is linear in µ, by replacing each
Rk(✓) with E✓⇠µ[Rk(✓)] in L2:

max
�2⇤

min
µ2�⇥

⇠2[0,1]K

L1(⇠;�) + L2(µ;�). (3)

Here for technical reasons, we restrict the Lagrange multipliers to a bounded set ⇤ = {� 2
R+ | k�k1  }; we will choose the radius  > 0 later in our theoretical analysis. By solving
for an equilibrium of this expanded max-min problem, we can find a stochastic model µ 2 �✓ that
minimizes  (R1(µ), . . . , RK(µ)).
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There are two approaches that we can take to find an equilibrium of the expanded game. The first
approach is to assume access to an oracle that can perform the minimization of L2 over µ for a fixed �
and ⇠. Since this is a linear optimization over the simplex, this amounts to performing a minimization
over deterministic models in ⇥. The second and more realistic approach is to work with surrogates
for the rates that are continuous and differentiable in ✓. Let R̃1, . . . , R̃K : ⇥! R be differentiable
convex surrogate functions that are upper bounds on the rates: Rk(✓)  R̃k(✓), 8✓ 2 ⇥. We assume
access to unbiased stochastic sub-gradients for the surrogatesr✓R̃k(✓) with E[r✓R̃k(✓)] 2 @✓R̃k(✓).
We then define a surrogate-based approximation for L2:

L̃2(✓;�) =
PK

k=1 �k R̃k(✓). (4)

All we need to do now is to choose the objective that each player seeks to optimize (true or surrogate
[23]) and the strategy that they use to optimize their objective, so that the players converge to an
equilibrium of the game. Each of these choices lead to a different algorithm for (approximately)
solving (P1). Table 2 summarizes different choices of strategies and objectives for the players, and
the type of equilibrium and the algorithm that results from these choices. As we shall see shortly (and
also elaborate in Appendix B.1), many existing algorithms can be seen as instances of this template.

Oracle-based Lagrangian Optimizer. As a warm-up illustration of our approach, we first describe
an idealized algorithm assuming access to an oracle that can approximately optimize L2 over ⇥ (this
oracle essentially optimizes a weighted-sum of rates, i.e. a cost-sensitive error objective [40]):
Definition 1. A ⇢-approximate cost-sensitive optimization (CSO) oracle takes � as input and outputs
a model ✓⇤ 2 ⇥ such that L2(✓⇤;�)  min✓2⇥ L2(✓;�) + ⇢.

We have all three players optimize the true Lagrangians, with the ✓-player and ⇠-player playing best
responses to the opponents strategies, i.e. they perform full optimization over their parameter space,
and the �-player running online gradient descent (OGD), an algorithm with no-regret guarantees [41].
The ✓-player performs best response by using the above oracle to approximately minimize L2 over ✓.
For the ⇠-player, the best response optimization can be computed in closed-form:
Lemma 1. Let  ⇤ : RK

+ ! R denote the Fenchel conjugate of  . Then for any � s.t. k�k1  L:

r ⇤(�) 2 argmin⇠2[0,1]K L1(⇠;�).

.The resulting algorithm outlined in Algorithm 1 is guaranteed to find an approximate Nash equilibrium
of the max-min game in (3), and yields an approximate solution to (P1):
Theorem 1. Let ✓1, . . . , ✓T be the iterates generated by Algorithm 1 for (P1), and let µ̄ be a stochastic
model with a probability mass of 1

T on ✓t. Define B� � maxt kr�L(⇠t, ✓t;�t)k2. Then setting
 = L and ⌘ = L

B�

p
2T

, we have w.p. � 1� � over draws of stochastic gradients:

 (R(µ̄))  min
µ2�⇥

 (R(µ)) + O

✓r
log(1/�)

T

◆
+ ⇢.

Remark 1 (Frank-Wolfe: a special case). A previous oracle-based approach for optimizing convex
functions of rates is the Frank-Wolfe based method of Narasimhan et al. [14]. This method can be
recovered from our framework by reformulating the �-player’s objective to include the minimization
over ⇠: LFW(�, ✓) = min⇠ L1(⇠;�)+L2(✓;�) and having the �-player play the Follow-The-Leader
(FTL) algorithm [42] to maximize this objective over �. As before, the ✓-player plays best response
on L2 using the CSO oracle. See Appendix B.1 for details, where we use recent connections between
the classical Frank-Wolfe technique and equilibrium computation [43].

Surrogate-based Lagrangian Optimizer. While the CSO oracle may be available in some special
cases (e.g. when ⇥ is finite or when the underlying conditional-class probabilities can be estimated
accurately), in many practical scenarios, it is not realistic to assume access to an oracle that can
optimize non-continuous rates. We now provide a more practical algorithm for solving (P1) where
the ✓-player optimizes the surrogate Lagrangian function L̃2 in (4) instead of L2 using stochastic
gradients r✓ L̃2(✓;�). The ⇠- and �-players, however, continue to operate on the true Lagrangian
functions L1 and L2, which are continuous in the parameters ⇠ and � that these players optimize.

In our proposed approach, outlined in Algorithm 2, both the ✓-player and �-player now run online
gradient descent algorithms, while the ⇠-player plays its best response at each iteration. Since it is
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Algorithm 1 Oracle-based Optimizer
Initialize: �0
for t = 0 to T � 1 do

if (P1) then
⇠t = r ⇤(�t)

else if (P2) then
⇠t 2 argmin⇠2[0,1]K L1(⇠;�t)

end if
✓t 2 argmin✓2⇥ L2(✓;�t) [CSO]
�t+1 = ⇧⇤

�
�t + ⌘r� L(✓t, ⇠t; �t)

�

end for
return ✓1, . . . , ✓T

Algorithm 2 Surrogate-based Optimizer
Initialize: ✓0, �0
for t = 0 to T � 1 do

if (P1) then
⇠t = r ⇤(�t)

else if (P2) then
⇠t 2 argmin⇠2[0,1]K L1(⇠;�t)

end if
✓t+1

 ⇧⇥(✓t � ⌘✓r✓L̃2(✓t; �t))
�t+1

 ⇧⇤(�t + ⌘�r�L(✓t, ⇠t; �t))
end for
return ✓1, . . . , ✓T

Figure 1: Optimizers for the unconstrained problem (P1) and constrained problem (P2). Here ⇧⇤

denotes the `1-projection onto ⇤ and ⇧⇥ denotes the `2-projection onto ⇥. We denote a (stochastic)
gradient of L byr�L(✓t, ⇠t;�t) =

PK
k=1(R̂k(✓t) � ⇠tk), where R̂k(✓t) is an unbiased estimate of

Rk(✓t). We denote a (stochastic) sub-gradient of L̃2 by r✓L̃2(✓t;�t) =
PK

k=1 �kr✓R̃k(✓t).

the ✓-player alone who optimizes a surrogate, the resulting game between the three players is no
longer zero-sum. Yet, we are able to show that the player strategies converge to an approximate
coarse-correlated (C. C.) equilibrium of the game, and yields an approximate solution to (P1).
Theorem 2. Let ✓1, . . . , ✓T be the iterates of Algorithm 2 for (P1), and let µ̄ be a stochastic model
with probability 1

T on ✓t. Let ⇥̃ be a convex set and ⇥̃ =
�
✓ 2 ⇥ | R̃(✓) 2 [0, 1]K

 
. Let

B⇥ � max✓2⇥ k✓k2, B✓ � maxt kr✓L̃2(✓t;�t)k2 and B� � maxt kr�L(⇠t, ✓t;�t)k2. Setting
 = L, ⌘✓ = B⇥

B✓

p
T

and ⌘� = L
B�

p
2T

, we have w.p. � 1� � over draws of stochastic gradients:

 
�
R(µ̄)

�
 min

✓2⇥̃
 
�
R̃(✓)

�
+ O

✓r
log(1/�)

T

◆
.

Note the right-hand side contains the optimal value for the surrogate objective  (R̃(·)) and not for
the original performance metric. This is unsurprising given the ✓-player’s inability to work with
the true rates. Also, while Algorithm 2 can be applied to optimize over a general (bounded) convex
model class ⇥, the comparator for our guarantee is a subset of models ⇥̃ ✓ ⇥ for which  (R̃(✓)) is
defined. This is needed as the surrogate R̃(✓) may output values outside the domain of  .
Remark 2 (SPADE, NEMSIS: special cases of our approach). Our approach includes two previ-
ous surrogate-based algorithms as special cases: SPADE [20] and NEMSIS [15]. SPADE can be
recovered from our framework by having the same player strategies as Algorithm 2 but with both
the ✓- and �-players optimizing surrogate objectives, i.e. with the ✓-player minimizing L̃2 and the
�-player maximizing L1 + L̃2. NEMSIS also uses surrogates for both the ✓ and � updates. It can be
recovered by having the ✓-player run OGD on L̃2, and having the �-player play FTL over � on the
combined objective min⇠ L1(⇠;�) + L̃2(✓;�). See Appendix B.1 for details.
Remark 3 (Application to wider range of metrics). Because of their strong reliance on surrogates,
SPADE and NEMSIS cannot be applied directly to functions  that take inputs from a restricted range
(e.g. KL-divergence), unless the surrogates are also bounded in the same range. In Appendix D.1,
we point out scenarios where the NEMSIS method [15] fails to optimize the KL-divergence metric,
unless the model is sufficiently regularized to not output large negative values. Algorithm 2 has no
such restriction and can be applied even if the outputs of the surrogates are not within the domain of
 . This is because it uses the original rates for updates on �. As a result, the game play between ⇠
and � never produces values that are outside the domain of  .

4 Generalized Rate Metric Constraints

We next describe how to apply our approach to the constrained optimization problem in (P2) and
to the special case in (P3). We start with (P2) assuming that the constraints �j’s are jointly convex,
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monotonic in each argument and L-Lipschitz w.r.t. the `1-norm, and g is a bounded convex function.
For convenience, we assume that the �j’s are monotonically increasing in all arguments. Constraints
on the KL-divergence and G-mean metrics are examples of this setting.

We introduce a set auxiliary variables ⇠1, . . . , ⇠K for the K rate functions and re-write (P2) as:
min

✓2⇥, ⇠2[0,1]K
g(✓)

s.t. �j (⇠1, . . . , ⇠K)  0, 8j 2 [J ], Rk(✓)  ⇠k, 8k 2 [K].

The Lagrangian for the re-written problem is given below, where �1, . . . ,�J 2 R+ and
�J+1, . . . ,�J+K 2 R+ are the Lagrange multipliers for the two sets of constraints:

L(✓, ⇠;�) =
JX

j=1

�j �
j(⇠) �

KX

k=1

�J+k ⇠k

| {z }
L1(⇠;�)

+ g(✓) +
KX

k=1

�J+k Rk(✓)

| {z }
L2(✓;�)

. (5)

As before, we expand the search space to include stochastic models in �⇥, restrict the Lagrange
multipliers to a bounded set ⇤ =

�
� 2 RJ+K

+

�� k�k1  
 

, and formulate a max-min problem:

max
�2⇤

min
µ2�⇥, ⇠2[0,1]K

L1(⇠;�) + L2(µ;�). (6)

One can now apply Algorithm 1 and 2 to this problem. For Algorithm 1, the ✓-player uses the
CSO oracle to optimize the true Lagrangian L2, and for Algorithm 2, the ✓-player uses OGD to
optimize a surrogate Lagrangian L̃2(µ;�) =

PK
k=1 �J+k R̃k(µ). In both cases, the ⇠-player plays

best response by minimizing L1 over ⇠ using an analytical solution (where available) or using a
convex optimization solver.
Theorem 3. Let ✓1, . . . , ✓T be the iterates generated by Algorithm 1 for (P2), and let µ̄ be a
stochastic model with a probability mass of 1

T on ✓t. Suppose there exists a µ0
2 �⇥ such that

�j(R(µ0))  ��, 8j 2 [J ], for some � > 0. Let Bg = max✓2⇥ g(✓). Let µ⇤
2 �⇥ be such that

µ⇤ is feasible, i.e. �j(R(µ⇤))  0, 8j 2 [J ], and E✓⇠µ⇤ [g(✓)]  E✓⇠µ [g(✓)] for every µ 2 �⇥

that is feasible. Let B� � maxt kr�L(⇠t, ✓t;�t)k2. Then setting  = 2(L+1)Bg

� and ⌘ = 
B�

p
2T

,
we have w.p. � 1� � over draws of stochastic gradients:

E✓⇠µ̄ [g(✓)]  E✓⇠µ⇤ [g(✓)] +O

✓r
log(1/�)

T
+⇢

◆
and �j(R(µ̄))  O

✓r
log(1/�)

T
+⇢

◆
, 8j.

We have thus shown that Algorithm 1 outputs a stochastic model that has an objective close to the
optimal feasible solution for (P2), while also closely satisfying the constraints.
Theorem 4. Let ✓1, . . . , ✓T be the iterates of Algorithm 1 for (P2), and let µ̄ be a stochastic model
with prob. 1

T on ✓t. Let ⇥ be convex and ⇥̃ =
�
✓ 2 ⇥ | 8j, R̃(✓) 2 [0, 1]K

 
. Let ✓̃⇤ 2 ⇥̃ be such that

it satisfies the surrogate-relaxed constraints �j(R̃(✓̃⇤))  0, 8j 2 [J ], and g(✓̃⇤)  g(✓) for every
✓ 2 ⇥̃ that satisfies the same constraints. Let B⇥ � max✓2⇥ k✓k2, B✓ � maxt kr✓L̃2(✓t;�t)k2
and B� � maxt kr�L(⇠t, ✓t;�t)k2. Then setting  = (L+ 1)T! for ! 2 (0, 0.5), ⌘✓ = B⇥

B✓

p
2T

and ⌘� = 
B�

p
2T

, we have w.p. � 1� � over draws of stochastic gradients:

E✓⇠µ̄ [g(✓)]  g(✓̃⇤) + O

✓p
log(1/�)

T 1/2�!

◆
and �j(R(µ̄))  O

✓p
log(1/�)

T!

◆
, 8j.

The proof is an adaptation of the analysis in Agarwal et al. (2018) [26] to non-zero-sum games. We
point out that despite the ✓-player optimizing surrogate functions, the final stochastic model is near-
feasible for the original rate metrics. We also note that this result holds even if the surrogates output
values outside the domain of the constraint functions �j’s (e.g. with KL-divergence constraints).
While the above convergence rate is not as good as the standard O(1/

p
T ) rate achievable for

OGD, this is similar to the guarantees shown by e.g. Agarwal et al. [26] for linear rate-constrained
optimization problems.1 The reason for the poorer convergence rate is that we are unable to fix the
radius  of the space of Lagrange multipliers ⇤ to a constant, and instead set it to a function of T .

1See Theorem 3 in their paper, where, for T = O(n4↵) iterations, the error bound is Õ(n�↵) = Õ(T�1/4).
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Algorithm 3 Surrogate-based Optimizer for (P3)
Initialize: a0, b0, ✓0, �0
for t = 0 to T � 1 do
at+1 = ⇧C (at � ⌘araLsr(✓t,at,bt;�t));
bt+1 = ⇧C (bt

� ⌘brbLsr(✓t,at,bt;�t)), where C = {a, b 2 R | a  a  b  b}
✓t+1 = ⇧⇥(✓t � ⌘✓r✓L̃sr(✓t;at,bt �t)), where L̃sr is (7) with Rk replaced with R̃k

�t+1 = ⇧⇤ (�t + ⌘�r�Lsr(✓t,at,bt; �t))
end for
return ✓1, . . . , ✓T

Remark 4 (Unanswered Question in Cotter et al.). Cotter et al. consider optimization problems
with linear rate constraints, formulate a non-zero-game like us, and consider two algorithms, one
where both the ✓- and �-player seek to minimize external regret (through OGD updates), and the
other where the ✓-player optimizes alone minimizes external regret, while the �-player minimizes
swap regret. They are however able to show convergence guarantees only for a more complicated
swap regret algorithm, and leave the analysis of the external regret algorithm unanswered. Theorem
4 provides convergence guarantees for a generalization of their external regret algorithm. In their
paper, Cotter et al. do obtain a better O(1/

p
T ) convergence rate for their swap regret algorithm.

It is easy to show a similar convergence rate for an adaptation of this algorithm to our setting (see
Appendix C), but we stick to our present algorithm because of its simplicity.

Case of Sum-of-ratios Metrics. Moving beyond convex functions of rates, we present a heuris-
tic algorithm for optimizing with objectives and constraints in (P3) that are sums-of-ratios of
rates. We assume that the numerators and denominators in each ratio term is bounded, i.e.
a  h↵m,R(✓)i  h�m,R(✓)i  b, and a  h↵0

m,R(✓)i  h�0
m,R(✓)i  b, 8✓ 2 ⇥ for

some a, b > 0. Introducing slack variables a1, . . . , a2M , b1, . . . , b2M for the numerators and denomi-
nators respectively to decouple the rates from the ratio terms, we equivalently re-write (P3):

min
✓2⇥

aambmb

MX

m=1

am
bm

s.t.
2MX

m=M+1

am
bm
 �, am � h↵m,R(✓)i, bm  h�m,R(✓)i, 8m.

We then formulate the Lagrangian for the above problem with multipliers � 2 R4M+1
+ and get:

Lsr(✓,a,b;�) =
PM

m=1 am/bm + �0
�P2M

m=M+1 am/bm � �
�

(7)

+
P2M

m=1 �m(h↵m,R(✓)i � am) +
P2M

m=1 �2M+m(bm � h�m,R(✓)i).

Because Lsr is non-convex in the slack variables a,b, strong duality may not hold, and an optimal
solution for the dual problem may not be optimal for (P3). Yet, by performing OGD updates for the
�, ✓ and the slack variables, with the ✓-player alone optimizing the surrogate rates R̃k, we obtain a
heuristic to solve (P3). The details are given in Algorithm 3.

5 Experiments

We conduct two types of experiments. In the first, we evaluate Algorithm 2 on the task of optimizing
a convex rate objective subject to linear rate constraints and show it often performs as well as an
oracle-based approach for this problem [11] (and does so without having to make an idealized oracle
assumption). In the second, we evaluate Algorithm 3 on the task of optimizing a sum-of-ratios
objective subject to sum-of-ratios constraints, and compare it against existing baselines.

Datasets. We use five datasets: (1) COMPAS, where the goal is to predict recidivism with gender as
the protected attribute [44]; (2) Communities & Crime, where the goal is to predict if a community in
the US has a crime rate above the 70th percentile [45], and we consider communities having a black
population above the 50th percentile as protected [27]; (3) Law School, where the task is to predict
whether a law school student will pass the bar exam, with race (black or other) as the protected
attribute [46]; (4) Adult, where the task is to predict if a person’s income exceeds 50K/year, with
gender as the protected attribute [45]; (5) Wiki Toxicity, where the goal is to predict if a comment
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Table 3: Optimizing KL-divergence fairness metric s.t. error rate constraints. For each method, we
report two metrics: A (B), where A is the test fairness metric (lower is better) and B is the ratio of the
test error rate of the method and that of UncError (lower is better). During training, we constrain B to
be  1.1. Among the last 3 columns, the lowest fairness metric is highlighted in bold.

UncError PostShift COCO Stochastic Determ.
COMPAS 0.115 (1.00) 0.000 (1.01) 0.043 (1.01) 0.000 (1.03) 0.000 (1.03)
Crime 0.224 (1.00) 0.005 (1.40) 0.252 (0.83) 0.120 (1.11) 0.146 (1.08)
Law 0.199 (1.00) 0.001 (1.45) 0.043 (1.05) 0.054 (1.12) 0.056 (1.08)
Adult 0.114 (1.00) 0.000 (1.22) 0.011 (1.10) 0.014 (1.10) 0.014 (1.10)
Wiki 0.175 (1.00) 0.001 (1.21) 0.134 (1.17) 0.133 (1.09) 0.127 (1.18)

Table 4: Optimizing F-measure s.t. F-measure constraints. For each method, we report two metrics:
A (B), where A is the overall test F-measure (higher is better) and B is the test constraint violation:
Fmeasureptr � Fmeasureother � 0.02 (lower is better). The lowest constraint violation is in italic.

UncError UncF1 Stochastic Determ.
COMPAS 0.656 (0.13) 0.666 (0.09) 0.627 (0.07) 0.628 (0.07)
Crime 0.742 (0.19) 0.752 (0.19) 0.711 (0.11) 0.711 (0.11)
Law 0.973 (0.10) 0.975 (0.08) 0.927 (0.04) 0.842 (-0.05)
Adult 0.675 (0.03) 0.688 (0.06) 0.660 (0.04) 0.647 (0.03)
Wiki 0.968 (0.18) 0.967 (0.18) 0.826 (0.00) 0.782 (-0.05)

posted on a Wikipedia talk page contains non-toxic/acceptable content, with the comments containing
the term ‘gay’ considered as a protected group [47]. We use linear models, and hinge losses as
surrogates R̃k. All implementations are in Tensorflow.2 See Appendix G for additional details.

KL-divergence Based Fairness Objective. We consider a demographic-parity style fairness objec-
tive that seeks to match the proportion of positives predicted in each group p̂G with the true proportion
of positives p in the data, measured using a KL-divergence metric:

P
G2{0,1} KLD(p, p̂G). Note that

this is convex in p̂G. We additionally enforce a constraint that the error rate of the model is no more
than 10% higher than an unconstrained model that optimizes error rate, i.e. ˆerr(f✓)  1.1 ˆerr(func).
The only previous method that we are aware of that can handle constrained problems of this form
is the COCO method of Narasimhan (2018) [11]. This is an oracle-based approach and uses a
plug-in method to implement the cost-sensitive oracle. We compare Algorithm 2 with COCO, and the
post-shift method of Hardt et al. (2016) [48], where we take a pre-trained logistic regression model
and assign different thresholds to the groups to correct for fairness disparity [48]. For our algorithm,
we report the performance of both the trained stochastic classifier and the best deterministic classifier
chosen through a ‘best iterate’ heuristic of Cotter et al. (2019) [23]. The results are shown in Table 3.
PostShift performs the best on the fairness metric, but on all datasets except COMPAS, fairs poorly
on the constraint. The proposed method and COCO achieve different trade-offs between optimizing
the objective and satisfying the error rate constraint. The stochastic classifier trained by our method
closely satisfies the constraint on almost all datasets, and yields a lower objective than COCO on
three datasets. Moreover, the best deterministic classifier often has a similar performance to the
stochastic classifier. We present further analysis and additional comparisons in Appendix G.1.

F-measure Based Parity Constraints. We consider the fairness goal of training a classifier that
yields at least as high a F-measure for the protected group as it does for the rest of the population,
and impose this as a constraint. We seek to maximize the overall F-measure subject to the constraint:
Fmeasureptr � Fmeasureother � 0.02. We apply Algorithm 3 and compare it with an unconstrained
classifier that optimizes error rate (UncError) and a plug-in classifier that optimizes the F-measure
without constraints (UncF1). As seen in Table 4, while UncF1 yields a better objective than UncError,
both the baselines fail to satisfy the constraint. On four of the datasets, the stochastic classifier trained
by our approach yields moderate to significant reduction in constraint violation. On Adult, the trained
stochastic classifier yields a very small constraint violation on the training set (0.004), but does
not perform as well on the test set. The deterministic classifiers have an equal or lower constraint
violation compared to the stochastic classifiers, but at the cost of a lower objective.

2 https://github.com/google-research/google-research/tree/master/generalized_rates
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