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ABSTRACT

Deep learning models are known to be vulnerable to adversarial examples. A prac-
tical adversarial attack should require as little as possible knowledge of attacked
models. Current substitute attacks need pre-trained models to generate adversar-
ial examples and their attack success rates heavily rely on the transferability of
adversarial examples. Current score-based and decision-based attacks require lots
of queries for the attacked models. In this study, we propose a novel adversarial
imitation attack. First, it produces a replica of the attacked model by a two-player
game like the generative adversarial networks (GANs). The objective of the gen-
erative model is to generate examples which lead the imitation model returning
different outputs with the attacked model. The objective of the imitation model is
to output the same labels with the attacked model under the same inputs. Then,
the adversarial examples generated by the imitation model are utilized to fool the
attacked model. Compared with the current substitute attacks, imitation attack
can use less training data to produce a replica of the attacked model and improve
the transferability of adversarial examples. Experiments demonstrate that our im-
itation attack requires less training data than the black-box substitute attacks, but
achieves an attack success rate close to the white-box attack on unseen data with
no query.

1 INTRODUCTION

Deep neural networks are often vulnerable to imperceptible perturbations of their inputs, causing
incorrect predictions (Szegedy et al., 2014). Studies on adversarial examples developed attacks and
defenses to assess and increase the robustness of models, respectively. Adversarial attacks include
white-box attacks, where the attack method has full access to models, and black-box attacks, where
the attacks do not need knowledge of models structures and weights.

White-box attacks need training data and the gradient information of models, such as FGSM (Fast
Gradient Sign Method) (Goodfellow et al., 2015), BIM (Basic Iterative Method) (Kurakin et al.,
2017a) and JSMA (Jacobian-based Saliency Map Attack) (Papernot et al., 2016b). However, the
gradient information of attacked models is hard to access, the white-box attack is not practical in
real-world tasks. Literature shows adversarial examples have transferability property and they can
affect different models, even the models have different architectures (Szegedy et al., 2014; Papernot
et al., 2016a; Liu et al., 2017). Such a phenomenon is closely related to linearity and over-fitting of
models (Szegedy et al., 2014; Hendrycks & Gimpel, 2017; Goodfellow et al., 2015; Tramèr et al.,
2018). Therefore, substitute attacks are proposed to attack models without the gradient information.
Substitute black-box attacks utilize pre-trained models to generate adversarial examples and apply
these examples to attacked models. Their attack success rates rely on the transferability of adver-
sarial examples and are often lower than that of white-box attacks. Black-box score-based attacks
(Chen et al., 2017; Ilyas et al., 2018a;b) do not need pre-trained models, they access the output
probabilities of the attacked model to generate adversarial examples iteratively. Black-box decision-
based attacks (Brendel et al., 2017; Cheng et al., 2018; Chen et al., 2019) require less information
than the score-based attacks. They utilize hard labels of the attacked model to generate adversarial
examples.

Adversarial attacks need knowledge of models. However, a practical attack method should require as
little as possible knowledge of attacked models, which include training data and procedure, models
weights and architectures, output probabilities and hard labels (Athalye et al., 2018). The disadvan-
tage of current substitute black-box attacks is that they need pre-trained substitute models trained by
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the same dataset with attacked model T (Hendrycks & Gimpel, 2017; Goodfellow et al., 2015; Ku-
rakin et al., 2017a) or a number of images to imitate the outputs of T to produce substitute networks
(Papernot et al., 2017). Actually, the prerequisites of these attacks are hard to obtain in real-world
tasks. The substitute models trained by limited images hardly generate adversarial examples with
well transferability. The disadvantage of current decision-based and score-based black-box attacks
is that every adversarial example is synthesized by numerous queries.

Hence, developing a practical attack mechanism is necessary. In this paper, we propose an adver-
sarial imitation training, which is a special two-player game. The game has a generative model G
and a imitation model D. The G is designed to produce examples to make the predicted label of
the attacked model T and D different, while the imitation model D fights for outputting the same
label with T . The proposed imitation training needs much less training data than the T and does not
need the labels of these data, and the data do not need to coincide with the training data. Then, the
adversarial examples generated by D are utilized to fool the T like substitute attacks. We call this
new attack mechanism as adversarial imitation attack. Compared with current substitute attacks, our
adversarial imitation attack requires less training data. Score-based and decision-based attacks need
a lot of queries to generate each adversarial attack. The similarity between the proposed method
and current score-based and decision-based attacks is that adversarial imitation attack also needs to
obtain a lot of queries in the training stage. The difference between these two kinds of attack is
our method do not need any additional queries in the test stage like other substitute attacks. Experi-
ments show that our proposed method achieves state-of-the-art performance compared with current
substitute attacks and decision-based attack. We summarize our main contributions as follows:

• The proposed new attack mechanism needs less training data of attacked models than cur-
rent substitute attacks, but achieves an attack success rate close to the white-box attacks.

• The proposed new attack mechanism requires the same information of attacked models
with decision attacks on the training stage, but is query-independent on the testing stage.

2 RELATED WORK

Adversarial Scenes Adversarial attacks happen in two scenes, namely the white-box and the
black-box settings. In the white-box settings, the attack method has complete access to attacked
models, such as models internal, training strategy and data. While in the black-box settings, the
attack method has little knowledge of attacked models. The black-box attack utilizes the transfer-
ability property of adversarial examples, only needs the labeled training data, but its attack success
rate is often lower than that of the white-box attack method if attacked models have no defense.
Actually, attack methods requiring lots of prior knowledge of attacked models are difficult to apply
in practical applications (Athalye et al., 2018).

Adversarial Attacks Several methods for generating adversarial examples were proposed. Good-
fellow et al. (2015) proposed a one-step attack called FGSM. On the basis of the FGSM, Kurakin
et al. (2017a) came up with BIM, an iterative optimization-based attack. Another iterative attack
called DeepFool (Moosavi-Dezfooli et al., 2016) aims to find an adversarial example that would
cross the decision boundary. Carlini & Wagner (2017b) provided a stronger attack by simultane-
ously minimizing the perturbation and the LF norm of the perturbation. Rony et al. (2018) gener-
ated adversarial examples through decoupling the direction and the norm of the perturbation, which
is also constrained by the LF norm. Liu et al. (2017) showed that targeted adversarial examples
hardly have transferability, they proposed ensemble-based methods to generate adversarial exam-
ples having stronger transferability. Papernot et al. (2017) proposed a practical black-box attack
which accesses the hard label to train substitute models. For score-based attacks, Chen et al. (2017)
proposed the zeroth-order based attack (ZOO) which uses gradient estimates to attack a black-box
model. Ilyas et al. (2018b) improves the way to estimate gradients. Guo et al. (2019) proposed
a simple black-box score-based attack on DCT space. For decision-based attacks, Brendel et al.
(2017) first proposed decision-based attacks which do not rely on gradients. Cheng et al. (2018) and
Chen et al. (2019) improve the query efficiency of the decision-based attack.

Adversarial Defenses To increase the robustness of models, methods for defending against ad-
versarial attacks are being proposed. Adversarial training (Szegedy et al., 2014; Madry et al., 2018;
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Kurakin et al., 2017b; Tramèr et al., 2018) can be considered as a kind of data augmentation. It ap-
plies adversarial examples to the training data, resulting in a robust model against adversarial attacks.
Defenses based on gradient masking (Tramèr et al., 2018; Dhillon et al., 2018) provide robustness
against optimization-based attacks. Random transformation (Kurakin et al., 2017a; Meng & Chen,
2017; Xie et al., 2018) on inputs of models hide the gradient information, eliminate the perturba-
tion. Buckman et al. (2018) proposed thermometer encoding based on one-hot encoding, it applied
a nonlinear transformation to inputs of models, aiming to reduce the linearity of the model. How-
ever, most defenses above are still unsafe against some attacks (Carlini & Wagner, 2017a; He et al.,
2017). Especially Athalye et al. (2018) showed that defenses based on gradient masking actually are
unsafe against attacks. Instead, some researchers focus on detecting adversarial examples. Some use
a neural network (Gong et al., 2017; Grosse et al., 2017; Metzen et al., 2017) to distinguish between
adversarial examples and clean examples. Some achieve statistical properties (Bhagoji et al., 2017;
Hendrycks & Gimpel, 2017; Feinman et al., 2017; Ma et al., 2018; Papernot & McDaniel, 2018) to
detect adversarial examples.

3 IMITATION ATTACK

In this section, we introduce the definition of adversarial examples and then propose a new attack
mechanism based on adversarial imitation training.

3.1 ADVERSARIAL EXAMPLES

X refers to the samples from the input space of the attacked model T , ytrue refers to the true labels
of the samples X. T (y|X, θ) is the attacked model parameterized by θ. For a non-targeted attack,
the objective of the adversarial attack can be formulated as:

min
ε
‖ε‖ subject to argmax

yi

T (yi|X = X+ ε, θ) 6= ytrue

and ‖ε‖ ≤ r,
(1)

where the ε and r are perturbation of the sample and upper bound of the perturbation, respectively.
To guarantee that ε is imperceptible, r is set to a small value in applications. X = X + ε are the
adversarial examples which can fool the attacked model T . θ refers to the parameters of the model
T .

For white-box attacks, they obtain gradient information of T to generate adversarial examples, and
attack the T directly. For substitute attacks, they generate adversarial examples from a substitute
model T̂ , and transfer the examples to attack the T . The key point of a successful attack is the
transferability of the adversarial examples.

To improve the transferability of adversarial examples and avoid output query, we utilize an imi-
tation network to imitate the characteristics of the T by accessing its output labels to improve the
transferability of adversarial examples, which are generated by the imitation network. After the
adversarial imitation training, adversarial examples generated by imitation network do not need ad-
ditional query. In the next subsection, we introduce the proposed adversarial imitation training and
imitation attack.

3.2 ADVERSARIAL IMITATION TRAINING

Inspired by the generative adversarial network (GAN) (Goodfellow et al., 2014), we use the ad-
versarial framework to copy the attacked model. We propose a two-player game based adversarial
imitation training to replicate the information of attacked model T , which is shown in Figure 1. To
learn the characteristics of T , we define an imitation network D, and train it using disturbed input
X̂ = G(X) +X and the corresponding output label yT (X̂) of attacked model. X denotes training
samples here. The role of G is to create new samples that yT (X̂) 6= yD(X̂). Thus, D, G and T
play a special two-player game. To simplify the expression but without loss of generality, we just
analyze the case of binary classification. The value function of players can be presented as:
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Figure 1: The proposed adversarial imitation attack. For the training stage, the objective of G is to
generate samples X̂ = G(X) + X and let yD(X̂) 6= yT (X̂). The objective of D is to guarantee
yD(X̂) = yT (X̂). For the testing stage, the imitation model D is utilized to generate adversarial
examples to attack T .

max
G

min
D

VG,D = −yT (X̂)logD(X̂)− (1− yT (X̂))log(1−D(X̂))

subject to X̂ = G(X) +X.
(2)

Note that the T is equivalent to the referee of this game. The two players G and D optimize their
parameters based on the output yT (X̂). We suppose that adversarial perturbation ε ≤ r1, and
∀ X̂ = G(X) +X, ‖G(X)‖ ≤ r2, r1 ≤ r2. If the D can achieve yD(X̂) = yT (X̂), our imitation
attack will have the same success rate as the white-box attack without the gradient information
of T . Therefore, for a well-trained imitation network, adversarial examples generated by D have
strong transferability for T . A proper upper bound (r2 ≥ r1) of G(X) is the key points for training
an efficient imitation network D. Especially in targeted attacks (T outputs the specified wrong
label), if the characteristics of D is more similar to that of the attacked model, the transferability of
adversarial examples will be stronger.

In the training stage, the loss function of D is JD = VG,D. Because G is more hard to train
than D, sometimes the ability of D is much stronger than G, so the loss of G fluctuates during
the training stage. In order to maintain the stability of training, the loss function of G is designed
as JG = e−VG,D . Therefore, the global optimal imitation network D is obtained if and only if
∀ X̂, D(X̂) = yT (X̂). At this point, JD = 0 and JG = e0 = 1. The loss of G is always in a
controllable value in training stage.

As we discussed before, if r1 ≤ r2, the adversarial examples generated by a well-trained D have
strong transferability for T . Because the attack perturbation ε of adversarial examples is set to be
a small value, we constrain the ‖G(X)‖ in training stage to limit the search space of G, which can
reduce the number of queries efficiently.

For training methodology, we alternately train the G and D in every mini-batch, and use L2 penalty
to constrain the search space of G. The procedure is shown in algorithm 1.

Algorithm 1 Mini-batch stochastic gradient descent training of imitation network.

1 : for number of training iterations do
2 : Sample mini-batch of m examples{X(1), . . . ,X(m)} from training set.
3 : Update the imitation model by descending its loss function :

4 : −yT (X̂)logD(X̂)− (1− yT (X̂))log(1−D(X̂)).
5 : Update the generative model by descending its loss function :

6 : e−VG,D + α‖G(X̂)‖.
7 : end for

In adversarial attacks, when the optimal D is obtained, the adversarial examples generated by D are
utilized to attack T .
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4 EXPERIMENTS

4.1 EXPERIMENT SETTING

In this subsection, we introduce the settings for our experiments.

Datasets: we evaluate our proposed method on MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky & Hinton, 2009). Because we need to use data different with the training set of T
to train the imitation network, we divided the test sets (10k) from MNIST and CIFAR-10 into two
parts. One part contains 9500 images for training and another part contains 500 images for evaluat-
ing the attack performance.

Model architecture and attack method: in order to get the information of the attacked model T as
little as possible, we only utilize the output label (not the probability) of the T to train the imitation
network. The imitation network has no prior knowledge of the attacked model, which means it does
not load any pre-trained model in experiments. For the experiments on MNIST, we design 3 different
network architectures with different capacity (small network, medium network and large network)
for evaluating the performance of our imitation attack with models having different capacity. We
utilize the pre-trained medium network and VGG-16 (Simonyan & Zisserman, 2015) as the attacked
model on MNIST and CIFAR-10, respectively. In order to compare the success rate of the proposed
imitation attack with current substitute attack, we utilize 4 attack methods, FGSM, BIM, projected
gradient descent (PGD) (Madry et al., 2018), C&W to generate adversarial examples. For testing,
we use AdverTorch library (Ding et al., 2019) to generate adversarial examples. On the other hand,
for comparing the performance of our method with current decision-based attacks and score-based
attacks, we utilize Boundary Attack (Brendel et al., 2017), HSJA Attack (Chen et al., 2019), SimBA-
DCT Attack (Guo et al., 2019) as comparison methods. Note that score-based attacks require output
probabilities of T , which contain much more information than labels.

Evaluation criteria: the goals of non-targeted attack and targeted attack are to lead the attacked
model to output a wrong label and a specific wrong label, respectively. In non-targeted attacks, we
only generate adversarial examples on the images classified correctly by the attacked model. In
targeted attacks, we only generate adversarial examples on the images which are not classified to the
specific wrong labels. The success rates of adversarial attack are calculated by n/m, where n and
m are the number of adversarial examples which can fool the attacked model and the total number
of adversarial examples, respectively.

4.2 EXPERIMENTAL ANALYSIS OF ADVERSARIAL ATTACK

In this subsection, we utilize the proposed adversarial imitation training to train imitation models
and evaluate the performance in terms of attack success rate.

To compare our method with substitute attack, We utilize the medium network and VGG-16 as
attacked models on MNIST and CIFAR-10, respectively. Then we use the same train dataset to
obtain a pre-trained large network (the architecture is also in Table 9) and ResNet-50 (He et al., 2016)
to generate substitute adversarial examples. We obtain imitation networks by using the proposed
adversarial imitation training. The large network and ResNet-16 are used as the model architectures
of imitation networks on MNIST and CIFAR-10, respectively. The imitation models are only trained
by 9500 samples of the test dataset, which are much less than the training sets of MNIST (60000
samples) and CIFAR-10 (50000 samples). The results of experiments are evaluated on the other 500
samples of the test dataset and are shown in Table 1 and Table 2. The success rates of the proposed
imitation attack far exceed the success rates of the substitute attack in all experiments.

The experiments of Table 1 and Table 2 show that the proposed new attack mechanism needs less
training images than substitute attacks, but achieves an attack success rate close to the white-box
attack. The experiments indicate that the adversarial samples generated by a well-trained imitation
model have a higher transferability than the substitute attack.

To compare our method with decision-based and score-based attacks, we evaluate the performance
of these attacks. We utilize 9500 images from the test set of MNIST and CIFAR-10 to train the
imitation network, and use other 500 images from the test set as unseen data for our method. The
other decision-based and score-based attacks are evaluated on the test set of MNIST and CIFAR-10
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Table 1: Performance of the proposed imitation attack compared with the white-box attacks and
substitute attacks on MNIST. The architectures of networks are shown in Table 9. “White-box”:
generate adversarial examples from the attacked medium network. “Substitute”: generate adversar-
ial examples from the pre-trained large network. “Imitation”: generate adversarial examples from
the imitation large network. The numbers in ( ) denote the average LF perturbation distance per
image.

Attack Non-targeted (%) Targeted (%)
White-box Substitute Imitation White-box Substitute Imitation

FGSM 82.90 (5.17) 57.55 (5.17) 75.45 (4.78) 29.91 (5.25) 15.81 (5.25) 33.85 (5.17)
BIM 86.52 (3.45) 45.47 (3.45) 70.62 (3.21) 39.96 (3.45) 14.03 (3.45) 28.51 (3.53)
PGD 65.79 (3.76) 28.17 (3.76) 49.70 (3.68) 22.32 (3.84) 7.80 (3.84) 15.37 (3.84)
CW 81.89 (3.06) 38.63 (2.90) 66.00 (3.14) 43.08 (1.88) 14.25 (1.56) 37.32 (1.88)

Table 2: Performance of the proposed imitation attack compared with the white-box attacks and
substitute attacks on CIFAR-10. The attacked model is VGG-16.

Attack Non-targeted (%) Targeted (%)
White-box Substitute Imitation White-box Substitute Imitation

FGSM 84.87(2.73) 39.29 (2.73) 81.30 (2.73) 41.42 (1.66) 8.22 (1.66) 32.65 (1.66)
BIM 98.96 (1.08) 47.27 (1.01) 97.06 (1.14) 67.82 (0.92) 14.38 (0.83) 62.56 (0.95)
PGD 67.44 (1.11) 30.25 (1.14) 67.02 (1.29) 28.17 (0.98) 6.39 (1.01) 25.57 (1.04)
CW 97.69 (1.35) 38.66 (1.35) 70.40 (1.38) 68.60 (1.51) 20.78 (1.41) 45.43 (1.51)

dataset. Note that score-based attacks require much more information (output probabilities) than
decision-based attacks (output labels). The results on MNIST and CIFAR-10 are shown in Table 3
and Table 4, respectively. Because our imitation attack only needs queries on the training stage, we
evaluate performances of our method on its train and unseen sets. We set the iteration of adversarial
imitation training to 1800, so the average number of query per image is 1800. We utilize BIM attack
to generate adversarial examples as our imitation attack in this experiment.

This experiment shows that our imitation attack achieves state-of-the-art performance in decision-
based methods. Even compared with the score-based attack, our imitation attack outperforms it in
terms of perturbation distance and attack success rate. More importantly, it also obtains good results
on unseen data, which indicates our imitation attack can be applied to query-independent scenarios.

4.3 EXPERIMENTAL ANALYSIS OF NETWORK CAPACITY

In the above subsection, we utilize a more complex network than the attacked model to replicate the
attacked model. In this subsection, we study the impact of model capacity on the ability of imitation.

To evaluate the imitation performance of the network with less capacity than the attacked model,
we train the small network, medium network, and large network to imitate the pre-trained medium
network on MNIST dataset, and train VGG-13, VGG-16 and ResNet-50 to imitate VGG-16 on
CIFAR-10. The performance of models with different capacities are shown in Table 5 and 6. The
results show that an imitation model with a lower capacity than the attacked model can also achieve
a good imitation performance. Attack success rates of all imitation models far exceed the substitute
attacks in Table 1 and 2. Most experiments show that the larger capacity the imitation network has,
the higher attack success rate it can achieve (FGSM, BIM, PGD in MNIST and BIM in CIFAR-
10). However, some experiments show models having a larger capacity do not have a higher attack
success rate (FGSM and PGD in CIFAR-10). We surmise that the performance of imitating an
attacked model is not only influenced by the capacity of the imitation model D, but also influenced
by the capability of the G.

4.4 EXPERIMENTAL ANALYSIS OF MODEL REPLICATION

In this subsection, we only use 200 images (20 samples per class) to train the imitation networks
and discuss characteristics of the model replication.
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Table 3: Performance of the proposed imitation attack compared with the decision-based and score-
based attacks on MNIST. “Query”: the average number of queries of attacks. “LF ”: the average
LF distance per image. “imitation-train”: the performance of imitation attack on its training data.
“imitation-unseen”: the performance of imitation attack on other unseen data.

Attack Non-targeted Targeted
Query LF Success rate Query LF Success rate

Score-based
SimBA 752.32 5.41 96.78% 879.86 3.53 82.63%

Decision-based
Boundary 2830.44 9.49 100.0% 2613.31 11.05 81.30%
HSJA 4679.57 6.59 100.0% 2113.06 6.27 75,67
Imitation-train 1800.00 4.94 99.62% 1800.00 5.33 84.36%
Imitation-unseen — 4.94 99.52% — 5.41 82.62%

Table 4: Performance of the proposed imitation attack compared with the decision-based and score-
based attacks on CIFAR-10.

Attack Non-targeted Targeted
Query LF Success rate Query LF Success rate

Score-based
SimBA 501.65 1.76 99.37% 489.90 2.06 84.16%

Decision-based
Boundary 1937.02 3.26 100.0% 1837.01 6.02 35.59%
HSJA 2206.55 2.59 100.0% 1527.84 1.12 32.53%
Imitation-train 1800.00 1.29 99.87% 1800.00 1.19 87.76%
Imitation-unseen — 1.29 99.58% — 1.19 85.62%

Table 5: Performance of the imitation networks with different capacity on MNIST. The attacked
model is pre-trained medium network. The architectures of networks are shown in Table 9. The
adversarial examples generated by the same attack methods have the same perturbation distance.

Attack Non-targeted (%) Targeted (%)
Small net Medium net Large net Small net Medium net Large net

FGSM 69.82 63.98 75.45 33.18 28.06 33.85
BIM 61.17 57.75 70.62 21.36 18.71 28.51
PGD 42.45 39.84 49.70 10.45 10.47 91.67

We train the imitation network using 200 images from MNIST and CIFAR-10 test set, and compare
its performance with Practical Attack (Papernot et al., 2017) on other images from MNIST and
CIFAR-10 test set. The results are shown in Table 7 and 8. The practical attack uses the output
labels of attacked models to train substitute models under the scenario, which they can make an
infinite number of queries for attacked models. It is hard to generate adversarial examples to fool
the attacked models by limited training samples. Note that what the substitute models imitate is the
response for perturbations of the attacked model. A substitute model that can generate adversarial
examples with a higher attack success rate is a better replica. Our adversarial imitation attack can
produce a substitute model with much higher classification accuracy and attack success rate than
Practical Attack for both non-targeted and targeted attacks in this scenario (with an infinite number
of queries). We also show the performances of these two methods with limited query numbers
in Figure 6. Additionally, the imitation model with low classification accuracy still can produce
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Table 6: Performance of the imitation networks with different capacity on CIFAR-10. The attacked
model is pre-trained VGG-16. The adversarial examples generated by the same attack methods have
the same perturbation distance.

Attack Non-targeted (%) Targeted (%)
VGG-13 VGG-16 ResNet-50 VGG-13 VGG-16 ResNet-50

FGSM 73.11 85.92 81.30 20.57 26.91 32.65
BIM 81.72 96.85 97.06 38.51 58.21 62.56
PGD 45.59 70.59 67.02 14.22 27.79 25.57

Table 7: Comparisons between imitation model and other substitute models. “Accuracy”: the clas-
sification accuracy on other images from test set. The numbers in ( ) denote the average LF pertur-
bation distance per image.

Non-targeted (%)
Training data Accuracy BIM FGSM PGD

Practical 200 (test set) 80.43 14.08 (4.94) 9.41 (5.10) 2.63 (3.81)
Imitation 200 (test set) 97.68 71.03 (4.94) 45.17 (5.12) 14.81 (3.78)

Targeted (%)
Training data Accuracy BIM FGSM PGD

Practical 200 (test set) 80.43 2.51 (4.84) 2.51 (5.14) 1.11 (4.60)
Imitation 200 (test set) 97.68 26.65 (5.01) 11.81 (5.23) 15.66 (4.69)

Table 8: Comparisons between imitation model and other substitute models. “Accuracy”: the clas-
sification accuracy on other images from test set.

Non-targeted (%)
Training data Accuracy BIM FGSM PGD

Practical 200 (test set) 29.83 2.31 (1.66) 3.15 (1.65) 2.73 (1.07)
Imitation 200 (test set) 71.09 64.50 (1.32) 45.59 (1.65) 20.80 (1.05)

Targeted (%)
Training data Accuracy BIM FGSM PGD

Practical 200 (test set) 29.83 1.14 (1.69) 0.91 (1.65) 0.68 (1.26)
Imitation 200 (test set) 71.09 23.06 (1.23) 10.73 (1.65) 12.10 (1.17)

adversarial examples that have well transferability. It shows that our adversarial imitation training
can efficiently steal the information from the attacked model of their classification characteristics
under perturbations.

5 CONCLUSION

Practical adversarial attacks should have as little as possible knowledge of attacked model T . Cur-
rent black-box attacks need numerous training images or queries to generate adversarial images. In
this study, to address this problem, we combine the advantages of current black-box attacks and pro-
posed a new attack mechanism, imitation attack, to replicate the information of the T , and generate
adversarial examples fooling deep learning models efficiently. Compared with substitute attacks,
imitation attack only requires much less data than the training set of T and do not need the labels
of the training data, but adversarial examples generated by imitation attack have stronger transfer-
ability for the T . Compared with score-based and decision-based attacks, our imitation attack only
needs the same information with decision attacks, but achieves state-of-the-art performances and is
query-independent on testing stage. Experiments showed the superiority of the proposed imitation
attack. Additionally, we observed that deep learning classification model T is easy to be stolen by
limited unlabeled images, which are much fewer than the training images of T . In future work, we
will evaluate the performance of the proposed adversarial imitation attack on other tasks except for
image classification.
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A NETWORK ARCHITECTURES

Table 9: Network architectures for MNIST. Convolutional kernel (A×B,C) denotes the kernel size
and channel number, respectively.

ConvBlock Small net Medium net Large net
ConvLayer (A×B,C) ConvBlock (5× 5, 20) ConvBlock (5× 5, 20) ConvBlock (5× 5, 20)

ReLU ConvBlock (5× 5, 50) ConvBlock (5× 5, 50) ConvBlock (5× 5, 50)
MaxPooling (2× 2) DenseLayer ConvBlock (3× 3, 50) ConvBlock (3× 3, 50)

ReLU DenseLayer ConvBlock (3× 3, 50)
DenseLayer ReLU DenseLayer

Sigmoid DenseLayer ReLU
Sigmoid DenseLayer

Sigmoid

Table 10: Network architectures for generative model in our experiments.

Layers Parameter
ConvLayer kernel: 3× 3, stride: 1, padding:1, channel: 128
BatchNorm
LeakyReLU
ConvLayer kernel: 3× 3, stride: 1, padding:1, channel: 512
BatchNorm
LeakyReLU
ConvLayer kernel: 3× 3, stride: 1, padding:1, channel: 256
BatchNorm
LeakyReLU
ConvLayer kernel: 3× 3, stride: 1, padding:1, channel: 128
BatchNorm
LeakyReLU
ConvLayer kernel: 3× 3, stride: 1, padding:1, channel: 64
BatchNorm
LeakyReLU
ConvLayer kernel: 3× 3, stride: 1, padding:1, channel: 3
BatchNorm
LeakyReLU
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B VISUALIZATION OF ADVERSARIAL EXAMPLES

In this section, we visualize the adversarial examples generated by the imitation model. The results
are shown in Figure 2 and Figure 3. The experiments show that adversarial examples generated by
the proposed imitation attack can fool the attacked model with a small perturbation.

FGSM

Origin

BIM

PGD

Figure 2: Visualization of some adversarial examples generated by the imitation model on MNIST.
Original examples are in the first row. Examples from the second row to the third row are generated
through FGSM, BIM, PGD, respectively.

FGSM

Origin

BIM

PGD

Figure 3: Visualization of some adversarial examples generated by the imitation model on CIFAR-
10. Original examples are in the first row. Examples from the second row to the third row are
generated through FGSM, BIM, PGD, respectively.
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C VISUALIZATION OF DISTURBANCES GENERATED BY GENERATOR IN
TRAINING STAGE

In this section, we visualize the disturbances generated by generator in training stage.

(a) Original images

(b) Generated disturbances

(c) Training samples for the imitation network

Figure 4: Visualization of some disturbances generated by the generator in training stage. The clean
images added with the disturbances are used to train the imitation network.
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D ACCURACY CURVE OF THE IMITATION MODEL ON TRAINING STAGE
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Figure 5: Accuracy curve of the imitation model on the 500 testing samples of MNIST and CIFAR-
10 in adversarial imitation training. The number of training samples is 9500. We show the raw data
without filtering.
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E COMPARISON OF ATTACK SUCCESS RATE BETWEEN THE PROPOSED
METHOD AND THE PRACTICAL METHOD
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Figure 6: Comparison of attack success rate between the proposed method and the practical method
on the early training stage.
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