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ABSTRACT

The objective in deep extreme multi-label learning is to jointly learn feature repre-
sentations and classifiers to automatically tag data points with the most relevant
subset of labels from an extremely large label set. Unfortunately, state-of-the-
art deep extreme classifiers are either not scalable or inaccurate for short text
documents. This paper develops the DeepXML algorithm which addresses both
limitations by introducing a novel architecture that splits training of head and tail
labels. DeepXML increases accuracy by (a) learning word embeddings on head
labels and transferring them through a novel residual connection to data impov-
erished tail labels; (b) increasing the amount of negative training data available
by extending state-of-the-art negative sub-sampling techniques; and (c) re-ranking
the set of predicted labels to eliminate the hardest negatives for the original clas-
sifier. All of these contributions are implemented efficiently by extending the
highly scalable Slice algorithm for pretrained embeddings to learn the proposed
DeepXML architecture. As a result, DeepXML could efficiently scale to problems
involving millions of labels that were beyond the pale of state-of-the-art deep
extreme classifiers as it could be more than 10x faster at training than XML-CNN
and AttentionXML. At the same time, DeepXML was also empirically determined
to be up to 19% more accurate than leading techniques for matching search engine
queries to advertiser bid phrases. Source code for DeepXML can be downloaded
from (Anonymous, 2019).

1 INTRODUCTION

Objective: This paper develops the DeepXML algorithm for deep extreme multi-label learning
applied to short text documents such as web search engine queries. DeepXML is demonstrated to
be significantly more accurate and an order of magnitude faster to train than state-of-the-art deep
extreme classifiers XML-CNN (Liu et al., 2017) and AttentionXML (You et al., 2018). As a result,
DeepXML could efficiently train on problems involving millions of labels on a single GPU that were
beyond the scaling capabilities of leading deep extreme classifiers. This allowed DeepXML to be
applied to the problem of matching millions of advertiser bid phrases to a user’s query on a popular
web search engine where it was found to increase prediction accuracy by more than 19 percentage
points as compared to the leading techniques currently in production.

Deep extreme multi-label learning: The objective in deep extreme multi-label learning is to learn
feature representations and classifiers to automatically tag data points with the most relevant subset
of labels from an extremely large label set. Note that multi-label learning is a generalization of
multi-class classification which aims to predict a single mutually exclusive label.

Notation: Throughout the paper: N refers to number of training points, d refers to representation
dimension, and L refers to number of labels. Additionaly, Y refers to the label matrix where yij = 1
if jth label is relevant to ith instance, and 0 otherwise. Please note that differences in accuracies are
reported in absolute percentage points unless stated otherwise.

Matching queries to bid phrases: Web search engines allow ads to be served for not just queries
bidded on directly by advertisers, referred to as bid phrases, but also for related queries with matching
intent. Thus matching a query that was just entered by the user to the relevant subset of millions of
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advertiser bid phrases in milliseconds is an important research application which forms the focus of
this paper. DeepXML reformulates this problem as an extreme multi-label learning task by treating
each of the top 3 Million monetizable advertiser bid phrases as a separate label and learning a deep
classifier to predict the relevant subset of bid phrases given an input query. For example, given the user
query "what is diabetes type 2" as input, DeepXML predicts that ads corresponding to the bid phrases
"what is type 2 diabetes mellitus", "diabetes type 2 definition", "do i have type 2 diabetes", etc. could
be relevant to the user. Note that other high-impact applications have also been reformulated as the
extreme classification of short text documents such as queries, webpage titles, etc. For instance, (Jain
et al., 2019) applied extreme multi-label learning to recommend the subset of relevant Bing queries
that could be asked by a user instead of the original query. Similarly, extreme multi-label learning
could be used to predict which subset of search engine queries might lead to a click on a webpage
from its title alone for scenarios where the webpage content might not be available due to privacy
concerns, latency issues in fetching the webpage, etc.

State-of-the-art extreme classifiers: Unfortunately, state-of-the-art extreme classifiers are either not
scalable or inaccurate for queries and other short text documents. In particular, leading extreme clas-
sifiers based on bag-of-words (BoW) features (Prabhu et al., 2018b) and pretrained embeddings (Jain
et al., 2019) are highly scalable but inaccurate for documents having only 3 or 4 words. While feature
engineering (Arora, 2017; Joulin et al., 2017; Wieting & Kiela, 2019), including taking sub-word
tokens, bigram tokens, etc can ameliorate the problem somewhat, their accuracy still lags that of
deep learning methods which learn features specific to the task at hand. However, such methods,
as exemplified by the state-of-the-art XML-CNN (Liu et al., 2017) and AttentionXML (You et al.,
2018), can have prohibitive training costs and have not been shown to scale beyond a million labels
on a single GPU. At the same time, there is a lot of scope for improving accuracy as XML-CNN and
AttentionXML’s architectures have not been specialized for short text documents.

Tail labels: It is worth noting that all the computational and statistical complexity in extreme
classification arises due to the presence of millions of tail labels each having just a few, often a
single, training point. Such labels can be very hard to learn due to data paucity. However, in most
applications, predicting such rare tail labels accurately is much more rewarding than predicting
common and obvious head labels. This motivates DeepXML to have specialized architectures for
head and tail labels which lead to accuracy gains not only in standard metrics which assign equal
weights to all labels but also in propensity scored metrics (Jain et al., 2016) designed specifically for
long-tail extreme classification.

DeepXML: DeepXML improved both accuracy and scalability over existing deep extreme classifiers
by partitioning all L labels into a small set of head labels, with cardinality less than 0.1L, containing
the most frequently occuring labels and a large set of tail labels containing everything else. DeepXML
first represented a document by the tf-idf weighted linear combination of its word-vector embeddings
as this architecture was empirically found to be more suitable for short text documents than the CNN
and attention based architectures of XML-CNN and AttentionXML respectively. The word-vector
embeddings of the training documents were learnt on the head labels where there was enough data
available to learn a good quality representation of the vocabulary. Accuracy was then further boosted
by the introduction of a novel residual connection to fine-tune the document representation for head
labels. This head architecture could be efficiently learnt on a single GPU with a fully connected
final output layer due to the small number of labels involved. The word-vector embeddings were
then transferred to the tail network where there wasn’t enough data available to train them from
scratch. Accuracy gains could potentially be obtained by fine tuning the embeddings but this led to a
dramatic increase in the training and prediction costs. As an efficient alternative, DeepXML achieved
state-of-the-art accuracies by fine tuning only the residual connection based document representation
for tail labels. A number of modifications were made to the highly scalable Slice classifier (Jain
et al., 2019) for pre-trained embeddings to allow it to also train the tail residual connection without
sacrificing scalability. Finally, instead of learning an expensive ensemble of base classifiers to increase
accuracy (Prabhu et al., 2018b; You et al., 2018), DeepXML improved performance by re-ranking
the set of predicted labels to eliminate the hardest negatives for the base classifier with only a 10%
increase in training time.

Results: Experiments on medium scale datasets of short text documents with less than a million labels
revealed that DeepXML’s accuracy gains over XML-CNN and AttentionXML could be up to 3.92
and 4.32 percentage points respectively in terms of precision@k and up to 5.32 and 4.2 percentage
points respectively in terms of propensity-scored precision@k. At the same time, DeepXML could
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be up to 15× and 41× faster to train than XML-CNN and AttentionXML respectively on these
datasets using a single GPU. Furthermore, XML-CNN and AttentionXML were unable to scale to a
proprietary dataset for matching queries to bid phrases containing 3 million labels and 21 million
training points on which DeepXML trained in 14 hours on a single GPU. On this dataset, DeepXML
was found to be at least 19 percentage points more accurate than Slice, Parabel (Prabhu et al., 2018b),
and other leading query bid phrase-matching techniques currently running in production.

Contributions: This paper makes the following contributions: (a) It proposes the DeepXML ar-
chitecture for short text documents that is more accurate than state-of-the-art extreme classifiers;
(b) it proposes an efficient training algorithm that allows DeepXML to be an order of magnitude
more scalable than leading deep extreme classifiers; and (c) it demonstrates that DeepXML could
be significantly better at matching user queries to advertiser bid phrases as compared to leading
techniques in production on a popular web search engine. Source code for DeepXML and the short
text document datasets used in this paper can be downloaded from (Anonymous, 2019).

2 RELATED WORK

Much work has been done in extreme multi-label classification which can be broadly categorized
in two categories: a) learning the classifier with pre-computed features (Agrawal et al., 2013; Cissé
et al., 2013; Prabhu & Varma, 2014; Yu et al., 2014; Weston et al., 2013; Mineiro & Nikos, 2014; Jain
et al., 2016; 2017; 2019; Yen et al., 2016; 2018; Xu et al., 2016; Babbar & Schölkopf, 2017; 2019;
Niculescu-Mizil & Abbasnejad, 2017; Papanikolaou & Tsoumakas, 2017; Prabhu et al., 2018a;b;
Barezi et al., 2019; Jasinska et al., 2016), b) jointly learning feature representation along with the
classifier (Chen & Lin, 2012; Balasubramanian & Lebanon, 2012; Bi & Kwok, 2013; Liu et al.,
2017; Jernite et al., 2017; Wydmuch et al., 2018; Bhatia et al., 2015; Tagami, 2017; You et al., 2018;
Krichene et al., 2019; Barezi et al., 2019). More extensive survey of extreme classification and deep
learning approaches can be found in section A.5 in the supplementary material.
Traditionally, extreme classification approaches used sparse BoW features due to fast & efficient
feature computation as well as state-of-the-art performance for a large number of labels. However, for
short text documents such as queries, which form the focus of the paper, deep learning representations
are more effective than BoW (Jain et al., 2019). Unfortunately, existing deep learning approaches for
extreme classification yielding state-of-the-art accuracy are not scalable, while scalable approaches
have not been shown to yield state-of-the-art accuracy. In particular, XML-CNN, acheives state-of-
the-art accuracy on short text documents but have not been shown to scale beyond a million labels,
whereas AttentionXML was found to be slightly more scalable but less accurate as shown in table 1.
Scalability: Deep learning techniques have been very successful and comprehensively beaten BoW
features in small output space (Kim, 2014; Yang et al., 2016). Unfortunately, the scalablity of such
techniques degrades in extreme multi-label (XML) setting as the final fully connected layer leads
to cost linear in number of labels (Liu et al., 2017). Traditional approach to solve this problem is
negative sampling (Mikolov et al., 2013). Unfortunately, at the extreme scale, negative sampling
has to be applied more aggressively as demonstrated in Fig 5 in the appendix. To eliminate this
problem, many approaches have been proposed such as tree based (Prabhu et al., 2018b; You et al.,
2018; Mikolov et al., 2013; Jernite et al., 2017) and hashing based (Shrivastava & Li, 2014; Vijaya-
narasimhan et al., 2014), approximate nearest neighbor sub-sampling techniques (Jain et al., 2019;
Reddi et al., 2018). Adding to that, prediction time complexity remains O(dL), which is not suitable
for real-time predictions. Approaches such as Maximum Inner Product Search (Yen et al., 2018) and
Local Sensitive Hashing (Niculescu-Mizil & Abbasnejad, 2017) can speed-up one-vs.-all inference
but it leads to further loss in accuracy when applied post-training.
Accuracy: Tail labels are harder to predict as compared to head labels due to training data scarcity
but might also be more informative and rewarding in XML setting. For instance, predicting tag
"Artificial intelligence researchers" could be more informative than tag "1954 deaths" on Wikipedia
page of "Alan Turing". Hence, propensity based precision and nDCG are the focus of the paper.
(Wei & Li, 2018) demonstrates that trimming tail labels leads to marginal decay in performance
on vanilla metrics. However, a) trimming tail labels lead to loss in propensity based metrics, b)
this approach has been demonstrated to scale to ≈ 30K labels only. Researchers have also tried
to improve performance on tail labels by directly optimizing propensity scored metrics (Jain et al.,
2016), posing learning in the presence of adversarial perturbations (Babbar & Schölkopf, 2019) and
treating tail labels as outliers (Xu et al., 2016). Although, these approaches boost performance on tail
labels, however they are not well suited for short text documents due to, a) support only for fixed
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features and, b) large training and prediction time.
Matching user queries to bid phrases: Approaches in this domain can be categorized as embed-
dings based (Jain et al., 2019), sequence-to-sequence models (Gao et al., 2012; Jones et al., 2006;
Riezler & Liu, 2010; He et al., 2016; Lee et al., 2018; Lian et al., 2019) and query graph based
models (Ioannis et al., 2008). Unfortunately, the trigger coverage, suggestion density and quality
of recommendations could be poor for many of these techniques. For instance, query graph based
methods can only recommend suggestions for previously seen triggers thereby limiting their trigger
coverage. Additionally, Sequence-to-sequence models suffers from expensive training and prediction
cost. Although, efficient structures such as trie (Lian et al., 2019) have been deployed to reduce
output complexity, however, at the cost of limited bid phrase coverage.
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Figure 1: Architecture of DeepXML with DeepXML-h for head labels and DeepXML-t for tail labels. Residual
block is a sequence of linear transformation, Batch Normalization, ReLU and Dropout operations. Here, ⊗
refers to matrix-vector multiplication. Gradients are not propagated through dotted lines. Please refer to Fig. 6
for DeepXML’s architecture with an intuitive example.

3 DEEPXML

State-of-the-art deep extreme classifiers are neither scalable nor accurate for short text documents
because: (a) representations learnt through CNNs (XML-CNN), LSTM+Attention (AttentionXML)
or context (Bert (Devlin et al., 2018), Elmo (Peters et al., 2018), etc.) might not be accurate given
limited tail data with only a few words per document and might also be expensive to compute; and (b)
they face scalability issues as the final fully connected output layer has millions of outputs making
both the forward pass as well as gradient backpropagation prohibitive for even a single training point.
DeepXML addresses these limitations by using a feature representation inspired by FastText (Joulin
et al., 2017) and an output layer inspired by Slice (Jain et al., 2019) as these have been demonstrated
to be both accurate and scalable for short text documents in their individual capacities. Unfortunately,
combining FastText and Slice in a straight forward fashion also turns out to be neither accurate nor
scalable. The rest of this section details the design choices and modifications that needed to be made
in order to get the combination to work.

DeepXML, FastText & Slice: FastText represents a document as an efficiently computable linear
combination of its (sub) word-vector embeddings making it highly scalable and well suited for
extreme classification scenarios. Unfortunately, the FastText architecture is linear and low-capacity
thereby leading to a loss in accuracy when there isn’t a vast amount of unsupervised data available for
training. Furthermore, previous attempts (Wydmuch et al., 2018) at learning FastText representations
in a supervised manner by replacing the fully connected output layer by a fixed Probabilistic Label
Trees (PLT) extreme classifier (Jasinska et al., 2016) have led to even worse accuracies than XML-
CNN and AttentionXML. Replacing the fixed tree PLT by learnt Slice improves accuracy somewhat
but does not lead to state-of-the-art results and also greatly increases training time (please see ablation
experiments in Section 5). DeepXML addresses these limitations by adding a non linearity and
residual block to make up for the lack of FastText’s expressive power and training the word-vector
embeddings using a fully connected output layer on a small number of head labels rather than through
Slice. Please refer to Figure 1 for full architecture of DeepXML. Once the word-vector embeddings
have been trained on the head, they are frozen and transferred to the tail where only the residual
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block is fine tuned. This increases both accuracy as there isn’t enough training data available to learn
good quality word embeddings from scratch on the tail as well as scalability as fine-tuning the head
embeddings on the tail would prove too expensive on large problems.

3.1 ARCHITECTURE AND TRAINING

DeepXML-h: Model parameters i.e. words embeddings, residual block and fully connected classifier
are learnt with Binary Cross Entropy loss and Adam optimizer. DeepXML-h can be efficiently trained
with a fully connected final layer on a single GPU, as Lh (Label set containing head labels)contains
only a small subset of labels. In practice, the size of Lh does not grow beyond 0.2M even for datasets
with millions of labels. Additionally, an approximate nearest neighbour search (ANNS) structure
was trained over label centroids Lc

h of head labels. Note that label centroids (Lc
h) are computed as:

Lc
h = YTX′, please note that X′ = f(x) + rh(x) from the Fig. 1. This brings down inference cost

of classifier from O(d|Lh|) to O(d|s|+ d log |Lh|), given |s| � |Lh|. Here, |s| is the size of label
shortlist queried from ANNS structure during prediction which is kept as 300 in practice.
Unfortunately, ANNS trained over label centroids may lead to poor recall values when a single
centroid is unable to capture diversity in training instances for labels with highly different contexts
(say L′h). For instance, 280K articles, ranging from scientists to athletes, are tagged with the ‘living
people’ tag in WikiTitle-500K (Bhatia et al., 2016) dataset. Slice increases the shortlist to improve
recall; however, at the cost of 6× increase in prediction time. DeepXML-h tackles this issue by
allowing multiple representations for labels in L′h. Documents are clustered using the KMeans
algorithm into c clusters for each label in this set. Therefore, c representatives for each label in L′h
are computed. This leads to 5% increase in recall@300 and 6% precision@300 with a shortlist of
size 300. Clustering will lead to |Lh − L′h|+ c|L′h| label representations and hence could potentially
lead to increased time complexity. However, clustering just the top 3 labels into 300 clusters seems
to work well in our experiments without significant change in training time, and it doesn’t impact
prediction time at all.
DeepXML-t: DeepXML still relies on Slice to fine-tune the residual block in the tail network and
learn the weights in the fully connected output layer for millions of tail labels. Slice cuts down
the time for both the forward pass and the gradient backpropagation from linear to logarithmic in
the number of labels. Slice achieves this by first representing each label by the unit normalized
mean of the feature vectors of the training points tagged with the label. It then learns an ANNS data
structure (Malkov & Yashunin, 2016) over the label representations to determine the most likely
labels for a given data point (please see the supplementary material for a more detailed description).
This technique was shown to efficiently scale to millions of labels and training points when the
feature representation was fixed (Jain et al., 2019). Unfortunately, when the feature representation is
being learnt, the ANNS data structure needs to be constantly updated as the label representations
change with each training batch. This can lead to a marked slowdown as maintaining the ANNS data
structure can incur significant computational cost.

DeepXML speeds up training by redefining the label representation to be the unit normalized mean
of the document representation before the residual block computed using the learnt word embeddings
alone. This allows the ANNS data structure to be learnt just once after the word embeddings have
been learnt on the head labels and before training starts on the tail. Unfortunately, this also leads to a
loss in training accuracy as the label representation is now an approximation to the true representation
that should have been defined as the unit normalized mean of the document representations computed
after the residual block. This loss in accuracy can be compensated by requiring Slice to generate 3x
more nearest labels to a given data point. This allowed the hard negative labels to now be present in
the longer list but this significantly increased training time. It was empirically determined that a more
efficient strategy was to extend the shortlist by adding randomly sampled negative labels as this led
to no loss in accuracy with only a minimal increase in training time.

3.2 PREDICTION

Initially, classifier scores and ANNS scores from both DeepXML-h and DeepXML-t are merged in a
single vector ŷ. As demonstrated in Fig. 1, ŷclf−h is the classifier score (logit) from DeepXML-h
and ŷanns−h is the cosine similarity from ANNS-h. Similarly, ŷclf−t is the classifier score from
DeepXML-t and ŷann−t is the cosine similarity from ANNS-t. The final DeepXML score vector (ŷ)
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is computed as follows :
ŷ = (1− β) ∗ σ([ŷanns−h; ŷanns−t]) + β ∗ σ([ŷclf−h; ŷclf−t]) (1)

Note that ŷclf−t, ŷclf−h, ŷanns−h, and ŷanns−t are sparse vectors, σ is a sparse-sigmoid function
computed only at non-zero entries and β ∈ [0, 1]. The average cost of prediction can be broken down
into the following four components: a) computing dense feature representation: O(dγ), b) generating
a shortlist: O(d log |Lt|), c) computing classifier scores: O(d|s|). Here, γ is the average number of
features per document and |s| is the shortlist size in ANNS.

3.3 DEEPXML-RE

Extreme classifiers such as Parabel (Prabhu et al., 2018b), AttentionXML (You et al., 2018) learn mul-
tiple models to get better prediction accuracy. However, this leads to increased training and prediction
time (200% for both Parabel and AttentionXML) linearly with the number of models. Whereas,
DeepXML-RE learns a re-ranker with training cost logarithmic in the number of labels by training
over a shortlist of negative labels. Specifically, false positive labels predicted by DeepXML (a.k.a
hardest negatives) are selected as negatives for DeepXML-RE. This leads to only 10− 20% increase
in training time. The architecture of DeepXML-RE is same as DeepXML-t, i.e., a word embedding
layer, residual block, and classifier. Model parameters are learnt with binary cross entropy loss
and SparseAdam optimizer. During prediction, DeepXML-RE evaluates on labels shortlisted by
DeepXML only, thereby incurring a prediction cost of O(d|s|).

4 EXPERIMENTS AND RESULTS

4.1 DATA SETS AND EVALUATION METRICS
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Figure 2: Contribution to P@5 by labels of
a given frequency for AmazonTitles-670K.
The dotted vertical blue line marks the thresh-
old to the right of which are head labels, and
left of which are tail labels.

Experiments were carried out on the Query to Bid
phrases (Q2B-3M) dataset, with 3 million labels, by
mining the logs of a popular search engine. Each user
query was treated as an instance and relevant advertiser
bid phrases became its labels. Unfortunately, only
Slice (Jain et al., 2019) and Parabel (Prabhu et al.,
2018b) could scale to this dataset. DeepXML is also
compared to state-of-the-art methods for query keyword
prediction such as Simrank++(Ioannis et al., 2008) and
a sequence-to-sequence model based on BERT (Devlin
et al., 2018; Lian et al., 2019).
Experiments were also carried out on four moderate size
datasets (Anonymous (2019)). The applications consid-
ered were tagging Wikipedia pages (WikiTitles-500K),
suggesting relevant articles (WikiSeeAlsoTitles-250K),
and item-to-item recommendation of Amazon prod-
ucts (AmazonTitles-670K and AmazonTitles-3M). Please
refer to supplementary Table 4 for dataset statistics. For
these moderate size datasets DeepXML was compared

to leading deep learning and BoW feature-based methods including XML-CNN, Attention-XML,
Slice, AnnexML (Tagami, 2017), PfastreXML (Jain et al., 2016), Parabel (Prabhu et al., 2018b),
XT (Wydmuch et al., 2018), and DiSMEC (Babbar & Schölkopf, 2017). The implementation of all
algorithms was provided by the respective authors.

4.2 HYPERPARAMETERS

DeepXML has 7 hyperparameters: (a) learning rate and epochs for DeepXML-h; (b) learning rate
and epochs for DeepXML-t; (c) embedding dimensions (d); (d) shortlist size (|s|) and (e) threshold
to split label set into head and tail labels. Results are reported for d = 300 and |s| = 300. The label
threshold is chosen via cross-validation (please refer to section A.2 in the supplementary material).
Binary cross-entropy loss and the SparseAdam optimizer were used to update the model parameters.
Please refer to Table 5 in the supplementary section for full parameter settings.
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Table 1: DeepXML and DeepXML-RE are more accurate on both vanilla and propensity-scored metrics, and
are faster at training. ‘-’ is used for the methods which are unable to scale. * is used for the results provided by
respective authors.

Dataset Method P@1 P@3 P@5 N@5 PSP@1 PSP@3 PSP@5 PSN@5 Training
Time (hrs)

Prediction
Time (ms)

Model
Size (GB)

W
ik

iS
ee

A
ls

oT
itl

es
-3

50
K

DeepXML 19.62 13.76 10.79 19.73 10.43 12.4 14.1 13.23 0.94 1.03 1.02
DeepXML-RE 20.18 14.04 10.99 20.05 9.95 11.87 13.51 12.64 1.09 1.52 1.52
DeepXML-fr 19.82 13.95 11.02 19.87 9.26 11.25 13.01 11.98 3.91 0.48 0.44
XML-CNN 17.75 12.34 9.73 17.48 8.24 9.72 11.15 10.31 14.25 5.09 0.78
XT 16.55 11.37 8.93 16.47 7.38 8.75 10.05 9.46 3.25 4.53 2
SLICE+FastText 18.13 12.87 10.29 18.52 8.63 10.78 12.74 11.63 0.22 1.33 0.97
AttentionXML-I 14.85 9.51 7.2 13.6 5.76 6.31 7.04 6.56 5.1 2.07 0.7
AttentionXML 15.86 10.43 8.01 14.86 6.39 7.2 8.15 7.64 30.44 14.88 4.07
DiSMEC 16.61 11.57 9.14 16.72 7.48 9.19 10.74 9.99 6.63 7.63 0.09
Parabel 17.24 11.61 8.92 16.67 7.56 8.83 9.96 9.45 0.06 1.14 0.43
AnnexML 14.96 10.2 8.11 14.76 5.63 7.04 8.59 7.76 0.2 0.1 3.59
PfastreXML 15.09 10.49 8.24 15.59 9.03 9.69 10.64 10.52 0.51 3.17 5.22

W
ik

ip
ed

ia
Ti

tle
-5

00
K

DeepXML 44.57 24.04 16.86 30.93 18.82 17.92 17.96 20.88 3.7 2.64 1.7
DeepXML-RE 45.26 24.34 16.94 31.21 18.76 18.1 18.06 21 4.63 3.49 2.47
DeepXML-fr 45.67 25.59 18.23 32.67 17.86 17.81 18.07 20.7 16.72 0.74 0.76
XML-CNN 43.45 23.24 16.53 29.95 15.64 14.74 14.98 17.45 55.22 6.49 1.17
XT 39.44 21.57 15.31 27.65 15.23 15 15.25 17.59 3.89 3.89 3.3
SLICE+FastText 28.07 16.78 12.28 22.87 15.1 14.69 15.33 17.67 0.55 1.11 1.5
AttentionXML-1 41.75 21.49 14.86 27.38 14.56 13.25 12.98 15.53 34.15 2.93 3.07
AttentionXML 42.89 22.71 15.89 28.93 15.12 14.32 14.22 16.75 102.43 8.79 9.21
DiSMEC 39.89 21.23 14.96 27.32 15.89 15.15 15.43 17.86 23.95 8.87 0.35
Parabel 42.5 23.04 16.21 29.45 16.55 16.12 16.16 18.77 0.34 0.89 2.15
AnnexML 39.56 20.5 14.32 26.54 15.44 13.83 13.79 16.58 1.78 0.09 10.7
PfastreXML 30.99 18.07 13.09 23.88 17.87 15.4 15.15 18.46 3.07 7.75 16.85

A
m

az
on

-T
itl

es
-6

70
K

DeepXML 38.38 34.32 31.25 35.11 27.63 29.27 30.83 28.98 1.42 1.12 2.09
DeepXML-RE 39 34.93 31.85 35.72 27.31 29.22 30.94 28.96 1.55 1.39 2.92
DeepXML-fr 38.42 34.47 31.44 35.21 25.54 27.91 29.94 27.76 6.3 1 0.82
XML-CNN 35.02 31.37 28.45 31.94 21.99 24.93 26.84 24.67 23.52 8.8 1.36
XT 36.57 32.73 29.79 33.35 22.11 24.81 27.18 24.87 4.66 8.52 4
SLICE+FastText 33.85 30.07 26.97 30.56 21.91 24.15 25.81 24.03 0.22 1.59 2.01
AttentionXML-1 36.08 31.68 28.3 32.04 23.03 24.63 25.98 24.33 12.79 5.87 4.04
AttentionXML 37.92 33.73 30.57 34.35 24.24 26.43 28.39 26.33 37.5 15.9 12.11
DiSMEC* 39.84 35.63 32.68 36.58 24.84 27.64 30.46 - - - -
Parabel 38 33.54 30.1 33.98 23.1 25.57 27.61 25.48 0.09 1.11 1.06
AnnexML 35.31 30.9 27.83 31.26 17.94 20.69 23.3 20.88 0.17 0.1 2.99
PfastreXML 32.88 30.54 28.8 31.85 26.61 27.79 29.22 27.59 0.99 9.31 5.32

A
m

az
on

Ti
tle

s-
3M

DeepXML 38.36 36.45 34.82 36.48 15.7 17.93 19.52 18.14 7.4 2.9 8.64
DeepXML-RE 40.22 38.4 36.74 38.45 15.51 17.88 19.6 18.19 9.69 4.03 11.98
DeepXML-fr - - - - - - - - - - -
XML-CNN - - - - - - - - - - -
XT - - - - - - - - - - -
SLICE+FastText 29.88 28.14 26.82 28.05 9.85 11.68 13.05 11.89 3.65 1.13 8.45
AttentionXML-1 - - - - - - - - - - -
AttentionXML - - - - - - - - - - -
DiSMEC* 40.81 38.58 36.76 38.56 - - - - - - -
Parabel 40.97 38.56 36.68 38.44 11.4 13.69 15.4 14 1.94 1.26 13.4
AnnexML - - - - - - - - - - -
PfastreXML 27.58 27.76 27.5 28.37 20.02 21.95 23.29 21.99 12.56 22.55 23.3

4.3 RESULTS ON MODERATE SIZE DATA SETS

Table 1 compares the performance of DeepXML and DeepXML-RE with state-of-the-art deep
learning approaches namely XML-CNN and AttentionXML. DeepXML is upto 5 percentage points
more accurate than XML-CNN and AttentionXML on propensity-scored metrics. Additionally, Fig 2
and supplementary Fig 4 demonstrate that tail labels contribute more to DeepXML’s predictions w.r.t
other methods. Furthermore, DeepXML can be 2–4 percentage points more accurate than XML-CNN
and AttentionXML on vanilla precision and nDCG. Table 1 also demonstrates that DeepXML can
be 33–42× faster to train as compared to XML-CNN and AttentionXML respectively on a single
GPU. DeepXML-RE can be scaled to AmazonTitles-3M on one GPU and is able to train with only a
10% increase in training time and a 20% increase in prediction time from DeepXML as compared
to a 200% increase in training and prediction time of AttentionXML from AttentionXML-1. This
demonstrates that DeepXML and DeepXML-RE can outperform current state-of-the-art accuracy as
well as scale to millions of labels . Table 1 shows that DeepXML and DeepXML-RE can outperform
state-of-the-art BoW-based approaches as well. Note that on AmazonTitles-3M, PfastreXML is 5.6
percentage points better than DeepXML as well as DeepXML-RE for propensity-scored metrics but
incurs a loss of 10 percentage points for vanilla precision, which is clearly unacceptable for real
world tasks where both metrics are important. Please refer to Section A.3 in the appendix for more
discussion.
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Table 2: Results on Q2B-3M. DeepXML-RE is 19% more accurate on P@1 than the second-best method.

Method P@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5 PSN@3 PSN@5
DeepXML 70.99 33.7 21.72 82.26 84.15 61.18 83.55 89.99 76.72 79.33
DeepXML-RE 73.37 33.91 21.67 83.52 85.13 64.8 85.13 90.42 79.1 81.24
Parabel 54.29 27.15 17.94 64.56 66.98 43.09 61.66 68.61 55.1 58.07
Slice+CDSSM 53.23 27.53 18.56 65.08 68.26 42.35 64.51 74.14 56.94 61.09
Parabel-weighted 43.82 22.25 14.97 52.15 54.61 37.83 53.19 59.57 47.26 49.94
Seq2Seq 28.25 13.06 8.02 22.96 21.7 23.32 17.59 15.42 21.31 21.3
Simrank++ 52.7 29.69 19.33 50.02 48.82 43.5 41.67 39.36 45.71 45.73

4.4 RESULTS ON Q2B

Table 2 indicates that DeepXML-RE is upto 20–45 percentage points more accurate than the methods
currently in production, Simrank++ and Seq2Seq respectively. Further, DeepXML-RE is also
compared to other scalable extreme classifiers such as Parabel and Slice and is seen to be 19 and 20
percentage points more accurate respectively. Additionally, supplementary Table 6 includes example
documents which demonstrate that DeepXML can make accurate and diverse predictions.

5 ABLATION, EXTENSIONS

Table 3: Ablation results for different
feature representations and classifiers on
AmazonTitles-670K. DeepXML is more ac-
curate than the alternate configurations.

Method P@1 P@5 PSP@1 PSP@5
DeepXML 38.38 31.25 27.63 30.83
DeepXML-RE 39 31.85 27.31 30.94
DeepXML-P 37.07 28.75 23.29 26.54
DeepXML-NS 35.71 29.93 24.26 28.82
DeepXML-f 34.8 27.53 21.29 23.23
DeepXML-SW 39.04 31.93 28.6 31.72
DeepXML-ANNS 36.73 30.07 26.72 29.83
Slice+BERT 26.99 22.05 16.75 20.27
Slice+SIF 30.82 24.11 20.54 23.52

This section discuss impact of feature represen-
tations (DeepXML-SW, DeepXML-f) and classi-
fiers (DeepXML-fr, DeepXML-ANNS, DeepXML-P,
DeepXML-NS). The detailed architectures are included
in section A.6 in the supplementary section.
Sub-word features: DeepXML can also exploit sub-word
features (Joulin et al., 2017) for an additional 1% gain in
precision as demonstrated in Table 3.
Label split and classifier: DeepXML-fr refers to a joint
DeepXML architecture, i.e. without splitting labels,
trained with a fully connected layer. As demonstrated
in Table 1, the proposed algorithm is more scalable and
accurate on tail labels w.r.t DeepXML-fr. DeepXML
could be up to 1–3% more accurate then DeepXML-NS &
DeepXML-ANNS where the classifier is trained using negative sampling. Additionally, DeepXML
was found to be 1.3% more accurate than DeepXML-P which uses a tree based classifier.
Pre-trained features: DeepXML could be upto 10% more accurate than pre-trained representations
with Slice classifier (refer to Tables 1 & 3) such as FastText, BERT (Devlin et al., 2018) and
SIF (Arora, 2017).

6 CONCLUSION

This paper developed DeepXML, an algorithm to jointly learn representations for extreme multi-
label learning on text data. The proposed algorithm addresses the key issues of scalability and low
accuracy (especially on tail labels and very short documents) with existing approaches such as Slice,
AttentionXML, and XML-CNN, and hence improves on them substantively. Experiments revealed
that DeepXML-RE can lead to a 1.0–4.3 percentage point gain in performance while being 33–42×
faster at training than AttentionXML. Furthermore, DeepXML was upto 15 percentage points more
accurate than leading techniques for matching search engine queries to advertiser bid phrases. We
note that DeepXML’s gains are predominantly seen to be on predicting tail labels (for which very
few direct word associations are available at train time) and on short documents (for which very few
words are available at test time). This indicates that the method is doing especially well, compared to
earlier approaches, at learning word representations which allow for richer and denser associations
between words – which allow for the words to be well-clustered in a meaningful semantic space, and
hence useful and generalisable information about document labels extracted even when the number of
direct word co-occurrences observed is very limited. In the future we would like to better understand
the nature of these representations, and explore their utility for other linguistic tasks.
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Table 4: Dataset Statistics. Please note that in Q2B-3M dataset, character 3-grams and 4-grams tokens were
also included in the vocabulary for DeepXML, DeepXML-RE and Parabel. This increases average number of
features per document.

Dataset Train Instances
N

Features
F

Labels
L

Number of
Test Instances

Average Labels
per sample

Average Points
per labels

Average Features
per instances

WikiSeeAlsoTitles-350K 629418 91414 352072 162491 2.33 5.24 2.73
WikiTitles-500K 1699722 185479 501070 722678 4.89 23.62 2.73
AmazonTitles-670K 485176 66666 670091 150875 5.39 5.11 5.26
AmazonTitles-3M 1712536 165431 2812281 739665 36.18 31.55 6.83
Q2B-3M 21561529 1284191 3192113 6995038 1.2 10.72 33.68

A SUPPLEMENTARY

A.1 HYPERPARAMETERS OF DEEPXML FOR REPRODUCIBILITY

Table 5 lists the parameter settings for different data sets. Experiments were performed with a
random-seed of 22 on a P40 GPU card with CUDA 10, CuDNN 7.4, and Pytorch 1.2 (Paszke et al.,
2017).
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Table 5: Parameter setting for DeepXML on different datasets. Dropout with probability 0.5 was used for
all datasets. Learning rate is decayed by Decay factor after interval of Decay steps. For HNSW, values of
construction parameter M = 100, efC = 300 and query parameter, efS = 300. Denoted by ‘|’, DeepXML-h
and DeepXML-t might take different values for some parameters. Note that DeepXML-t uses a shortlist of size
500 during training. However, a shortlist of size 300 queried from ANNS is used at prediction time for both
DeepXML-h and DeepXML-t.

Dataset |Lh| |Lt| Epochs Learning
Rate

Batch
Size

Decay
Factor

Decay
Steps

Label
Threshold

Shortlist
Size

WikiSeeAlsoTitles-350K 52,245 252,205 25 | 30 0.005 | 0.002 255 0.5 14,7 | 10 5 300|500
WikiTitles-500K 58,476 43,7845 25 | 20 0.005 | 0.002 255 0.5 14,7 | 10 25 300|500
AmazonTitles-670K 109,379 556,696 25 | 20 0.02 | 0.002 255 0.5 14,7 6 300|500
AmazonTitles-3M 165,722 2,645,458 25 | 20 0.007 | 0.002 255 0.5 14,7 | 10 75 300|500
Q2B-3M 160,651 3,019,249 8 | 5 0.02 | 0.002 512 0.5 4 | 2 25 300|500

A.2 SPLITTING L INTO Lh AND Lt

Label set L is divided into two disjoint sets, i.e. Lh and Lt based on the frequency of the labels.
Labels with a frequency more than splitting threshold γ are kept in set Lh and others in Lt. The
splitting threshold γ is chosen while ensuring that most of the features (or words) are covered in
documents that one at least one instances of label in the set Lh and |Lh| < 0.2M . Two components
for DeepXML, DeepXML-h and DeepXML-t, are trained on Lh and Lt. Please note that other
strategies like clustering of labels, connected components of labels in a graph were also tried, but the
above-mentioned strategy provides good results without any additional overhead. More sophisticated
algorithms for splitting such as label clustering, may yield better results, however at the cost of
increased training time.
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Table 6: Qualitative comparision for DeepXML on WikiTitles-500K dataset. Bold indicates correct predictions.

Document Text Ground Truth DeepXML-re DeepXML XML-CNN AttentionXML
Confederate Secret
Service

1861 establish-
ments in the
Confederate
States of America,
1865 disestab-
lishments in
the Confederate
States of America,
American Civil
War espionage,
Defunct intelli-
gence agencies,
Government of
the Confederate
States of America,
Military history of
the Confederate
States of America,
Military units
and formations
established in
1861

1865 disestab-
lishments in the
Confederate
States of Amer-
ica, Government
of the Confed-
erate States of
America, 1861
establishments
in the Confed-
erate States of
America, Eco-
nomic history of
the Confederate
States of America,
Military history
of the Confed-
erate States of
America

1865 disestab-
lishments in the
Confederate
States of Amer-
ica, Government
of the Confed-
erate States of
America, 1861
establishments
in the Confed-
erate States of
America, Eco-
nomic history of
the Confederate
States of America,
Confederate
States of America
monuments and
memorials

1865 disestab-
lishments in
the Confeder-
ate States of
America, 1861
establishments
in the Confed-
erate States
of America,
American films,
English-language
films, Black-and-
white films

American films,
English-language
films, Military
history of the
Confederate
States of Amer-
ica, 2011 tele-
vision episodes,
English-language
television pro-
gramming

Table 7: Qualitative comparison for DeepXML on Q2B-3M dataset. Bold indicates correct predictions. Please
note that system in production filters label internally and then outputs them.

Document text Ground Truth Labels
what is diabetes
type 2;what is type
2 diabetic

diabetes type 1 and 2;type diabetes 1 and 2;type 1 and 2 diabetes, what causes
type 2 diabetes, diabetes type 2 definition;2 definition diabetes type;definition
diabetes type 2;definition type 2 diabetes;diabetes definition type 2;type 2 diabetes
definition, do i have type 2 diabetes, what is a type 2 diabetes, what are type 2
diabetes, what is type 2 diabetes mellitus, type 2 diabetes

Method Predicted labels
Seq2Seq what is type ii diabetes, "whats type 2 diabetes"

SimRank++ type 2 diabetes
Parabel what is type 2 diabetes, type 2 diabetes, what is type 2 diabetes symptoms,

diabetes 2;2 diabetes;diabetes 2, whats type 2 diabetes, what is email marketing,
what is type 1 and type 2 diabetes, what are the symptoms of diabetes type 2,
what is anemia;anemia is what;anemia what is;what anemia is,what is psd2, what
identity theft is, what is google adwords, what is radiation therapy, what is emilys
list, what is pork belly, what is qualcomm, what is a smartboard, what is an
unlocked phone, mpls, what is the invoice price

DeepXML what is type 2 diabetes, what is a type 2 diabetes, type 2 diabetes, what are
type 2 diabetes, what is the type 2 diabetes, do i have type 2 diabetes, "whats
type 2 diabetes", what is type 2 diabetes mellitus, diabetes type 2 defini-
tion;2 definition diabetes type;definition diabetes type 2;definition type 2
diabetes;diabetes definition type 2;type 2 diabetes definition, what is type 1
and type 2 diabetes

DeepXML-RE what is type 2 diabetes, type 2 diabetes, what is a type 2 diabetes, do i have
type 2 diabetes, what is the type 2 diabetes, what are type 2 diabetes, "what’s
type 2 diabetes", what is type 2 diabetes mellitus, diabetes type 2 defini-
tion;2 definition diabetestype;definition diabetes type 2;definition type 2 di-
abetes;diabetes definition type 2;type 2 diabetes definition, what is type 1
and type 2 diabetes, what are the causes of diabetes type 2, types of diabetes 2,
what is diabetes 2, what causes type 2 diabetes
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Figure 5: Performance of negative sampling approaches in comparision to 1-vs.-all classifier

A.3 COMPARISON WITH BOW APPROACHES

DeepXML, DeepXML-RE yields 3 − 4% better accuracy on propensity scored metrics and can
be upto 2% more accurate on vanilla metrics. Note that PfastreXML outperform DeepXML and
DeepXML-RE on AmazonTitles-3M in propensity scored metrics, however suffers a substantial loss
of 10% on vanilla precision and nDCG which is unacceptable for real world applications.

A.4 EVALUATION METRICS

Performance has been evaluated using propensity scored precision@k and nDCG@k, which are
unbiased and more suitable metric in the extreme multi-labels setting (Jain et al., 2016; Babbar &
Schölkopf, 2019; Prabhu et al., 2018a;b). The propensity model and values available on The Extreme
Classification Repository (Bhatia et al., 2016) were used. Performance has also been evaluated using
vanilla precision@k and nDCG@k (with k = 1, 3 and 5) for extreme classification.

For a predicted score vector ŷ ∈ RL and ground truth vector y ∈ {0, 1}L:

P@k =
1

k

∑
l∈rankk(ŷ)

yl

PSP@k =
1

k

∑
l∈rankk(ŷ)

yl
pl

DCG@k =
1

k

∑
l∈rankk(ŷ)

yl
log(l + 1)

PSDCG@k =
1

k

∑
l∈rankk(ŷ)

yl
pl log(l + 1)

nDCG@k =
DCG@k∑min(k,||y||0)

l=1
1

log(l+1)

PSnDCG@k =
PSDCG@k∑k

l=1
1

log l+1

(2)

Here, pl is propensity score of the label l proposed in (Jain et al., 2016).
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A.5 LITERATURE SURVEY

Representations: Deep architectures such as CNN (Liu et al., 2017), MLP (Zhang et al., 2018), and
LSTM with Attention (You et al., 2018) have been applied to learn semantically and syntactically rich
features. Barring AttentionXML (You et al., 2018), these methods suffer from low accuracy, which
is more prominent on tail labels indicating inept document representation for tail labels. However,
performance of AttentionXML also degrades for short text documents as discussed in section 4.3.

Parabel: Parabel learns a hierarchy over labels to select hardest negatives for each labels and hence
bring down the training cost to O(Nd logL). However, Parabel is designed specifically for sparse
BoW features and its performance degrades on low dimensional features.

Slice: Negative sampling is a popular approach to reduce training complexity in extreme classification
setting. Several strategies have been proposed in literature to select negatives labels for each
instance Mikolov et al. (2013); Reddi et al. (2018) or negative examples for each label (Yen et al.,
2017; Jain et al., 2019; Prabhu et al., 2018b). Slice approach has been shown to scale to 100 million
labels and more accurate than alternate approaches (Yen et al., 2017; Prabhu et al., 2018b) for low
dimensional dense features. Slice uses a ANNS to select O(NL logL) hardest negative examples
and train with selected examples only, thereby reducing the training cost to O(Nd logL). Slice also
brings down the prediction cost to O(d logL) by evaluating only O(logL) most probable labels
selected from ANNS.

A.6 ABLATION STUDY

Experiments were carried out with several variations of DeepXML where labels were not splitted in
head and tail labels. Here are the different configurations:
DeepXML-f: This variation refers to a word embedding layer, ReLU non-linearity, Dropout and a
fully connected output layer.
DeepXML-fr: This variation refers to a word embedding layer, ReLU non-linearity, Dropout, a
residual block and a fully connected output layer.
DeepXML-NS: This variation refers to a word embedding layer, ReLU non-linearity, Dropout, a
residual block and a classifier trained via negative sampling (Mikolov et al., 2013).
DeepXML-SW: DeepXML can exploit sub-words features as proposed in (Joulin et al., 2017). This
variations refers to DeepXML with sub-word information. Here, character tri-grams were added to
the vocabulary in addition to unigrams.
DeepXML-ANNS: This variation refers to a word embedding layer, ReLU non-linearity, Dropout,
a residual block and a classifier trained via Slice. This version trains only with hardest negatives
labels selected via ANNS (Jain et al., 2019). However, the hardest negatives keeps changing as the
document representations are being updated. Hence, it requires ANNS graph to be trained multiple
time. Here, ANNS graph was updated after an interval of 5 epochs.
DeepXML-P: This variation refers to a word embedding layer, ReLU non-linearity, Dropout, a
residual block and a shallow tree based classifier proposed in AttentionXML.
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Table 8: DeepXML and DeepXML-RE can perform on par with Parabel and DiSMEC on full-text documents.
Please note that ‘*’ marked algorithms uses slightly different version of the dataset. Values indicated by ‘-’ were
not available. Please note that the focus of the paper is on short-text datasets.

Dataset Method P@1 P@3 P@5 N@5 PSP@1 PSP@3 PSP@5 PSN@5

W
ik

ip
ed

ia
-5

00
K

DeepXML 68.56 47.64 36.62 56.91 28.67 33.27 36.51 36.04
DeepXML-RE 69.58 47.56 36.02 56.62 30.16 34.46 37.21 37.13
XML-CNN 59.85 39.28 29.81 46.12 - - - -
XT 64.48 45.84 35.46 - - - - -
AttentionXML-1* 75.07 56.49 44.41 65.77 30.05 37.31 41.74 -
AttentionXML* 76.95 58.42 46.14 68.23 30.85 39.23 44.34 -
SLICE+FastText 27.98 16.61 12.11 22.69 15.04 14.61 15.17 17.59
DiSMEC 70.2 50.6 39.7 40.5 31.2 33.4 37 37.1
Parabel 68.7 49.57 38.64 58.62 26.88 31.96 35.26 34.61
AnnexML 64.64 43.2 32.77 52.42 26.88 30.24 32.79 33.33
PfastreXML 59.5 40.2 30.7 28.7 29.2 27.6 27.7 28.3
ProXML 68.8 48.9 37.9 38 33.1 35 39.4 39

A
m

az
on

-6
70

K

DeepXML 44.32 39.87 36.55 40.8 30.55 33.12 35.51 32.95
DeepXML-RE 44.78 40.28 36.94 41.21 30.17 33.13 35.79 33.03
XML-CNN 35.39 31.93 29.32 32.64 28.67 33.27 36.51 -
XT 42.5 37.87 34.41 38.43 24.82 28.2 31.24 28.29
AttentionXML-1 45.66 40.67 36.94 41.35 29.3 32.36 35.12 -
AttentionXML 47.58 42.61 38.92 43.5 30.29 33.85 37.13 -
SLICE+FastText 33.15 29.76 26.93 30.27 20.2 22.69 24.7 22.72
DiSMEC 44.7 39.7 36.1 40.5 27.8 30.6 34.2 30.7
Parabel 44.89 39.8 36 40.36 25.43 29.43 32.85 30.71
AnnexML 42.39 36.89 32.98 37.04 21.56 24.78 27.66 24.76
PfastreXML 39.46 35.81 33.05 36.69 29.3 30.8 32.43 31.49
ProXML 43.5 38.7 35.3 39.7 30.8 32.8 35.1 32.6
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Figure 6: An intuitive example with DeepXML architecture. (To be viewed under magnification.)
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