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ABSTRACT

We present a novel network pruning algorithm called Dynamic Sparse Training
that can jointly find the optimal network parameters and sparse network struc-
ture in a unified optimization process with trainable pruning thresholds. These
thresholds can have fine-grained layer-wise adjustments dynamically via back-
propagation. We demonstrate that our dynamic sparse training algorithm can eas-
ily train very sparse neural network models with little performance loss using
the same number of training epochs as dense models. Dynamic Sparse Training
achieves state of the art performance compared with other sparse training algo-
rithms on various network architectures. Additionally, we have several surprising
observations that provide strong evidence to the effectiveness and efficiency of
our algorithm. These observations reveal the underlying problems of traditional
three-stage pruning algorithms and present the potential guidance provided by our
algorithm to the design of more compact network architectures.

1 INTRODUCTION

Despite the impressive success that deep neural networks have achieved in a wide range of chal-
lenging tasks, the inference in deep neural networks is highly memory-intensive and computation-
intensive due to the over-parameterization of deep neural networks. Network pruning (LeCun et al.
(1990); Han et al. (2015); Molchanov et al. (2017)) has been recognized as an effective approach to
improving the inference efficiency in resource-limited scenarios.

Traditional pruning methods consist of dense network training followed with pruning and fine-tuning
iterations. To avoid the expensive pruning and fine-tuning iterations, many sparse training meth-
ods (Mocanu et al., 2018; Bellec et al., 2017; Mostafa & Wang, 2019; Dettmers & Zettlemoyer,
2019) have been proposed, where the network pruning is conducted during the training process.
However, all these methods suffer from following three problems:

Coarse-grained predefined pruning schedule. Most of the existing pruning methods use a prede-
fined pruning schedule with many additional hyperparameters like pruning a% parameter each time
and then fine-tuning for b epochs with totally c pruning steps. It is non-trivial to determine these
hyperparameters for network architectures with various degrees of complexity. Therefore, usually a
fixed pruning schedule is adopted for all the network architectures, which means that a very simple
network architecture like LeNet-300-100 will have the same pruning schedule as a far more com-
plex network like ResNet-152. Besides, almost all the existing pruning methods conduct epoch-wise
pruning, which means that the pruning is conducted between two epochs and no pruning operation
happens inside each epoch.

Failure to properly recover the pruned weights. Almost all the existing pruning methods conduct
”hard” pruning that prunes weights by directly setting their values to 0. Many works (Guo et al.,
2016; Mocanu et al., 2018; He et al., 2018) have argued that the importance of network weights
are not fixed and will change dynamically during the pruning and training process. Previously
unimportant weights may tend to be important. So the ability to recover the pruned weights is of
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high significance. However, directly setting the pruned weights to 0 results in the loss of historical
parameter importance, which makes it difficult to determine: 1) whether and when each pruned
weight should be recovered, 2) what values should be assigned to the recovered weights. Therefore,
existing methods that claim to be able to recover the pruned weights simply choose a predefined
portion of pruned weights to recover and these recover weights are randomly initialized or initialized
to the same value.

Failure to properly determine layer-wise pruning rates. Modern neural network architectures
usually contain dozens of layers with a various number of parameters. Therefore, the degree of pa-
rameter redundancy is very different among the layers. For simplicity, some methods prune the same
percentage of parameters at each layer, which is not optimal. To obtain dynamic layer-wise pruning
rates, a single global pruning threshold or layer-wise greedy algorithms are applied. Using a single
global pruning threshold is exceedingly difficult to assess the local parameter importance of the in-
dividual layer since each layer has a significantly different amount of parameter and contribution to
the model performance. This makes pruning algorithms based on a single global threshold inconsis-
tent and non-robust. The problem of layer-by-layer greedy pruning methods is that the unimportant
neurons in an early layer may have a significant influence on the responses in later layers, which
may result in propagation and amplification of the reconstruction error (Yu et al., 2018).

We propose a novel end-to-end sparse training algorithm that properly solves the above problems.
With only one additional hyperparameter used to set the final model sparsity, our method can achieve
dynamic fine-grained pruning and recovery during the whole training process. Meanwhile, the layer-
wise pruning rates will be adjusted automatically with respect to the change of parameter impor-
tance during the training and pruning process. Our method achieves state-of-the-art performance
compared with other sparse training algorithms. The proposed algorithm has following promising
properties:

• Step-wise pruning and recovery. A training epoch usually will have tens of thousands of
training steps, which is the feed-forward and back-propagation pass for a single mini-batch. Instead
of pruning between two training epochs with a predefined pruning schedule, our method prunes and
recovers the network parameter at each training step, which is far more fine-grained than existing
methods.
• Neuron-wise or filter-wise trainable thresholds. All the existing methods adopt a single pruning
threshold for each layer or the whole architecture. Our method defines a threshold vector for
each layer. Therefore, our method adopts neuron-wise pruning thresholds for fully connected and
recurrent layer and filter-wise pruning thresholds for convolutional layer. Additionally, all these
pruning thresholds are trainable and will be updated automatically via back-propagation.
• Dynamic pruning schedule. The training process of deep neural network consists of many
hyperparameters. The learning rate is perhaps the most important hyperparameter. Usually, the
learning rate will decay during the training process. Our method can automatically adjust the
layer-wise pruning rates under different learning rates to get the optimal sparse network structure.
• Consistent sparse pattern. Our algorithm can get a consistent layer-wise sparse pattern under
different model sparsities, which indicates that our method can automatically determine the optimal
layer-wise pruning rates given the target model sparsity.

2 RELATED WORK

Traditional Pruning Methods: LeCun et al. (1990) presented the early work about network pruning
using second-order derivatives as the pruning criterion. The effective and popular training, pruning
and fine-tuning pipeline was proposed by Han et al. (2015), which used the parameter magnitude
as the pruning criterion. Narang et al. (2017) extended this pipeline to prune the recurrent neural
networks with a complicated pruning strategy. Molchanov et al. (2016) introduced first-order Taylor
term as the pruning criterion and conduct global pruning. Li et al. (2016) used `1 regularization to
force the unimportant parameters to zero.

Sparse Neural Network Training: Recently, some works attempt to find the sparse network di-
rectly during the training process without the pruning and fine-tuning stage. Inspired by the growth
and extinction of neural cells in biological neural networks, Mocanu et al. (2018) proposed a prune-
regrowth procedure called Sparse Evolutionary Training (SET) that allows the pruned neurons and
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connections to revive randomly. However, the sparsity level needs to be set manually and the ran-
dom recovery of network connections may provoke unexpected effects on the network. DEEP-R
proposed by Bellec et al. (2017) used Bayesian sampling to decide the pruning and regrowth con-
figuration, which is computationally expensive. Dynamic Sparse Reparameterization (Mostafa &
Wang, 2019) used dynamic parameter reallocation to find the sparse structure. However, the prun-
ing threshold can only get halved if the percentage of parameter pruned is too high or get doubled if
that percentage is too low for a certain layer. This coarse-grained adjustment of the pruning thresh-
old significantly limits the ability of Dynamic Sparse Reparameterization. Additionally, a predefined
pruning ratio and fractional tolerance are required. Dynamic Network Surgery (Guo et al., 2016)
proposed pruning and splicing procedure that can prune or recover network connections according
to the parameter magnitude but it requires manually determined thresholds that are fixed during the
sparse learning process. These layer-wise thresholds are extremely hard to manually set. Mean-
while, Fixing the thresholds makes it hard to adapt to the rapid change of parameter importance.
Dettmers & Zettlemoyer (2019) proposed sparse momentum that used the exponentially smoothed
gradients as the criterion for pruning and regrowth. A fixed percentage of parameters are pruned
at each pruning step. The pruning ratio and momentum scaling rate need to be searched from a
relatively high parameter space.

3 DYNAMIC SPARSE TRAINING

3.1 NOTATION

Deep neural network consists of a set of parameters {Wi : 1 ≤ i ≤ C}, where Wi denotes the
parameter matrix at layer i and C denotes the number of layers in this network. For each fully
connected layer and recurrent layer, the corresponding parameter is Wi ∈ Rco×ci , where co is
the output dimension and ci is the input dimension. For each convolutional layer, there exists a
convolution kernel Ki ∈ Rco×ci×w×h, where co is the number of output channels, ci is the number
of input channels, w and h are the kernel sizes. Each filter in a convolution kernel Ki can be flattened
to a vector. Therefore, a corresponding parameter matrix Wi ∈ Rco×z can be derived from each
convolution kernel Ki ∈ Rco×ci×w×h, where z = ci × w × h. Actually, the pruning process is
equivalent to finding a binary parameter mask Mi for each parameter matrix Wi. Thus, a set of
binary parameter masks {Mi : 1 ≤ i ≤ C} will be found by network pruning. Each element for
these parameter masks Mi is either 1 or 0.

3.2 THRESHOLD VECTOR AND DYNAMIC PARAMETER MASK

Pruning can be regarded as applying a binary mask M to each parameter W . This binary
parameter mask M preserves the information about the sparse structure. Given the parameter
set {W1,W2, · · · ,WC}, our method will dynamically find the corresponding parameter masks
{M1,M2, · · · ,MC}. To achieve this, for each parameter matrix W ∈ Rco×ci , a trainable pruning
threshold vector t ∈ Rco is defined. Then we utilize a unit step function S(x) as shown in Fig-
ure 2(a) to get the masks according to the magnitude of parameters and corresponding thresholds as
present below.

Qij = F (Wij , ti) = |Wij | − ti 1 ≤ i ≤ co, 1 ≤ j ≤ ci (1)

Mij = S(Qij) 1 ≤ i ≤ co, 1 ≤ j ≤ ci (2)

With the dynamic parameter mask M , the corresponding element in mask Mij will be set to 0 if
Wij needs to be pruned. This means that the weight Wij is masked out by the 0 at Mij to get a
sparse parameter W �M . The value of underlying weight Wij will not change, which preserves
the historical information about the parameter importance.

For a fully connected layer or recurrent layer with parameter W ∈ Rco×ci and threshold vector
t ∈ Rco , each weight Wij will have a neuron-wise threshold ti, where Wij is the jth weight
associated with the ith output neuron. Similarly, the thresholds are filter-wise for convolutional
layer. Besides, a threshold matrix or a single scalar threshold can also be chosen. More details are
present in Appendix A.2.
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3.3 TRAINABLE MASKED LAYERS

With the threshold vector and dynamic parameter mask, the trainable masked fully connected, con-
volutional and recurrent layer are introduced as shown in Figure 1, where X is the input of current
layer and Y is the output. For fully connected and recurrent layers, instead of the dense parameter
W , the sparse product W �M will be used in the batched matrix multiplication, where � denote
Hadamard product operator. For convolutional layers, each convolution kernel K ∈ Rco×ci×w×h

can be flatten to get W ∈ Rco×z . Therefore, the sparse kernel can be obtained by a similar process
as fully connected layers. This sparse kernel will be used for subsequent convolution operation.
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Figure 1: Detailed structure of trainable masked layer
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Figure 2: The unit step function S(x) and its derivative approximations.

In order to make the elements in threshold vector t trainable via back-propagation, the derivative
of the binary step function S(x) is required. However, its original derivative is an impulse function
whose value is zero almost everywhere and infinite at zero as shown in Figure 2(b). Thus the origi-
nal derivative of the binary step function S(x) cannot be applied in back-propagation and parameter
updating directly. Some previous works (Hubara et al. (2016); Rastegari et al. (2016); Zhou et al.
(2016)) demonstrated that by providing a derivative estimation, it is possible to train networks con-
taining such binarization function. A clip function called straight-through estimator (STE) (Bengio
et al., 2013) was employed in these works and is illustrated in Figure 2(c).

Furthermore, Xu & Cheung (2019) discussed the derivative estimation in a balance of tight approxi-
mation and smooth back-propagation. We adopt this long-tailed higher-order estimator H(x) in our
method. As shown in Figure 2(d), it has a wide active range between [−1, 1] with a non-zero gradi-
ent to avoid gradient vanishing during training. On the other hand, the gradient value near zero is a
piecewise polynomial function giving tighter approximation than STE. The estimator is represented
as

d

dx
S(x) ≈ H(x) =


2− 4|x|, −0.4 ≤ x ≤ 0.4

0.4, 0.4 < |x| ≤ 1

0, otherwise

(3)

With this derivative estimator, the elements in the vector threshold t can be trained via back-
propagation. Meanwhile, in trainable masked layers, the network parameter W can receive two
branches of gradient, namely the performance gradient for better model performance and the struc-
ture gradient for better sparse structure, which helps to properly update the network parameter un-
der sparse network connectivity. The structure gradient enables the pruned (masked) weights to
be updated via back-propagation. The details about the feed-forward and back-propagation of the
trainable masked layer are present in Appendix A.3.

Therefore, the pruned (masked) weights, the unpruned (unmasked) weights and the elements in the
threshold vector can all be updated via back-propagation at each training step. The proposed method
will conduct fine-grained step-wise pruning and recovery automatically.
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3.4 SPARSE REGULARIZATION TERM

Now that the thresholds of each layer are trainable, a higher percentage of pruned parameter is de-
sired. To get the parameter masks M with high sparsity, higher pruning thresholds are needed. To
achieve this, we add a sparse regularization term Ls to the training loss that penalizes the low thresh-
old value. For a trainable masked layer with threshold t ∈ Rco , the corresponding regularization
term is R =

∑co
i=1 exp(−ti). Thus, the sparse regularization term Ls for a deep neural network

with C trainable masked layers is:

Ls =

C∑
i=1

Ri (4)

We use exp(−x) as the regularization function since it is asymptotical to zero as x increases. Con-
sequently, it penalizes low thresholds without encouraging them to become extremely large.

3.5 DYNAMIC SPARSE TRAINING

The traditional fully connected, convolutional and recurrent layers can be replaced with the
corresponding trainable masked layers in deep neural networks. Then we can train a sparse
neural network directly with back-propagation algorithm given the training dataset D =
{(x1,y1), (x2,y2), · · · , (xN ,yN )}, the network parameter W and the layer-wise threshold t as
follows:

J (W , t) =
1

N
(

N∑
i=1

L((xi,yi);W , t)) + αLs (5)

W ∗, t∗ = argmin
W ,t

J (W , t) (6)

where L(·) is the loss function, e.g. cross-entropy loss for classification and α is the scaling coef-
ficient for the sparse regularization term, which can control the percentage of parameter remaining.
The sparse regularization term Ls tends to increase the threshold t for each layer thus getting higher
model sparsity. However, higher sparsity tends to increase the loss function, which reversely tends
to reduce the threshold and level of sparsity. Consequently, the training process of the thresholds can
be regarded as a contest between the sparse regularization term and the loss function in the sense of
game theory. Therefore, our method can dynamically find the sparse structure that properly balances
the model sparsity and performance.

4 EXPERIMENTS

The proposed method is evaluated on MNIST, CIFAR-10 and ImageNet with various modern net-
work architectures including fully connected, convolutional and recurrent neural networks. To quan-
tify the pruning performance, the layer remaining ratio is defined to be kl = n/m, where n is the
number of elements equal to 1 in the mask M and m is the total number of elements in M . The
model remaining ratio km is the overall ratio of the non-zero elements in the parameter masks for all
trainable masked layers. The model remaining percentage is defined as km×100%. For all trainable
masked layers, the trainable thresholds are initialized to zero since it is assumed that originally the
network is dense. The detailed experimental setup is present in Appendix A.1.

4.1 PRUNING PERFORMANCE ON VARIOUS DATASETS

MNIST. Table 1 presents the pruning results of proposed method for Lenet-300-100 (LeCun et al.,
1998), Lenet-5-Caffe and LSTM (Hochreiter & Schmidhuber, 1997). Both LSTM models have two
LSTM layers with hidden size 128 for LSTM-a and 256 for LSTM-b. Our method can prune almost
98% parameter with little loss of performance on Lenet-300-100 and Lenet-5-Caffe. For the LSTM
models adapted for the sequential MNIST classification, our method can find sparse models with
better performance than dense baseline with over 99% parameter pruned.

CIFAR-10. The pruning performance of our method on CIFAR-10 is tested on VGG (Simonyan
& Zisserman, 2014) and WideResNet (Zagoruyko & Komodakis, 2016). We compare our method
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Architecture Dense Baseline (%) Model Remaining
Percentage (%) Sparse Accuracy (%) Difference

Lenet-300-100 98.16 ± 0.06 2.48 ± 0.21 97.69±0.14 -0.47
Lenet-5-Caffe 99.18 ± 0.05 1.64 ± 0.13 99.11±0.07 -0.07
LSTM-a 98.64 ± 0.12 1.93 ± 0.03 98.70±0.06 +0.06
LSTM-b 98.87 ± 0.07 0.98 ± 0.04 98.89±0.11 +0.02

Table 1: The pruning results on MNIST for various architectures

with other sparse learning algorithms on CIFAR-10 as presented in Table 2. The state-of-the-art
algorithms, DSR (Mostafa & Wang, 2019) and Sparse momentum (Dettmers & Zettlemoyer, 2019),
are selected for comparison. Dynamic Sparse Training (DST) outperforms them in almost all the
settings as present in Table 2.

Architecture Method Dense baseline Model Remaining
Percentage (%) Sparse Accuracy Difference

VGG-16
Sparse Momentum 93.51 ± 0.05 10 93.36 ± 0.04 -0.15

5 93.00 ± 0.07 -0.51

DST (Ours) 93.75 ± 0.21 8.82 ± 0.34 93.93 ± 0.05 +0.18
3.76 ± 0.53 93.02 ± 0.37 -0.73

WideResNet-16-8

Sparse Momentum 95.43 ± 0.02 10 94.87 ± 0.04 -0.56
5 94.38 ± 0.05 -1.05

DSR 95.21 ± 0.05 10 94.93 ± 0.04 -0.28
5 94.68 ± 0.05 -0.53

DST (Ours) 95.18 ± 0.06 9.86 ± 0.22 95.05 ± 0.08 -0.13
4.64 ± 0.15 94.73 ± 0.11 -0.45

Table 2: Comparison with other sparse training methods on CIFAR-10.

ImageNet. For ResNet-50 on ImageNet (ILSVRC2012), we present the performance and compari-
son with other methods in Table 3. Dynamic Sparse Training (DST) achieves better top-1 and top-5
accuracy with slightly higher model sparsity. The number of parameters for the dense ResNet-50
model is 25.56 M.

Method Dense baseline
Top-1 / Top-5 (%)

Model Remaining
Percentage (%)

Sparse accuracy
Top-1 / Top-5 (%) Difference Remaining number

of parameters

Sparse Momentum 74.90 / 92.40 20 73.80 / 91.80 -1.10 / -0.60 5.12M
10 72.30 / 91.00 -2.60 / -1.40 2.56M

DSR 74.90 / 92.40 20 73.30 / 92.40 -1.60 / +0.00 5.14M
10 71.60 / 90.50 -3.30 / -1.90 2.56M

DST (Ours) 74.95 / 92.60 19.24 74.02 / 92.49 -0.73 / -0.11 5.08M
9.87 72.78 / 91.53 -2.17 / -1.07 2.49M

Table 3: Comparison with other sparse training methods for ResNet-50 on ImageNet.

4.2 PRUNING PERFORMANCE ON VARIOUS REMAINING RATIO

By varying the scaling coefficient α for sparse regularization term, we can control the model re-
maining ratios of sparse models generated by dynamic sparse training. The relationships between α,
model remaining ratio and sparse model accuracy of VGG, WideResNet-16-8 and WideResNet-28-8
on CIFAR-10 are presented in Figure 3. As demonstrated, the model remaining ratio keeps decreas-
ing with increasing α. With a moderate α value, it is easy to obtain a sparse model with comparable
or even higher accuracy than the dense counterpart. On the other side, if the α value is too large that
makes the model remaining percentage less than 5%, there will be a noticeable accuracy drop. As
demonstrated in Figure 3, the choice of α ranges from 10−9 to 10−4. Depending on the application
scenarios, we can either get models with similar or better performance as dense counterparts by a
relatively small α or get a highly sparse model with little performance loss by a larger α.
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(a) VGG-16 (b) WideResNet-16-8 (c) WideResNet-28-8

Figure 3: Test accuracy of sparse model on CIFAR-10 and model remaining ratio for different α

5 DISCUSSION

5.1 FINE-GRAINED STEP-WISE PRUNING

Figure 4(a) demonstrates the change of layer remaining ratios for Lenet-300-100 trained with DST
at each training step during the first training epoch. And Figure 4(b) presents the change of layer
remaining ratios during the whole training process (20 epochs). As present in these two figures,
instead of decreasing by manually set fixed step size as in other pruning methods, our method makes
the layer remaining ratios change smoothly and continuously at each training step. Meanwhile, as
shown in Figure 4(a), the layer remaining ratios fluctuate dynamically within the first 100 training
steps, which indicates that DST can achieve step-wise fine-grained pruning and recovery.

Meanwhile, for multilayer neural networks, the parameters in different layers will have different
relative importance. For example, Lenet-300-100 has three fully connected layers. Changing the
parameter of the last layer (layer 3) can directly affect the model output. Thus, the parameter of layer
3 should be pruned more carefully. The input layer (layer 1) has the largest amount of parameters
and takes the raw image as input. Since the images in MNIST dataset consist of many unchanged
pixels (the background) that have no contribution to the classification process, it is expected that the
parameters that take these invariant background pixels as input can be pruned safely. Therefore, the
remaining ratio should be the highest for layer 3 and the lowest for layer 1 if a Lenet-300-100 model
is pruned. To check the pruning effect of our method on these three layers, Lenet-300-100 model is
sparsely trained by the default hyperparameters setting present in Appendix A.1. The pruning trends
of these three layers during dynamic sparse training are present in Figure 4(b). During the whole
sparse training process, the remaining ratios of layer 1 and layer 2 keep decreasing and the remaining
ratio of layer 3 maintains to be 1 after the fluctuation during the first epoch. The remaining ratio of
layer 1 is the lowest and decrease to less than 10% quickly, which is consistent with the expectation.
In the meantime, the test accuracy of the sparse model is almost the same as the test accuracy on the
dense model in the whole training process. This indicates that our method can properly balance the
model remaining ratio and the model performance by continuous fine-grained pruning throughout
the entire sparse training procedure. A similar training tendency can be observed in other network
architectures. The detailed results for other architectures are present in Appendix A.4.

(a) Layer remaining ratio during first epoch (b) Layer remaining ratio during training (c) Model remaining ratio and accuracy

Figure 4: Change of layer remaining ratio, model remaining ratio and test accuracy for Lenet-300-100 with
α = 0.0005.
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5.2 DYNAMIC PRUNING SCHEDULE

(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 5: VGG-16 trained with initial learning rate 0.1 and α = 5× 10−6.

(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 6: VGG-16 trained with initial learning rate 0.01 and α = 5× 10−6.

Dynamic adjustment regarding learning rate decay. To achieve better performance, it is a com-
mon practice to decay the learning rate several times during the training process of deep neural
networks. Usually, the test accuracy will decrease immediately just after the learning rate decay and
then tend toward flatness. A similar phenomenon is observed for VGG-16 on CIFAR-10 trained by
DST as present in Figure 5(b), where the learning rate decay from 0.1 to 0.01 at 80 epoch.

Like the layer 3 of Lenet-300-100, the second fully connected layer (FC 2) of VGG-16 is the output
layer, hence its remaining ratio is expected to be relatively high. But a surprising observation is
that the remaining ratio of FC 2 is quite low at around 0.1 for the first 80 epochs and increases
almost immediately just after the 80 epoch as present in Figure 5(a). We suppose that this is caused
by the decay of the learning rate from 0.1 to 0.01 at 80 epoch. Before the learning rate decay,
the layers preceding the output layer fail to extract enough useful features for classification due
to the relatively coarse-grained parameter adjustment incurred by high learning rate. This means
that the corresponding parameters that take those useless features as input can be pruned, which
leads to the low remaining ratio of the output layer. The decayed learning rate enables a fine-
grained parameter update that makes the neural network model converge to the good local minima
quickly (Kawaguchi, 2016), where most of the features extracted by the preceding layers turn to be
helpful for the classification. This makes previously unimportant network connections in the output
layer become important thus the remaining ratio of this layer gets an abrupt increase.

There are two facts that support our assumptions for this phenomenon. The first fact is the sud-
den increase of the test accuracy from around 85% to over 92% just after the learning rate decay.
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Secondly, the remaining ratios of the preceding convolutional layers are almost unchanged after the
remaining ratio of the output layer increases up to 1, which means that the remaining parameters in
these layers are necessary to find the critical features. The abrupt change of the remaining ratio of
the output layer indicates that our method can dynamically adjust the pruning schedule regarding
the change of hyperparameters during the training process.

Dynamic adjustment regarding different initial learning rate. To further investigate the effect
of the learning rate, the VGG-16 model is trained by a different initial learning rate (0.01) with
other hyperparameters unchanged. The corresponding training curves are presented in Figure 6. As
shown in Figure 6(a), the remaining ratio of FC 2 increases up to 1 after around 40 epochs when
the test accuracy reaches over 90%. This means that with the proper update of network parameters
due to a smaller initial learning rate, the layers preceding the output layer (FC 2) tend to extract
useful features before the learning rate decay. It can be observed in Figure 6(b) that the test accuracy
only increases about 2% from 90% to 92% roughly after the learning rate decay at the 80 epoch.
Meanwhile, one can see that our method adopts a different pruning schedule regarding different
initial choices of training hyperparameters.

Model performance under dynamic schedule. Figure 5(b) and Figure 6(b) show the model re-
maining ratio, test accuracy of sparse model (sparse accuracy) and test accuracy of dense counter-
parts (dense accuracy) after each epoch during the whole training process. For the sparse model
trained with initial learning rate 0.1, the final model remaining percentage is 8.82%. The test
accuracy of this sparse model is 93.93%, which is better than 93.75% of the dense counterparts.
Similarly, for the sparse model trained with initial learning rate 0.01, the final model remaining
percentage is 12.45%. The test accuracy of this sparse model is 92.74%, which is also better than
92.54% of the dense model.

Considering the model performance during the whole training process, when trained with initial
learning rate 0.01, the sparse accuracy is consistently higher than dense accuracy during the whole
training process as present in Figure 6(b). Meanwhile, one can see from Figure 5(b) that the running
average of sparse accuracy is also higher than that of dense accuracy during the whole training
process when the initial learning rate is 0.1.

5.3 INFORMATION REVEALED FROM CONSISTENT SPARSE PATTERN

Many works have tried to design more compact models with mimic performance to over-
parameterized models (He et al., 2016; Howard et al., 2017; Zhang et al., 2018). Network archi-
tecture search has been viewed as the future paradigm of deep neural network design. However, it
is extremely difficult to determine whether the designed layer consists of redundancy. Therefore,
typical network architecture search methods rely on evolutionary algorithms (Liu et al., 2017) or
reinforcement learning (Baker et al., 2016), which is extremely time-consuming and computation-
ally expensive. Network pruning can actually be reviewed as a kind of architecture search process
(Liu et al., 2018; Frankle & Carbin, 2018) thus the sparse structure revealed from network prun-
ing may provide some guidance to the network architecture design. However, The layer-wise equal
remaining ratio generated by the unified pruning strategy fails to indicate the different degrees of
redundancy for each layer. And the global pruning algorithm is non-robust, which fails to offer
consistent guidance.

Here we demonstrate another interesting observation called consistent sparse pattern during dynamic
sparse training that provides useful information about the redundancy of individual layers as the
guidance for compact network architecture design. For the same architecture trained by our method
with various α values, the relative relationship of sparsity among different layers keeps consistent.
The sparse patterns of VGG-16 on CIFAR-10 are present in Figure 7 with three different α.

In all configurations, the last four convolutional layers (Conv 10-13) and the first fully connected
layers (FC 1) are highly sparse. Meanwhile, some layers (Conv 3-7, FC 2) keep a high amount of
parameters after pruning. This consistent sparse pattern indicates that these heavily pruned layers
consist of high redundancy and a large number of parameters can be reduced in these layers to
get more compact models. This phenomenon also exists in other network architectures, which is
present in detail in the appendix A.5. Therefore, with this consistent sparse pattern, after designing
a new network architecture, our method can be applied to get useful information about the layer-wise
redundancy in this new architecture.
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(a) α = 10−5, 6.66% remaining (b) α = 10−6, 15.47% remaining (c) α = 10−7, 35.35% remaining

Figure 7: The sparse pattern and percentage of parameter remaining for different choices of α on VGG-16

6 CONCLUSION

We propose Dynamic Sparse Training (DST) with trainable masked layers that enables direct train-
ing of sparse models with trainable pruning thresholds. DST can be easily applied to various types of
neural network layers and architectures to get a highly sparse or better-performed model than dense
counterparts. With the ability to reveal the consistent sparse pattern, our method can also provide
useful guidance to the design of the more compact network.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

MNIST: LeNet-300-100 and LeNet-5-Caffe are trained using SGD with a momentum of 0.9 and
the batch size of 64 with 20 training epochs. The learning rate is 0.01 without learning rate decay.
Meanwhile, the default scaling factor α for sparse regularization term is 0.0005 for both network
architectures. LSTM models are trained using Adam optimization scheme (Kingma & Ba, 2014)
with default Adam hyperparameter setting for 20 epochs. The batch size is 100 and the default
learning rate is 0.001. Meanwhile, the default scaling factor α for sparse regularization term is
0.001.

CIFAR-10 Models on CIFAR-10 are trained using SGD with momentum 0.9 and batch size of 64
with 160 training epochs. The initial learning rate is 0.1 and decayed by 0.1 at 80 and 120 epoch.
The default scaling factor α for sparse regularization term is 5× 10−6 for all tested architectures.

ImageNet. ResNet-50 models are trained using SGD with momentum 0.9 and batch size of 1024
with 90 training epochs. The default initial learning rate is 0.1 and decayed by 10 at 30, 60, 80
epochs.

For all trainable masked layers, the trainable thresholds are initialized to zero. Additionally, we
find that an extremely high scaling coefficient α will make the sparse regularization term dominates
the training loss thus making the mask M to be all zero in a certain layer, which may impede the
training process. To prevent this, the pruning threshold t will be reset to zero if more than 99%
elements in the mask are zero in a certain layer despite the LSTM models. This mechanism makes
the training process smoother and enables a wider range choice of α.

A.2 ANALYSIS OF DIFFERENT THRESHOLD CHOICES

Beside a threshold vector, a threshold scalar t or threshold matrix T ∈ Rco×ci can also be adopted
for each trainable masked layer with parameter W ∈ Rco×ci .

Qij =

{
|Wij | − t, for threshold scalar
|Wij | − Tij , for threshold matrix

(7)

All three choices of trainable thresholds are tested on various architectures. Considering the effects
on network pruning, the matrix threshold has almost the same model remaining ratio compared with
the vector threshold. The scalar threshold is less robust than the vector and matrix threshold. In
terms of the storage overhead, the matrix threshold almost doubles the amount of parameter during
the training process in each architecture. Meanwhile, the vector threshold only adds less than 1%
additional network parameter.

The extra trainable threshold will also bring additional computation. In both feed-forward and back-
propagation phase, the additional computations are matrix-element-wise operations (O(n2)), which
is apparently light-weighted compared to the original batched matrix multiplication (O(n3)). For
practical deployment, only the masked parameter W �M needs to be stored, thus no overhead will
be introduced. Therefore, considering the balance between the overhead and the benefit incurred by
these three choices, the vector threshold is chosen for trainable masked layers.

A.3 MORE DETAILS ABOUT THE TRAINABLE MASKED LAYER

Feed forward process. Considering a single layer in deep neural network with input x and dense
parameter W . The normal layer will conduct matrix-vector multiplication as Wx or convolution
as Conv(W ,x). In trainable masked layers, since a sparse mask M is obtained for each layer.
The sparse parameter W �M will be adopted in the corresponding matrix-vector multiplication or
convolution as (W �M)x and Conv(W �M ,x).

Back-propagation process. Referring to Figure 1, we denote P = W �M and the gradient
received by P in back-propagation as dP . Considering the gradients from right to left:
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• The performance gradient is dP �M
• The gradient received by M is dP �W
• The gradient received by Q is dP �W �H(Q), where H(Q) is the result of H(x) applied to Q
elementwisely.
• The structure gradient is dP �W � H(Q) � sgn(W ), where sgn(W ) is the result of sign
function applied to W elementwisely.
• The gradient received by the vector threshold t is dt ∈ Rco . We denote dT = −dP �W �H(Q),
then dT ∈ Rco×ci . And we will have dti =

∑ci
j=1 Tij for 1 ≤ i ≤ co.

• The gradient received by the parameter W is dW = dP �M + dP �W �H(Q)� sgn(W )

Since we add `2 regularization in the training process, all the elements in W are distributed within
[−1, 1]. Meanwhile, almost all the elements in the vector threshold are distributed within [0, 1].
The exceptions are the situation as shown in Figure 3(a) and Figure 4(a) where the last layer get
no weight pruned (masked). Regarding the process of getting Q, all the elements in Q are within
[−1, 1]. Therefore H(Q) is a dense matrix. Then W , H(Q) and sgn(W ) are all dense matrices
and the pruned (masked) weights can receive the structure gradient dP �W �H(Q)� sgn(W )

A.4 CHANGE OF REMAINING RATIO IN OTHER NETWORK ARCHITECTURES

Here we present the change of remaining ratios during dynamic sparse training for the other tested
architectures. Since WideResNet models only have one fully connected layer at the end as the
output layer, the first five convolutional layers and the last fully connected layer are present. Fig-
ure 8 demonstrates the corresponding result for WideResNet-16-8. Figure 9 demonstrates the cor-
responding result for WideResNet-16-10. And Figure 10 demonstrates the corresponding result for
WideResNet-28-8. The similar phenomenon can be observed in all these three network architectures
for various α.

A.5 CONSISTENT SPARSE PATTERN IN OTHER NETWORK ARCHITECTURES

Here we present the consistent sparse pattern for the other tested architectures. Figure 11 demon-
strates the corresponding result for WideResNet-16-8. And Figure 12 demonstrates the correspond-
ing result for WideResNet-16-10.

(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 8: WideResNet-16-8 trained by dynamic sparse training with α = 10−5
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(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 9: WideResNet-16-10 trained by dynamic sparse training with α = 10−5

(a) Remaining ratio of each layer (b) Model remaining ratio and accuracy

Figure 10: WideResNet-28-8 trained by dynamic sparse training with α = 10−5

(a) α = 10−5, 9.86% remaining (b) α = 8 × 10−6, 14.47% remaining (c) α = 5 × 10−6, 19.18% remaining

Figure 11: The sparse pattern and percentage of parameter remaining for different choices of α on WRN-16-8

(a) α = 10−5, 7.55% remaining (b) α = 8 × 10−6, 10.47% remaining (c) α = 5 × 10−6, 14.75% remaining

Figure 12: The sparse pattern and percentage of parameter remaining for different choices of α on WRN-16-10
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