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ABSTRACT

Positive Unlabeled (PU) learning consists in learning to distinguish samples of
our class of interest, the positive class, from the counter-examples, the negative
class, by using positive labeled and unlabeled samples during the training. Recent
approaches exploit the GANs abilities to address the PU learning problem by gen-
erating relevant counter-examples. In this paper, we propose a new GAN-based
PU learning approach named Divergent-GAN (D-GAN). The key idea is to incor-
porate a standard Positive Unlabeled learning risk inside the GAN discriminator
loss function. In this way, the discriminator asks the generator to converge towards
the unlabeled samples distribution while diverging from the positive samples dis-
tribution. This enables the generator convergence towards the unlabeled counter-
examples distribution without using prior knowledge, while keeping the standard
adversarial GAN architecture. In addition, we discuss normalization techniques
in the context of the proposed framework. Experimental results show that the
proposed approach overcomes previous GAN-based PU learning methods issues,
and it globally outperforms two-stage state of the art PU learning performances in
terms of stability and prediction on both simple and complex image datasets.

1 INTRODUCTION

Nowadays, the number of available labeled datasets dedicated to perception applications has con-
siderably augmented (Russakovsky et al., 2015), (Yu et al., 2015), (Cordts et al., 2016). However,
when learning methods trained on these datasets are applied on real data, their performances are
likely to deteriorate. Consequently, it is necessary to use a dataset specialized for the given target
application. It turns out that it can be easy to get unlabeled data in some applications domains such
as autonomous driving. Positive Unlabeled (PU) learning enables to use these unlabeled data such
that they are combined with labeled samples of our class of interest: the positive class. The interest
is that unlabeled data can contain relevant counter-examples: the negative samples. The difficulty
is that unlabeled data can also contain a fraction πp of unlabeled positive samples. (Sansone et al.,
2018) enumerates several learning problems which can be addressed in this way like the information
retrieval and the One-vs-Rest task.

Several PU learning methods exist and some of them are adapted for image classification. They are
generally classified into these two categories: - censoring PU learning, formalized by Elkan & Noto
(2008) and recently improved by Northcutt et al. (2017); - case-control PU learning, introduced
by Ward et al. (2009), formalized by du Plessis et al. (2014), and then consecutively improved by
Du Plessis et al. (2015) and Kiryo et al. (2017). However we focus our attention in this article on
the recently proposed GAN-based PU approaches. So we classify PU learning approaches into the
two following groups suggested by Kiryo et al. (2017): one-stage and two-stage PU methods. One-
stage ones such as the unbiased PU method (uPU) (Du Plessis et al., 2015) and the non-negative
PU method (nnPU) (Kiryo et al., 2017) consist in training a classifier directly with the PU dataset.
These methods have the advantage to need only one training of the classifier. But they require dataset
prior knowledge and consequently uPU and nnPU need to be combined with an approach estimating
the prior knowledge (Jain et al., 2016), (Ramaswamy et al., 2016), (Christoffel et al., 2016). On
the other hand, two-stage PU methods prepare during the first stage a PN dataset. For example,
Rank Pruning method (RP) (Northcutt et al., 2017) realizes several consecutive trainings of a binary
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classifier. After each training, only the samples considered as the most confident are kept in order to
substitute the unlabeled samples for the next training of the same classifier. RP achieves two-stage
state of the art performances without prior knowledge, but with a high training computational cost
and is limited in its prediction performances on complex image datasets like CIFAR-10.

Recently, a new subcategory of two-stage PU methods appeared: GAN-based PU methods. They
address the PU learning challenge by producing, thanks to an adversarial training (Goodfellow et al.,
2014), relevant generated samples from a PU dataset during the first step. Then they are used to
train a standard Positive Negative (PN) classifier during the second step. Existing GAN-based PU
methods PGAN (Chiaroni et al., 2018) and GenPU (Hou et al., 2018) are presented and their issues
are discussed in the next section 2. This article addresses these issues with a new GAN-based PU
learning approach: the Divergent-GAN. Our contributions are the following:

• we propose to incorporate a PU learning risk inside the standard GAN (Goodfellow et al.,
2014) discriminator loss function. The intuition behind is to have the generative model
solving the PU learning problem formulated in the discriminator loss function. In this
way the generator learns the distribution of the samples which are both unlabeled and not
positive: the negative ones included in the unlabeled dataset;

• (side contribution) we highlight a Batch Normalization (BN) (Ioffe & Szegedy, 2015) crit-
ical issue: A learning model which manipulates different minibatches distributions should
not use BN. Alternative normalization techniques are discussed (section 3.2) and experi-
mented (section 4.1) in the context of the proposed framework which manages positive,
unlabeled and generated minibatches.

Thanks to this new framework, we address the previous GAN-based PU methods main issues: It
reduces the overfitting problem of the PGAN method, and it learns the counter-examples distribution
included in the unlabeled dataset without using prior knowledge while keeping a standard GAN
architecture. Consequently, the D-GAN globally outperforms two-stage state of the art PU learning
performances on simple MNIST and complex CIFAR-10 image datasets.

From a practical point of view, several previous PU methods benefits are combined in the proposed
framework as listed in Table 1. The D-GAN code is available at 1.

The article is structured as follow. Section 2 presents GAN-based PU learning approaches. Section
3 describes the proposed method. Section 4 presents the corresponding experimental results. Then
in section 5, we finish by a conclusion where we also discuss perspectives.

2 RELATED WORK

GAN-based PU learning approaches are a recent subcategory of two-stage PU methods, as proposed
in PGAN (Chiaroni et al., 2018) and GenPU (Hou et al., 2018). The interest of using GANs is
double: GANs enable relevant data augmentation and they use high-level feature metrics to evaluate
generated samples quality, thanks to the use of a discriminator. The generated samples replace the
unlabeled ones by learning on the latter (Chiaroni et al., 2018), or on both unlabeled and positive
labeled ones as (Hou et al., 2018) during the first step. Both methods exploit GANs (Goodfellow
et al., 2014) benefits, but they are not suitable under the same datasets conditions and the reasonings
are different:

• GenPU method is based on the original GAN convergence (Goodfellow et al., 2014), such
that: πP · pGP

+ (1 − πP ) · pGN
−→ pU , with pGP

the distribution of positive samples
generated by the generator GP , pGN

the distribution of the negative samples generated by
GN , and pU the distribution of real unlabeled samples. The same idea can be expressed by
using one single generator GN such that we replace the generated positive samples by the
positive labeled samples initially present in a PU dataset. In practice, GenPU seems to be
an interesting PU method on simple datasets when we own few positive labeled samples,
and it generates relevant counter-examples. However, training adversarially five learning
models instead of two to address standard PU learning challenge is not necessary and more
computational demanding. Moreover, this amplifies the mode collapse issue, and GenPU

1The code will be publicly available after the anonymous reviewing period.
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training optimization functions need three additional hyper-parameters combined with prior
knowledge. This is not practical.
• PGAN method is trained to converge towards the unlabeled dataset distribution during the

first step. During the second step, it exploits GANs imperfections such that the generated
distribution at the adversarial equilibrium is still separable from the unlabeled samples
distribution by a classifier. It presents a relatively steadier behaviour and better prediction
performances than the two-stage baseline RP method on the complex RGB image dataset
CIFAR-10 without prior knowledge. However, it is less suitable for relatively simpler
datasets like MNIST. The generated samples are all considered as negative samples by
the classifier. But this is possible only if the generated samples distribution converges
close enough towards the unlabeled samples distribution, while not matching with it. So
if the PGAN first stage works as expected theoretically by Goodfellow et al. (2014), then
the PGAN classification second stage falls back into the initial PU learning problem. We
highlight this first stage overfitting problem in figure 5(b).

The proposed approach overcomes previous enumerated GAN-based PU methods issues, while
merging their respective advandages to address the standard PU learning task. This is achieved
with the novel reasoning presented in the next section.

Table 1: Practical D-GAN proposed approach advantages.
Methods D-GAN PGAN GenPU RP nnPU uPU

(proposed) (Chiaroni et al., 2018) (Hou et al., 2018) (Northcutt et al., 2017) (Kiryo et al., 2017) (Du Plessis et al., 2015)

No need of priori knowledge X X × X × ×
Practical PU framework X X × X X X

Simple PU dataset analysis X × X X X X
Complex PU dataset analysis X X × ×

Generation of relevant counter-examples X × X
Noisy Labeled learning (section 6.3) X × × X × ×

3 PROPOSED METHOD

This section starts by discussing some particularities of a standard PU learning risk (equation 1).
Then we propose to incorporate this risk into a generic GAN framework in order to guide the gener-
ator convergence towards the distribution of the negative samples included in the unlabeled dataset.
In addition, we discuss normalization techniques in the context of this framework which manipulates
three different types of minibatches: positive, unlabeled and generated ones.

3.1 A DIVERGENT APPROACH FROM THE DISCRIMINATOR POINT OF VIEW

The D-GAN intuition can be expressed as follow. The discriminator D addresses to the generator
G the riddle: Show me what IS unlabeled AND NOT positive. It turns out that negative samples
included in the unlabeled dataset are both unlabeled and not positive. Consequently G addresses
this riddle by learning to show the negative samples distribution to D.

The Positive Unlabeled (PU) learning problem consists in trying to distinguish positive samples from
negative samples by using a PU dataset. We start by detailing the expected PU functionality that we
want to incorporate into the GAN discriminator loss function. Let X ∈ Rm be the input random
variable and Y ∈ {0, 1} its associated label. X can be a positive XP , negative XN or unlabeled
XU sample which respectively follow the distributions pP = p(X|Y = 0), pN = p(X|Y = 1) and
pU = (1−πP ) · pN +πP · pP , with πP ∈ (0, 1) the unknown prior which represents the fraction of
unlabeled positive samples included in the unlabeled dataset. Let D : Rm → [0, 1] be the decision
function which is then considered as the discriminator network of the proposed framework. We have
l(ŷ, y) such that l : [0, 1]× [0, 1]→ R is the arbitrary cost function with the predicted output ŷ of
D for a given sample and the corresponding label y as inputs. D is trained with a PU risk RPU
to predict the label value 1 for the unlabeled samples, and the label value 0 for the positive labeled
ones. Given the composition of the unlabeled dataset, we develop RPU (D) such that:

RPU (D) = ExU∼pU
[l(D(xU ),1)] + ExP∼pP

[l(D(xP ),0)]

= (1− πP ) · ExN∼pN
[l(D(xN ),1)] + πP · ExP∼pP

[l(D(xP ),1)]

+ ExP∼pP
[l(D(xP ),0)].

(1)
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We notice that negative samples are associated exclusively to the label value 1 for any πP value.
Labeled and unlabeled positive samples follow the same distribution pP . So pP is associated to
both contradictory labels 0 and 1. Consequently, as discussed in annexe section 6.1, we assume it is
equivalent to associate the positive distribution pP with a unified intermediate label value δ ∈ (0, 1).
So if we train D with the risk RPU , then D prediction concerning the unlabeled positive samples is
shifted away from the label value 1. Thus D predicts the label value 1 exclusively for the negative
samples.

Next, let us consider the decision function D as the discriminator of a generative adversarial net-
work. We propose to incorporate the risk RPU into the value function of the original GAN model
(Goodfellow et al., 2014) by adding the loss function term ExP∼pP [log(1−D(xP ))]. Consequently,
the training loss function LD of D is:

LD(G,D) = ExU∼pU [logD(xU )] + Ez∼pz [log(1−D(G(z)))]

+ ExP∼pP [log(1−D(xP ))],
(2)

with z the input random vector of the generative model G such that G(z) is a generated sample. z
can follow a uniform or normal distribution. The equation 2 is justified intuitively as follow. Instead
of asking to G to converge towards the distribution pU , we want that G learns to converge towards
the distribution pN of negative samples. Thus we propose to replace the standard GAN task show
me what is unlabeled by the task show me what is both unlabeled and not positive. This results in
addressing directly the risk RPU to D such that LD is as follow:

LD(G,D) = RPU (D) + Ez∼pz [l(D(G(z)), 0)], (3)

with 0 the label associated to the samples G(z) generated by G. Let the cost function l used in the
proposed D-GAN framework be the binary cross-entropy H such that l = −H . So:

LD(G,D) = ExU∼pU [−H(D(xU ), 1)] + ExP∼pP [−H(D(xP ), 0)]

+ Ez∼pz [−H(D(G(z)), 0)],
(4)

We recall that the binary cross-entropy H is defined as below:

H(D(X), Y ) = −Y · log(D(X))− (1− Y ) · log(1−D(X)), (5)

with Y the label associated to the D input X . Thus H(D(X), 1) = −log(D(X)) and
H(D(X), 0) = −log(1 −D(X)). Consequently, LD can be developed as in the equation 2. This
shows the incorporation of RPU risk (equation 1) inside the D-GAN discriminator loss function
(equation 2).

On the other hand, the role of G during the adversarial training is to generate samples considered by
D as 1. So, as suggested by Goodfellow et al. (2014) in practice, the training loss function LG of
G is such that LG(G,D) = Ez∼pz [log(D(G(z)))]. We recall that exclusively the negative samples
are considered as 1 by D thanks to the RPU risk, as shown previously. Consequently this justifies
intuitively the G convergence towards the negative samples distribution pN . The corresponding
implementation algorithm 1 of this first stage is presented in annexe 6.

Once the D-GAN training is finished, we can start the second step which consists in using a classifier
C to distinguish fake generated samples xFN = G(z), which are ideally equivalent to the real
negative samples, from real positive labeled samples as illustrated in figure 1. The Divergent-GAN
behaviour is only possible if the discriminator D associates the label value 1 exclusively with the
negative samples distribution. Nonetheless, in the worst-case scenario where the discriminator D
is not able to sufficiently encode the complexity of the boundary between positive and negative
samples included in the unlabeled dataset, the D-GAN will behave like the PGAN, which is the best
solution in this situation. This is observed experimentally in the section 4.

3.2 WITHOUT DISCRIMINATOR BATCH NORMALIZATION

Nowadays, Batch Normalization (BN) (Ioffe & Szegedy, 2015) is considered as a relevant regular-
ization technique commonly used in deep neural networks architectures. Its utility for GANs training
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Figure 1: Proposed Positive Unlabeled system: Divergent-GAN Learning model. xFN represents
the fake generated samples which are similar to real negative samples xN . G is the generative
model. D is the discriminator. C is the classifier used to perform the binary Positive-Negative (PN)
classification.

has been highlighted by (Radford et al., 2015) for the DCGAN architecture in order to stabilize the
adversarial training. Other variants like the Wasserstein-GAN (Arjovsky et al., 2017) or the Loss-
Sensitive GAN (Qi, 2017) confirmed its interest. As developped in (Ioffe & Szegedy, 2015), BN
addresses issues like vanishing, exploding gradient problems, and the risk of getting stuck in a poor
local minima. BN suggests to reduce the internal covariate shift problem of the learning model.
In this way, a higher learning rate can be used and it can improve significantly the training speed.

But BN regularizes the model, such that a training sample from a given minibatch is considered in
conjunction with other examples of this minibatch. This is the consequence of estimating the mean
and variance normalization parameters one time per minibatch, and then applying them on each
minibatch sample. It turns out that it does not allow to link labeled positive samples to the unlabeled
positive samples and to produce a gap between positive and negative samples, when positive samples
xP and unlabeled samples xU are not in the same training minibatch. To counter this problem, we
could imagine to apply BN on a unified minibatch which contains a fraction of each distribution
xP , xU and xF . But the BN effect is influenced a lot by the content of the minibatch on which it is
applied. So the fraction πP of positive samples included in xU will affect the batchnorm effect.

As illustrated experimentally in figure 4, with BN, we observe that the classifier only learns to
distinguish minibatches of positive samples from minibatches of unlabeled samples. On the contrary,
without the use of BN, both distributions appear in the unlabeled minibatch from the discriminator
output point of view. In other words, the negative samples can be distinguished from the positive
samples without BN.

However, BN benefits in a more traditional training are not negligible, so we suggest to use another
type of normalization which could replace BN role in a PU learning task. Layer Normalization
(LN) (Ba et al., 2016), is a frequently used technique with sequential networks as it can be applied
for each sequential sample separately. With LN the normalization for a given sample is computed
on its resulting output feature map layers and the mean and variance are computed separately for
each sample of a minibatch. For this reason, we propose to apply LNs instead of BNs inside our
discriminative model D. As we can observe in figure 4, it allows the discriminator to keep the
behaviour that interests us which is the ability to distinguish unlabeled negative samples to unlabeled
positive samples. Additional qualitative experiments in annexe section 6 show that the LN can
substitute BN inside the discriminative model structure to generate acceptable images.

The next section presents experimental results which demonstrate the good performance of the pro-
posed approach.

4 EXPERIMENTAL RESULTS

This section demonstrates experimentally the D-GAN abilities on simple and complex datasets:
We present qualitative results for the counter-example generation, the discriminator normalization
effect, and quantitative results for the PU learning image classification task.
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Experimental settings are as follow. Minibatches of labeled positive samples, unlabeled samples, and
generated samples have the same size. The convolutional classifier C used 2 in the subsection 4.2
is described in the PGAN article (Chiaroni et al., 2018) experiments. C is always trained during 20
epochs. We use the DCGAN (Radford et al., 2015) architecture for all the comparative experiments
except for celebA and CIFAR-10 datasets where we respectively adapt the LS-GAN (Qi, 2017)
and WGAN-GP (Gulrajani et al., 2017) variants to the D-GAN framework. The D-GAN uses LN
instead of BN concerning D. Concerning the PU dataset initialization from a standard PN dataset, ρ
is the fraction of the positive labeled samples of the initial PN dataset that we unlabel such that they
are included into the unlabeled dataset. πP is the fraction that represents these unlabeled positive
samples among the unlabeled dataset.

From a qualitative point of view, and on the contrary to the PGAN model, the D-GAN generates
samples which are only similar to the counter-examples for diverse data types, as illustrated in
figure 3 for a 2D point cloud dataset and in figure 2 for a real images dataset. In order to enable
the proposed approach reproducibility, a D-GAN implemented version corresponding to the figure
2 results is available 3 and is applied on the LSGAN model (Qi, 2017). Our code includes also the
method implementation, proposed by Chiaroni et al. (2018), to establish a PU training dataset from
a fully labeled dataset.

Figure 2: This is a minibatch of fake negative images xFN generated, after 20 epochs iteration, with
the D-GAN based on the Loss-Sensitive GAN (Qi, 2017) and by replacing BN with LN. The PU
training dataset uses the celebA dataset images with settings ρ = 0.5, πP = 0.3 and ”Male” the
positive class chosen arbitrarily. The images size is cropped to 64*64*3. All generated samples are
qualitatively relevant fake counter-examples.

(a) (b) (c)

Figure 3: D-GAN functioning on clusters of 2D points such that D and G have a multilayer-
perceptron structure. (a), (b) and (c) are respectively sets of labeled positive, unlabeled, and gener-
ated samples. The generated samples only follow the distribution of the counter-examples.

4.1 NORMALIZATION EFFECTS ON THE DISCRIMINATOR

We compare in the figure 4 the ability of D to distinguish the positive from the negative samples
distribution when it is trained on a PU dataset with BN, LN layers or without any normalization
technique. Smaller is surface intersection between the discriminator output histogram distribution
predictions on positive and negative samples included in the unlabeled dataset, better it is.

2https : //github.com/tensorflow/tensorflow/blob/master/
tensorflow/examples/tutorials/mnist/mnist softmax.py

3after the anonymous reviewing period
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(a) (b) (c)

Figure 4: Normalization effect on the histogram distribution of output values predicted by D on an
unlabeled samples minibatch. (a) is with BN, (b) without any normalization, and (c) with LN. The
axe in depth represents the training iterations. The lighter histogram corresponds to the last training
iteration. Settings are with positive class 8 and negative class 3 of MNIST dataset, with ρ = 0.5
and πP = 0.3. We observe that BN in the figure 4(a) does not enable to distinguish positive from
negative samples when the discriminator is trained on a PU dataset. On the contrary, LN (figure
4(c)) enables it for the reasons specified in the subsection 3.2. Thus with LN in D, G can converge
exclusively towards the unlabeled negative samples distribution pN , as expected.

4.2 DIVERGENT-GAN FOR POSITIVE UNLABELED LEARNING

We compare the D-GAN accuracy prediction to GenPU on the table 2 for the simple One vs. One
task with few positive labeled samples. The GenPU method presents better results for fewer labeled
positive samples. The D-GAN presents Accuracy performances better than the GenPU method for
one hundred of positive labeled samples after 40 epochs training iterations for the D-GAN counter-
examples generation step. Moreover, it is interesting to observe that the proposed approach globally
slightly outperforms nnPU and uPU methods without using prior knowledge.

Table 2: Comparative results of Accuracy prediction performances on MNIST in a One vs. One
mode. NP is the number of positive labeled samples, and NU is the number of unlabeled samples
which mixes all the rest of positive and negative samples. GenPU, uPU and nnPU results come from
(Hou et al., 2018).

One vs. One ’3’vs.’5’ ’8’vs.’3’

Dataset: MNIST D-GAN (proposed) GenPU nnPU uPU D-GAN (proposed) GenPU nnPU uPU

No need of prior knowledge X × × × X × × ×
NP=100 : NU=9900 0.987 0.983 0.969 0.914 0.989 0.982 0.974 0.932
NP=50 : NU=9950 0.964 0.982 0.966 0.854 0.974 0.979 0.965 0.873

Concerning the relatively more challenging One vs. Rest task, the D-GAN globally outperforms
the PGAN and RP methods in terms of F1-Score predictions performances on the table 3 both on
MNIST and CIFAR-10 datasets.

Moreover, the D-GAN demonstrates a steadier behaviour than PGAN against the overfitting problem
as illustrated in figure 5(b).

Table 3: Comparative results of two-stage PU methods not using prior knowledge. These are the av-
erage F1-Score prediction performances in a One vs. Rest mode on MNIST and CIFAR-10 with re-
spectively 35 Divergent-GAN epochs on MNIST and 275 Divergent-WGAN-GP epochs on CIFAR-
10. PGAN and RP results come from (Chiaroni et al., 2018). PNGAN represents a PN (PU when
πP = 0) training such that the negative samples are replaced by WGAN generated ones. This
highlights the GANs data augmentation effect on complex datasets like CIFAR-10.

One vs. Rest ref ρ = 0.5, πP = 0.1 ρ = 0.5, πP = 0.3 ρ = 0.5, πP = 0.5 ρ = 0.5, πP = 0.7

Datasets PN PNGAN D-GAN PGAN RP D-GAN PGAN RP D-GAN PGAN RP D-GAN PGAN RP

AV GMNIST 0.993 0.988 0.99 0.965 0.967 0.984 0.958 0.975 0.972 0.946 0.951 0.922 0.875 0.933
AV GCIFAR-10 0.680 0.812 0.749 0.745 0.622 0.727 0.760 0.730 0.749 0.748 0.716 0.713 0.702 0.684

In figure 5(a), without BN or LN, the D-GAN method gets a faster and better Accuracy prediction
performance than the PGAN when both are trained under the same conditions. In figure 5(b), the
D-GAN with LN follows the learning training rythm of the PGAN with BN. The D-GAN also
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Figure 5: Classifier test Accuracy evolution in function of the GAN epochs (first stage). 8 vs. Rest
MNIST task, with ρ = 0.5 and πp = 0.5. (a) D-GAN and PGAN are trained without normalization
layers. (b) D-GAN and PGAN are respectively trained with LN and BN inside the discriminator.

has a steadier behaviour once the Accuracy progression is finished: it reduces the PGAN first step
overfitting problem.

5 CONCLUSION

To conclude, we have incorporated into the discriminator D loss function a standard PU risk to
address the PU learning challenge. In this way, the proposed model generates relevant counter-
examples from a PU dataset without prior knowledge. It outperforms two-stage state of the art
PU learning performances by addressing previous GAN-based PU methods issues: -It reduces the
overfitting PGAN first stage problem. -It addresses the GenPU mode collapse issue by keeping the
practical standard GANs architecture such that it is easily adaptable to recent GANs variants. A side
contribution of this article is to identify a discriminator batch-normalization critical issue appearing
when the discriminator manipulates multiple minibatches distributions.

We strongly believe that the proposed approach stability and prediction performances still have the
potential to be improved by taking the best of the representation learning and PU learning domains.
For example, recent promising GAN training approaches (Karras et al., 2018) not mandatorily using
BN should be suitable to extend the proposed approach for large-scaled image datasets. In addition,
premices of Noisy labeled learning results presented in annexe section 6.3 propose to extend the
presented approach to a unified generative framework which could output relevant generated labeled
samples even from a weak, noisy labeled or incremental dataset with varying fractions of unlabeled
positive samples.
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6 ANNEXE

The algorithm 1 is the implementation of the proposed approach. It includes the option for the noisy
labeled learning task.

The table 4 details for each class the average F1-Score results presented in Table 3.

The figure 9 presents the same minibatch generated as in the figure 2, but in a larger size.

6.1 AN EXPERIMENTAL ANALYSIS OF THE RISK RPU

If D does not overfit labeled and unlabeled positive samples, let δ ∈ (0, 1) be the label associated
to all positive samples such that we propose the Positive Negative risk RPN (D, δ) = RPU (D). δ
represents the intermediate label value equivalent of associating, in the riskRPU , both contradictory
labels 0 and 1 respectively to labeled and unlabeled positive samples. We develop the risk RPN as
follow:

RPN (D, δ) = (1− πP ) · ExN∼pN [l(D(xN ), 1)] + (1 + πP ) · ExP∼pP [l(D(xP ), δ)]. (6)

As illustrated in figure 6, in practice we can train D with the risk RPU to output a value ŷ close to
δ when the input is a positive sample, and close to 1 when the input is a negative sample. We can
observe that the global minimum of the approximated risk R̂PN (D, δ) corresponds to the global
maximum of the distribution predicted by D in output for positive unlabeled samples. Moreover,
the distribution of the negative samples is centered on the label associated to the unlabeled samples
during the training, which coincides also with the equation 6 formulation. This illustrates experi-
mentally that D predicts the label value 1 exclusively for the negative samples.

6.2 NEEDING PRIOR KNOWLEDGE MAY NOT BE SUITABLE FOR INCREMENTAL APPLICATIONS

In the context of real learning applications like incremental learning (Craye et al., 2018), (Hadsell
et al., 2009), the fraction πP of unlabeled positive samples can vary continuously at each new incre-
mental unlabeled minibatch of samples to process. However, existing PU learning methods using
prior knowledge, like uPU and nnPU implicitly do the assumption that the prior knowledge holds
the same during all the training. A PU learning method which does not need prior knowledge as the
D-GAN proposed approach could be extended to such real applications.

6.3 AN EXTENSION TO NOISY LABELED LEARNING AND FEW LABELED DATA RESSOURCES

If a generative model in an adversarial training only converges towards the subdivision of a distribu-
tion which is considered as the closest to a given label from the discriminator point of view, then we
can extend the proposed approach to the noisy labeled learning task. More precisely, the D-GAN
architecture can be modified to include a generative model GP trained to generate fake positive
samples. This is achieved by adding the loss function term Ez∼pz [log(1−D(GP (z)))] in the min-
imax value function. Furthermore, this extension also allows to manage problems where we only
have few labeled positive samples. The positive generatorGP will converge towards the distribution
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Figure 6: Link between the PN loss function suggested (equation 6) and the distribution of the
discriminator output predictions for an unlabeled minibatch. For this experiement, l is the mean
squared error (MSE) and D is a multi-layer perceptron. D has been trained to distinguish a 2D
gaussian distribution to another one by using the risk RPU on a PU dataset. (a) Shows a set of
2D points considered as positive samples. (b) Shows a set of 2D points considered as unlabeled
samples. Both curves in (c) and (d) have been normalized to get a better visualization. For (c),
pY (D(xU )) (in blue) represents the probability distribution of D predicted outputs for a minibatch
of unlabeled samples, with πP = 0.5. R̂PN (D, δ) (in red) represents the PN risk computed in
function of δ with the equation 6 on a minibatch of positive and negative labeled samples, once D is
trained with RPU risk. (d) shows the same curves as in (c) but by giving in input a concatenation of
an unlabeled minibatch with a positive labeled minibatch. Unlabeled and labeled positive samples
provide a unified prediction output distribution.

considered as the most positive, the closest to zero in our case, which includes also the unlabeled
positive samples perceived by the discriminator at the same location that the labeled ones as illus-
trated in figure 6 (d). We argue that it is indirectly the same phenomenon that allows the GenPU
(Hou et al., 2018) to get relatively good accuracy predictions with few labeled positive samples.
Because the discriminator task becomes more difficult, the weight α is applied on the unlabeled loss
function ExU∼pU [log(D(xU ))] and on the positive one ExP∼pP [log(1 − D(xP ))]. It ensures the
guidelines that both generators G and GP have to follow. The boolean variable noisyLabelsMode
of the algorithm 1 is set to True to activate this functionality.

This noisy labeled learning D-GAN proposed extension cannot capture the entire positive samples
distribution. Nonetheless, this extension presents an interesting behaviour as illustrated in the figure
7 showing the results obtained on clusters of 2D point clouds with the D-GAN, when its noisy
labeled mode is activated.

(a) (b) (c) (d)

Figure 7: D-GAN Noisy-labeled version functioning on sets of 2D points such that (a), (b), (c)
and (d) are respectively sets of real noisy labeled positive (20 percents of noise), real noisy labeled
negative (20 percents of noise), fake generated positive and fake generated negative samples. D, G
and GP have a multilayer-perceptron structure. The generated samples only follow the ditribution
of the well-labeled samples of the input sets.
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(1a) (1b) (1c) (1d)

(2a) (2b) (2c) (2d)
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Figure 8: Details of figure 4 Batch Normalization effect on discriminator output predictions on
distinct Positive and Unlabeled minibatches. Settings are with positive class 8 and negative class
3 of MNIST dataset, with ρ = 0.5 and πP = 0.3. The results on the first row are done with
BN, without on the second row, and with LN on the third row. The first column (a) is the mean
D loss value estimated in function of training iterations. The second column (b) is the histogram
distributions of output values predicted by D on the positive and unlabeled minibatches. The third
column (c) is the histogram distribution of output values predicted by D on the positive minibatch.
The fourth column (d) is the histogram distribution of output values predicted byD on the unlabeled
minibatch. The axe in depth represents the training iteration axe on which the clearest histograms
gradually correspond to the closest training iterations. Other alternative normalization techniques
have been applied to GANs, such as weight normalization (Karras et al., 2018) or the Virtual Batch
Normalization (VBN) (Salimans et al., 2016) where they essentially mention the same problem for
BN. However, VBN parameters strongly depend to their ”reference batch” composition. This is a
severe limitation if the fraction of unlabeled positive samples changes during the training, as it can
happen for example in a real incremental learning application. Moreover, VBN in (Salimans et al.,
2016) is only used in the generator, which is not what we are looking for. For PU learning task, BN
is not a problem inside the generator structure.
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Algorithm 1 Minibatch stochastic gradient descent training of the Divergent-GAN
Initialize noisyLabelsMode = false.
Initialize α = 2.
for number of training iterations do

for k steps do
Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pG(z).
Sample minibatch of m unlabeled examples {x(1)U , ..., x

(m)
U } from data distribution pU .

Sample minibatch ofm positive labeled examples {x(1)P , ..., x
(m)
P } from data distribution pP .

Update the discriminator D by descending its stochastic gradient:
if noisyLabelsMode is false then

∇θD
1

m

m∑
i=0

logD(x
(i)
U ) + log[1−D(G(z(i)))] + log[1−D(x(i)p )]

else

∇θD
1

m

m∑
i=0

α ·
(
logD(x

(i)
U ) + log[1−D(x(i)p )]

)
+ log[1−D(G(z(i)))]

+logD(GP (z
(i)))

end if
end for
Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pG(z).
Update the generator G by descending its stochastic gradient:

∇θG
1

m

m∑
i=0

log[D(G(z(i)))]

if noisyLabelsMode is true then
Update the generator GP by descending its stochastic gradient:

∇θGP

1

m

m∑
i=0

log[1−D(GP (z
(i)))]

end if
end for
The gradient-based updates can use any standard gradient-based learning rule. We use Adam in
our experiments.

Table 4: Comparative results of F1-Score prediction performances on MNIST and CIFAR-10 in a
One vs. Rest mode with 20 classifier epochs.

One vs. Rest ref ρ = 0.5, πP = 0.1 ρ = 0.5, πP = 0.3 ρ = 0.5, πP = 0.5 ρ = 0.5, πP = 0.7

Datasets PN PNGAN D-GAN PGAN RP D-GAN PGAN RP D-GAN PGAN RP D-GAN PGAN RP

0 0.997 0.992 0.996 0.974 0.992 0.994 0.973 0.955 0.984 0.973 0.991 0.965 0.902 0.88
1 0.998 0.993 0.995 0.971 0.995 0.994 0.979 0.996 0.988 0.958 0.994 0.952 0.863 0.993
2 0.99 0.987 0.992 0.972 0.975 0.99 0.959 0.923 0.98 0.947 0.936 0.892 0.914 0.987
3 0.996 0.996 0.993 0.963 0.991 0.97 0.953 0.991 0.957 0.934 0.882 0.914 0.885 0.829
4 0.997 0.992 0.989 0.964 0.972 0.989 0.952 0.995 0.972 0.945 0.933 0.923 0.914 0.977
5 0.993 0.981 0.988 0.974 0.985 0.976 0.95 0.943 0.969 0.949 0.91 0.894 0.873 0.973
6 0.992 0.989 0.992 0.962 0.928 0.99 0.959 0.992 0.986 0.971 0.993 0.961 0.944 0.99
7 0.995 0.99 0.982 0.962 0.947 0.983 0.96 0.991 0.969 0.926 0.988 0.918 0.737 0.979
8 0.995 0.985 0.985 0.949 0.929 0.981 0.941 0.982 0.966 0.922 0.941 0.88 0.849 0.818
9 0.981 0.977 0.986 0.959 0.954 0.972 0.956 0.979 0.947 0.939 0.941 0.921 0.865 0.904

AV GMNIST 0.993 0.988 0.99 0.965 0.967 0.984 0.958 0.975 0.972 0.946 0.951 0.922 0.875 0.933
Plane 0.727 0.803 0.759 0.818 0.669 0.749 0.784 0.795 0.736 0.758 0.743 0.715 0.731 0.718
Auto 0.78 0.865 0.766 0.801 0.695 0.749 0.737 0.829 0.793 0.789 0.798 0.757 0.734 0.783
Bird 0.447 0.775 0.686 0.688 0.56 0.706 0.744 0.68 0.692 0.694 0.644 0.68 0.688 0.542
Cat 0.5 0.698 0.695 0.658 0.384 0.713 0.722 0.651 0.707 0.718 0.67 0.712 0.69 0.698

Deer 0.698 0.8 0.768 0.68 0.605 0.681 0.708 0.708 0.72 0.708 0.64 0.672 0.633 0.602
Dog 0.567 0.805 0.716 0.632 0.539 0.68 0.756 0.648 0.74 0.746 0.733 0.704 0.678 0.712
Frog 0.691 0.812 0.758 0.837 0.666 0.786 0.793 0.794 0.78 0.788 0.769 0.723 0.75 0.749
Horse 0.786 0.845 0.697 0.693 0.653 0.685 0.757 0.723 0.74 0.751 0.759 0.713 0.675 0.711
Ship 0.832 0.879 0.851 0.821 0.764 0.784 0.809 0.831 0.797 0.775 0.785 0.728 0.716 0.755

Truck 0.771 0.839 0.794 0.822 0.685 0.741 0.786 0.637 0.778 0.754 0.617 0.732 0.724 0.564

AV GCIFAR-10 0.680 0.812 0.749 0.745 0.622 0.727 0.760 0.730 0.749 0.748 0.716 0.713 0.702 0.684
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Figure 9: Minibatch of counter-examples (women faces) generated after 20 epochs with the pro-
posed D-GAN framework adapted to the LSGAN-GP variant. The D-GAN is applied on a PU
celebA dataset (celebrity RGB images of size 64*64), with 30% of positive samples (men faces)
among the unlabeled ones. We can visually observe that 100% of the generated samples fol-
low the counter-examples (women faces) distribution. The LSGAN-GP code is available at:
https : //github.com/maple− research− lab/lsgan− gp− alt.
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