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ABSTRACT

In this paper we address the challenging problem of unsupervised motion flow
estimation. Under the assumption that image reconstruction is a super-set of the
motion flow estimation problem, we train a convolutional neural network to in-
terpolate adjacent video frames and then compute the motion flow via region-
based sensitivity analysis by backpropagation. We postulate that better interpola-
tions should result in better motion flow estimation. We then leverage the mod-
eling power of energy-based generative adversarial networks (EbGAN’s) to im-
prove interpolations over standard L2 loss. Preliminary experiments on the KITTI
database confirm that better interpolations from EbGAN’s significantly improve
motion flow estimation compared to both hand-crafted features and deep networks
relying on standard losses such as L2.

1 INTRODUCTION

Accurate motion flow estimation is a key component of autonomous systems vision pipelines. Cur-
rently the large-scale, depth-labeled datasets needed to develop robust systems are lacking (Geiger
et al. (2013); N.Mayer et al. (2016)). We address this issue with a novel, unsupervised motion-flow
estimation algorithm that exploits the modeling power of generative adversarial networks. We infer
region-wise matches between adjacent frames and subsequently estimate the motion flow, with no
supervision or depth ground truth.

Like in the work of Long et al. (2016), we postulate that learning to interpolate adjacent video frames
will drive a representation that associates related pixels, thus inherently solving for the motion flow
estimation problem. Specifically, given three consecutive frames (f1, f2, f3), we train a deep ar-
chitecture that learns to interpolate f2 from f1 and f3. Then, by backpropagating output regions
through the network we obtain sensitivity maps representing accurate motion flow for the scene.
Since the network is only trained to solve for interpolation, this effectively removes the need of a
large-scale dataset providing ground-truth flow maps.

Under this framework, improving interpolation quality would then improve motion flow estimation;
this motivated us to focus on EbGAN’s for our architecture, since they recently provided state of the
art results in several challenging generative and auto-encoding settings.

2 BACKGROUND

Generative adversarial networks (Goodfellow et al. (2014)) employ two separate components, a
generator G network and a discriminator D. The objective of the discriminator is to maximize
the probability of correctly discerning between samples from a true data distribution and samples
generated by the generator network. Conversely, the generator is trained with the goal of maximizing
the probability of its samples being classified from the true data distribution by the discriminator.
More formally, this translates into a minmax game where D maximizes:

LD = log(D(x)) + log(1−D(G(z))) (1)
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and G minimizes:
LG = log(1−G(z))) (2)

where x and z are respectively a sample from the true data distribution and a sample from a ran-
dom noise distribution. In the case of the generating images, adopting an adversarial loss leads to
sharper and higher quality outputs compared to standard losses such as L1 or L2 (Isola et al. (2016);
Goodfellow et al. (2014)). Recently, the EbGAN (Zhao et al. (2016)) model has been proposed: it
improves on the original GAN by replacing the discriminator with an auto-encoder and outputting
a pixel-level energy map instead of a binary value. During training, EbGAN’s reconstruction loss
results in different gradients directions inside a minibatch, leading to more efficient training and
higher batch-sizes without efficiency loss.

3 UNSUPERVISED MOTION FLOW ESTIMATION

Figure 1: The adopted GAN architecture

In order to estimate the motion flow between two consecutive frames in an unsupervised fashion,
we follow the framework proposed by Long et al. (2016). Given two frames at time t and t +
2, the motion flow can be estimated by training a network to interpolate the frame at t + 1 and
performing per-pixel backpropagation through the network itself. For each pixel in f2, this results
in two sensitivity maps, one for f1 and one for f3. Sampling from these maps allows us to find
pixel-level correspondences between f1 and f3 and hence the motion flow.

Intuitively, the quality of the motion flow obtained by backpropagating individual pixels of f2 is
related to the quality of the interpolation. To increase the quality of such interpolation, we devise an
energy based generative adversarial network (EbGAN) Zhao et al. (2016) where the generator G is
tasked with the interpolation of the two input frames and D outputs a pixel-level energy map instead
of functioning as a binary classifier between true or fake. The overall architecture of the network,
shown in Figure 3, consists in two fully convolutional auto-encoders, G and D. Following recent
works in motion flow estimation (Zhu et al. (2017); Yu et al. (2016); Long et al. (2016); Ng et al.
(2016)), we use the FlowNet Simple (Fischer et al. (2015)) architecture in both G and D, and reduce
the number of conv-deconv blocks in D from 5 to 4 and remove skip connections. We use leaky relu
activations except for the output layer which employs a tanh activation. Furthermore, virtual batch
normalization (Salimans et al. (2016)) is introduced after every block of G.

We combine the original EbGAN loss with a content loss term in the generator loss:

LD((f1, f3), f2) = D(f2) +max(0,m−D(G(f1, f3))) (3)
LG(f1, f3) = λD(G(f1, f3)) + (1− λ)MSE(f2, G(f1, f3)) (4)

wherem is a positive margin, λ ∈ [0, 1] is a positive constant and MSE is the standard mean squared
error function. The hyperparameter λ in Eq. 4 controls the balance between adversarial and content
losses, and is very important during the first few epochs, where the discriminator is likely to prevail.
We empirically set λ to 0.1 by cross-validation.

We train the network using the Adam optimizer (Kingma & Ba (2014)) with β1 set to 0.5 and
minibatch size of 16, 1000 batches per epoch and the training is stopped after 250 epochs. Once the
training is completed, to obtain the motion flow we disregard D and backpropagate only through G.
Also, we don’t perform pixel backpropagation like in (Long et al. (2016)), instead we enforce local
smoothness in the sensitivity maps by backpropagating small regions (e.g. 4 × 4 pixels instead of
individual pixels with stride). With 128× 384 images, backpropagating a 4× 4 region takes 70 ms
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Table 1: Performance comparison on the KITTI FLOW 2012 training set

Method Acc@5 APE

HoG 0.455 9.68
KLT 0.702 8.16
L2 0.640 5.967
Yu et al. (2016) - 4.3
Adversarial 0.710 4.89

on a TITAN-X GPU, resulting in a total time 215 seconds per image with stride of 4. This process
will produce two sensitivity maps Sτ,i,j for the region with center position at coordinates (i, j)f2
for frame τ ∈ [f1, f3]. We then compute the correspondence between the projection of (i, j)f2 in
each frame τ by selecting the argmax

τ
Sτ,i,j . Subsequently, the matching between the regions in f1

and f3 is obtained exploiting the transitive relation between f1, f2 and f2, f3.

4 EXPERIMENTAL EVALUATION

4.1 DATASET AND METRICS

We train the network in an unsupervised manner using the KITTI RAW database (Geiger et al.
(2013)), containing 159 video sequences acquired from a car-mounted camera with different objects
with various motion patterns. We do not perform any data augmentation. To assess the motion flow
accuracy we use ground-truth from the KITTI FLOW 2012 dataset training set, containing 194 frame
pairs with ground truth motion flow. We provide evaluation metrics widely used for this settings:
Accuracy@k, meaning the ratio of motion vectors with end point error lower than k pixels, and APE
which is the average point error of all motion vectors.

4.2 PRELIMINARY EVALUATION

We evaluate our algorithm against two popular hand-crafted methods, KLT (Tomasi & Kanade
(1991)) and HoG (Brox & Malik (2011)), and against a baseline unsupervised algorithm where
the generator is trained using the L2 loss. Notably, we keep the same architecture for both adversar-
ial and L2 training to evaluate the impact of the adversarial loss motion flow estimation. Moreover,
to provide a complete picture of the current state of the art we include results from Yu et al. (2016)
which, to the best of our knowledge, obtains the best results for unsupervised flow estimation.

Preliminary results are reported in Table 1: we remark that using the adversarial training results in
a significant improvement of 7% accuracy@5 and 1 pixel in APE over the L2 baseline1. A further
comparison with methods relying on hand-crafted features, namely KLT and HoG, confirms the
superiority of the representation learned by our network. Finally, it is worth noting that the method
by Yu et al. (2016) heavily relies on both geometrical and photometrical data augmentation, as long
as multiple datasets; conversely our results are obtained by directly training on the KITTI RAW
dataset, which includes less than 50,000 training images 2.

5 CONCLUSIONS

Motion flow estimation is a key component of both human and robotics vision pipelines. Today
motion flow is computed either with hand-crafted or by deep architectures trained in a supervised
manner. We believe that unsupervised motion flow estimation is very desirable and within reach,
and can unlock the potential of large video datasets to provide very robust performance. Preliminary
results show performance superior to hand-crafted methods and close to state of the art for unsuper-
vised methods. One issue with the backpropagation approach is that it is still slow, motivating us to
look next at hybrid forward/backward architectures.

1We also implemented the architecture from Long et al. (2016), however despite using the same data aug-
mentation described in the paper, we were unable to reproduce the reported results

2Source code and pre-trained models will be released to foster future research on the topic
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