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ABSTRACT

End-to-end acoustic-to-word speech recognition models have re-
cently gained popularity because they are easy to train, scale well to
large amounts of training data, and do not require a lexicon. In addi-
tion, word models may also be easier to integrate with downstream
tasks such as spoken language understanding, because inference
(search) is much simplified compared to phoneme, character or any
other sort of sub-word units. In this paper, we describe methods
to construct contextual acoustic word embeddings directly from a
supervised sequence-to-sequence acoustic-to-word speech recog-
nition model using the learned attention distribution. On a suite
of 16 standard sentence evaluation tasks, our embeddings show
competitive performance against a word2vec model trained on the
speech transcriptions. In addition, we evaluate these embeddings on
a spoken language understanding task, and observe that our embed-
dings match the performance of text-based embeddings in a pipeline
of first performing speech recognition and then constructing word
embeddings from transcriptions.

Index Terms— acoustic word embeddings, contextual embed-
dings, attention, acoustic-to-word speech recognition

1. INTRODUCTION

The task of learning fixed-size representations for variable length
data like words or sentences, either text or speech-based, is an in-
teresting problem and a focus of much current research. In the nat-
ural language processing community, methods like word2vec [1],
GLoVE [2], CoVe [3] and ELMo [4] have become increasingly pop-
ular, due to their utility in several natural language processing tasks.
Similar research has progressed in the speech recognition commu-
nity, where however the input is a sequence of short-term audio fea-
tures, rather than words or characters. Therefore, the variability in
speakers, acoustics or microphones for different occurrences of the
same word or sentence adds to the challenge.

Prior work towards the problem of learning word representations
from variable length acoustic frames involved either providing word
boundaries to align speech and text [5], or chunking (“chopping” or
“padding”) input speech into fixed-length segments that usually span
only one word [6, 7, 8, 9]. Since these techniques learn acoustic
word embeddings from audio fragment and word pairs obtained via
a given segmentation of the audio data, they ignore the specific audio
context associated with a particular word. So the resulting word em-
beddings do not capture the contextual dependencies in speech. In
contrast, our work constructs individual acoustic word embeddings
grounded in utterance-level acoustics.

In this paper, we present different methods of obtaining acoustic
word embeddings from an attention-based sequence-to-sequence
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model [10, 11, 12] trained for direct Acoustic-to-Word (A2W)
speech recognition [13]. Using this model, we jointly learn to
automatically segment and classify input speech into individual
words, hence getting rid of the problem of chunking or requiring
pre-defined word boundaries. As our A2W model is trained at the
utterance level, we show that we can not only learn acoustic word
embeddings, but also learn them in the proper context of their con-
taining sentence. We also evaluate our contextual acoustic word
embeddings on a spoken language understanding task, demonstrat-
ing that they can be useful in non-transcription downstream tasks.

Our main contributions in this paper are the following:
1. We demonstrate the usability of attention not only for aligning
words to acoustic frames without any forced alignment but also for
constructing Contextual Acoustic Word Embeddings (CAWE).
2. We demonstrate that our methods to construct word representa-
tions (CAWE) directly from a speech recognition model are highly
competitive with the text-based word2vec embeddings [1], as evalu-
ated on 16 standard sentence evaluation benchmarks.
3. We demonstrate the utility of CAWE on a speech-based down-
stream task of Spoken Language Understanding showing that pre-
trained speech models could be used for transfer learning similar to
VGG in vision [14] or CoVe in natural language understanding [3].

2. RELATED WORK

A2W modeling has been largely pursued using Connectionist Tem-
poral Classification (CTC) models [15] and Sequence-to-Sequence
(S2S) models [10]. Prior work shows the need for large amounts of
training data for these models (thousands of hours of speech) with
large word vocabularies of frequently occurring words [16, 17, 18,
19, 20]. Progress in the field showed the possibility of training these
models with smaller amount of data (300 hours Switchboard corpus
[21]) but restricting the vocabulary to words occurring atleast 5 or 10
times [22, 23]. The solutions to generate out-of-vocabulary words
have revolved around backing off to smaller units like characters or
sub-words [22, 17, 18, 23, 20]. While this solves the problem of rare
word generation, the models are no longer pure-word models.

[24] present one of the first S2S models for pure-word large vo-
cabulary A2W recognition with the 300 hour Switchboard corpus
with a vocabulary of about 30,000 words. [25, 13] build upon their
work and improve the training of these models for the large vocabu-
lary task. [13] is one of our previous works where we show that the
direct A2W model is also able to automatically learn word bound-
aries without any supervision and is the current best pure-word S2S
model. We use the same model in this work and expand it towards
learning acoustic embeddings.

[5, 6, 8, 7, 26, 9] all explore ways to learn acoustic word em-
beddings. All above methods except [7] use unsupervised learning
based methods to obtain these embeddings where they do not use
the transcripts or do not perform speech recognition. [7] use a su-



pervised Convolutional Neural Network based speech recognition
model but with short speech frames as input that usually correspond
to a single word. This is the common practice in most prior work
that simplifies training but prevents the models to scale to learn con-
textual word embeddings grounded in utterance level acoustics. [5]
propose an unsupervised method to learn speech embeddings using a
fixed context of words in the past and future. The drawbacks of their
method are the fixed context and need for forced alignment between
speech and words for training.

Learning text-based word embeddings is also a rich area of re-
search with well established techniques such as [1, 2]. Research has
further progressed into learning contextualized word embeddings
[3, 4] that are useful in many text-based downstream tasks [27].
[3] learns contextual word embeddings from a fully trained machine
translation model and depict re-use of their encoder in other down-
stream tasks. Our work ties A2W speech recognition model with
learning contextual word embeddings from speech.

3. ACOUSTIC-TO-WORD RECOGNITION

Our S2S model is similar in structure to the Listen, Attend and Spell
model [11] which consists of 3 components: the encoder network, a
decoder network and an attention model. The encoder maps the input
acoustic features vectors a = (a1, a2, ..., aT ) where ai ∈ Rd, into
a sequence of higher-level features h = (h1, h2, ..., hT ′). The en-
coder is a pyramidal (sub-sampling) multi-layer bi-directional Long
Short Term Memory (BLSTM) network. The decoder network is
also an LSTM network that learns to model the output distribution
over the next target conditioned on sequence of previous predictions
i.e. P (yl|y
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ground-truth label sequence. In this work, y∗i ∈ U is from a word
vocabulary. This decoder generates targets y from h using an atten-
tion mechanism.

We use the location-aware attention mechanism [12] that en-
forces monotonicity in the alignments by applying a convolution
across time to the attention of previous time step. This convolved
attention feature is used for calculating the attention for the current
time step which leads to a peaky distribution [12, 13]. Our model
follows the same experimental setup and model hyper-parameters
as the word-based models described in our previous work [13] with
the difference of learning 300 dimensional acoustic feature vectors
instead of 320 dimensional.

4. CONTEXTUAL ACOUSTIC WORD EMBEDDINGS

We now describe our method to obtain the acoustic word embed-
dings from the end-to-end trained speech recognition system de-
scribed in Section 3. The model is as shown in Figure 1 where
the embeddings are constructed using the hidden representations ob-
tained from the encoder and the attention weights from the decoder.
Our method of constructing “contextual” acoustic word embeddings
is similar to a method proposed for text embeddings, CoVe [3]. The
main challenge that separates our method from CoVe [3] in learn-
ing embeddings from a supervised task, is the problem of alignment
between input speech and output words. We use the location-aware
attention mechanism that has the property to assign higher proba-
bility to certain frames leading to a peaky attention distribution. We
exploit this property of location-aware attention in an A2W model to
automatically segment continuous speech into words as shown in our
previous work [13], and then use this segmentation to obtain word
embeddings. In the next two subsections, we formalize this process
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Fig. 1. A2W model with the CAWE representations obtained by
combining the encoders representations and attention weights.

of constructing contextual acoustic word embeddings. Intuitively,
attention weights on the acoustic frames hidden representations re-
flect their importance in classifying a particular word. They thereby
provide a correspondence between the frame and the word within a
given acoustic context. We can thus construct word representations
by weighing the hidden representations of these acoustic frames in
terms of their importance to the word i.e. the attention weight. We
show this in the Figure 1 wherein the hidden representations and
their attention weights are colored according to their correspondence
with a particular word.

4.1. Automatic Segmentation of Speech into Words

Given that aj represents the acoustic frame j, let encoder(aj)
represent the higher-level features obtained for the frame aj ( i.e.
encoder(aj) = h = (h1, h2, ..., hT ′), as explained in Section 3).
Then, for the ith word wi our model first obtains the mappings of
wi to acoustic frames aK where K is the set such that ∀k ∈ K

k = argmax
j

(attention(aj))

over all utterances U containing the word wi in the training set.

4.2. Investigating the Utility of Attention Distribution for Con-
structing Embeddings: CAWE

Below we describe three different ways of using attention to obtain
acoustic word embeddings for a word wi (here, n(K) represents the
cardinality of the set K):

wi =

∑
k∈K encoder(ak)

n(K)
(1)

wi =

∑
k∈K attention(ak) · encoder(ak)

n(K)
(2)

wi = encoder(ak) where k = argmax
k∈K

attention(ak) (3)

Therefore, unweighted Average (U-AVG, Equation 1) is just the
unweighted combination of all the hidden representations of acous-
tic frames mapped to a particular word. Attention weighted Average
(CAWE-W, Equation 2) is the weighted average of the hidden rep-
resentations of all acoustic frames using the attention weights for a
given word. Finally, maximum attention (CAWE-M, Equation 3) is
the hidden representation of the acoustic frame with the highest at-
tention score for a given word across all utterances in the training



Table 1. Comparing three methods to obtain acoustic word embeddings from an A2W model: unweighted average (U-AVG), weighted
average (CAWE-W) and maximum attention (CAWE-M).

Switchboard How2

Dataset U-AVG CAWE-W CAWE-M U-AVG CAWE-W CAWE-M

STS 2012 0.3230 0.3281 0.3561 0.3255 0.3271 0.3648
STS 2013 0.1252 0.1344 0.1969 0.2070 0.2071 0.2716
STS 2014 0.3358 0.3389 0.3888 0.3375 0.3426 0.3940
STS 2015 0.3854 0.3881 0.4275 0.3852 0.3843 0.4173
STS 2016 0.2998 0.2974 0.3833 0.3248 0.3271 0.3159

STS B 0.3667 0.3510 0.4010 0.3343 0.3440 0.4000
SICK-R 0.5640 0.5800 0.6006 0.5800 0.6060 0.6440

MR 63.86 63.75 64.69 63.46 63.19 63.64
MRPC 70.67 69.45 69.80 68.29 67.83 70.61

CR 71.42 72.13 72.93 74.12 73.99 73.03
SUBJ 82.45 82.22 81.19 81.48 81.88 81.01

MPQA 73.76 73.28 73.75 74.21 74.18 73.53
SST 66.45 66.61 65.02 63.43 63.43 65.13

SST-FG 32.81 32.04 33.53 31.95 32.35 32.03
TREC 63.80 62.40 67.60 66.60 66.00 60.60

SICK-E 74.20 73.41 74.06 75.14 75.34 75.97

data. We call the attention-weighted average and the maximum at-
tention based techniques as Contextual Acoustic Word Embeddings
(CAWE) since they are contextual owing to the use of attention
scores (over all acoustic frames for a given word).

5. EXPERIMENTS AND RESULTS

We use a commonly used speech recognition setup, the 300 hour
Switchboard corpus (LDC97S62) [21] which consists of 2,430 two-
sided telephonic conversations between 500 different speakers and
contains 3 million words of text. Our second dataset is a 300 hour
subset of the How2 [28] dataset of instructional videos, which con-
tains planned, but free speech, often outdoor and recorded with dis-
tant microphones, as opposed to the indoor, telephony, conversa-
tional speech of Switchboard. There are 13,662 videos with a total
of 3.5 million words in this corpus. The A2W obtains a word error
rate of 22.2% on Switchboard and 36.6% on CallHome set from the
Switchboard Eval2000 test set and 24.3% on dev5 test set of How2.

5.1. Comparing Methods for Constructing Embeddings

Datasets for Downstream Tasks: We evaluate our embeddings
by using them as features for 16 benchmark sentence evaluation
tasks that cover Semantic Textual Similarity (STS 2012-2016 and
STS B), classification: Movie Review (MR), product review (CJ),
sentiment analysis (SST, SST-FG), question type (TREC), Subjec-
tivity/Objectivity (SUBJ), and opinion polarity (MPQA), entailment
and semantic relatedness using the SICK dataset for SICK-E (entail-
ment) and SICK-R (relatedness) and paraphrase detection (MRPC).
The STS and SICK-R tasks measure Spearman’s coefficient of corre-
lation between embedding based similarity and human scores, hence
the scores range from [−1, 1] where higher number denotes high cor-
relation. All the remaining tasks are measured on test classification
accuracies. We use the SentEval toolkit [27] to evaluate.

Training Details: In all downstream evaluations involving clas-
sification tasks, we have used a simple logistic regression for clas-
sification since a better representation should lead to better scores

without using complicated models (hence abstracting away model
complexities from our evaluations). This also means that we can use
the concatenation of CAWE and CBOW as features to the logistic
regression model without adding tunable embedding parameters.

Discussion: From the results in Table 1 we see that CAWE-M
outperforms U-AVG by 34% and 13% and CAWE-W by 33.9% and
12% on Switchboard and How2 datasets respectively in terms of av-
erage performance on STS tasks and leads to better or slightly worse
performance on the classification tasks. We observe that CAWE-W
usually performs worse than CAWE-M which could be attributed to
a noisy estimation of the word embeddings on the account of taking
even the less confident attention scores while constructing the em-
bedding. In contrast, CAWE-M is constructed using the most confi-
dent attention score obtained over all the occurrences of the acoustic
frames corresponding to a particular word. We also observe that
U-AVG performs worse than CAWE-W on STS and SICK-R tasks
since it is constructed using an even noisier process in which all
encoder hidden representations are weighted equally irrespective of
their attention scores.

5.2. Comparing with Text-based Embeddings

Datasets for Downstream Tasks: The datasets are the same as
described in Section 5.1.

Training Details: In all the following comparisons, we compare
embeddings obtained only from the training set of the speech recog-
nition model, while the text-based word embeddings are obtained by
training Continuous Bag-of-Words (CBOW) word2vec model on all
the transcripts (train, validation and test). This was done to ensure a
fair comparison between our supervised technique and the unsuper-
vised word2vec method. This naturally leads to a smaller vocabulary
for CAWE. Further, one of the drawbacks of A2W speech recogni-
tion model is that it fails to capture entire vocabulary, recognizing
only 3044 words out of 29874 (out of which 18800 words occur less
than 5 times) and 4287 out of 14242 total vocabulary for Switch-
board and How2 respectively. Despite this fact, the performance of
CAWE is very competitive with word2vec CBOW which does not



Table 2. Sentence Evaluations on 16 benchmark datasets for Switchboard and How2 corpus. We compare the CAWE-M method with the
word2vec embeddings trained with CBOW method and with CAWE-M + CBOW concatenated (Concat) embeddings.

Switchboard How2

Dataset CAWE-M CBOW Concat CAWE-M CBOW Concat

STS 2012 0.3561 0.3639 0.3470 0.3648 0.3688 0.3790
STS 2013 0.1969 0.1960 0.2010 0.2716 0.2524 0.2675
STS 2014 0.3888 0.3745 0.3795 0.3940 0.3973 0.3971
STS 2015 0.4275 0.4459 0.4481 0.4173 0.4781 0.4710
STS 2016 0.3833 0.3471 0.3651 0.3159 0.4023 0.3388

STS B 0.401 0.4100 0.3995 0.4000 0.4720 0.4487
SICK-R 0.6006 0.6170 0.6228 0.6440 0.6550 0.6945

MR 64.69 66.24 66.89 63.64 66.03 66.89
MRPC 69.80 68.99 68.00 70.61 69.68 68.52

CR 72.93 74.49 75.39 73.03 74.89 74.84
SUBJ 81.19 84.62 84.59 81.01 84.75 85.04

MPQA 73.75 76.44 75.36 73.53 75.56 75.60
SST 65.02 68.37 68.97 65.13 67.66 68.20

SST-FG 33.53 34.71 35.79 32.08 33.62 33.67
TREC 67.60 69.80 71.40 60.60 68.40 67.40

SICK-E 74.06 75.02 76.19 75.97 76.29 78.14

suffer from reduced vocabulary problem.
Discussion: In Table 2, we see that our embeddings perform

as well as the text-embeddings. Evaluations using CAWE-M ex-
tracted from Switchboard based training show that the acoustic em-
beddings when concatenated with the text embeddings outperform
the word2vec embeddings on 10 out of 16 tasks. This concate-
nated embedding shows that we add more information with CAWE-
M that improves the CBOW embedding as well. The gains are more
prominent in Switchboard as compared to the How2 dataset since
How2 is planned instructional speech whereas Switchboard is spon-
taneous conversational speech (thereby making the How2 character-
istics closer to text leading to a stronger CBOW model).

5.3. Evaluation on Spoken Language Understanding

Dataset: In addition to generic sentence-level evaluations, we
also evaluate CAWE on the widely used ATIS dataset [29] for Spo-
ken Language Understanding (SLU). ATIS dataset is comprised of
spoken language queries for airline reservations that have intent and
named entities. Hence, it is similar in domain to Switchboard, mak-
ing it a useful test bed for evaluating CAWE on a speech-based
downstream evaluation task.

Training Details: For this task, our model is similar to the sim-
ple Recurrent Neural Network (RNN) based model architecture as
investigated in [30]. Our architecture is comprised of an embedding
layer, a single layer RNN-variant (Simple RNN, Gated Recurrent
Unit (GRU)) along with a dense layer and softmax. In each in-
stance, we train our model for 10 epochs with RMSProp (learning
rate 0.001). We train each model 3 times with different seed values
and report average performance.

Discussion: [30] concluded that text-based word embeddings
trained on large text corpora consistently lead to better performance
on the ATIS dataset. We demonstrate that direct speech-based word
embeddings could lead to matching performance when compared to
text-based word embeddings in this speech-based downstream task,
thus highlighting the utility of our speech based embeddings. Specif-
ically, we compare the test scores obtained by initializing the model

Table 3. Speech-based contextual word embeddings (CAWE-M and
CAWE-W) match the performance of the text-based embeddings
(CBOW) on the ATIS dataset with an RNN and GRU model

CAWE-M CAWE-W CBOW

RNN 91.49 91.67 91.82
GRU 93.25 93.56 93.11

with CAWE-M, CAWE-W and CBOW embeddings and fine-tuning
them based on the task.

6. CONCLUSION

We present a method to learn contextual acoustic word embeddings
from a sequence-to-sequence acoustic-to-word speech recognition
model that learns to jointly segment and classify speech. We analyze
the role of attention in constructing contextual acoustic word embed-
dings, and find our acoustic embeddings to be highly competitive
with word2vec (CBOW) text embeddings. We discuss two variants
of such contextual acoustic word embeddings which outperform the
simple unweighted average method by upto 34% on semantic textual
similarity tasks. The embeddings also matched the performance of
text-based embeddings in spoken language understanding, showing
the use of this model as a pre-trained model for other speech-based
downstream tasks. We surmise that contextual audio embeddings
will generalize and improve downstream tasks in a way that is sim-
ilar to their text counterparts, despite the additional complexity pre-
sented by noisy audio input. In the future, we will explore ways to
scale our model to larger corpora, larger vocabularies and compare
with non-contextual acoustic word embedding methods.
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[19] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar, “Ex-
ploring architectures, data and units for streaming end-to-
end speech recognition with rnn-transducer,” in Automatic
Speech Recognition and Understanding Workshop (ASRU),
2017 IEEE. IEEE, 2017, pp. 193–199.

[20] Albert Zeyer, Kazuki Irie, Ralf Schlüter, and Hermann Ney,
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