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ABSTRACT

Communication on heterogeneous edge networks is a fundamental bottleneck in
Federated Learning (FL), restricting both model capacity and user participation.
To address this issue, we introduce two novel strategies to reduce communica-
tion costs: (1) the use of lossy compression on the global model sent server-
to-client; and (2) Federated Dropout, which allows users to efficiently train lo-
cally on smaller subsets of the global model and also provides a reduction in both
client-to-server communication and local computation. We empirically show that
these strategies, combined with existing compression approaches for client-to-
server communication, collectively provide up to a 14× reduction in server-to-
client communication, a 1.7× reduction in local computation, and a 28× reduc-
tion in upload communication, all without degrading the quality of the final model.
We thus comprehensively reduce FL’s impact on client device resources, allowing
higher capacity models to be trained, and a more diverse set of users to be reached.

1 INTRODUCTION

Federated Learning (FL) allows users to reap the benefits of models trained from rich yet sensitive
data captured by their mobile devices, without the need to centrally store such data (McMahan et al.,
2017; Konečný et al., 2016a; Smith et al., 2017). Under the FL paradigm, each device performs
training on samples available locally and only communicates intermediate model updates.

Network speed and number of nodes are two of the core systems aspects that differentiate FL from
traditional distributed learning in data centers, with network bandwidth being potentially orders of
magnitude slower and the number of worker nodes orders of magnitude larger. Together, these issues
exacerbate the communication bottlenecks usually associated with distributed learning, increasing
both the number of stragglers and the probability of devices dropping out altogether. The problem
is further aggravated when working with high capacity models with large numbers of parameters.

Insisting on training these large models using existing federated optimization methods can lead to the
systematic exclusion of clients with restricted bandwidth or limited network access from the training
stage, and thus to a degraded user experience once these models are served. One naive solution
involves training low capacity models with smaller communication footprints, at the expense of
model accuracy. As a middle ground, we could develop strategies to reduce the communication
footprint of larger, high-capacity models. Recent work (Konečný et al., 2016b) has in fact taken
this approach, but only in the context of client-to-server FL communication. Their success with
lossy compression strategies is perhaps not surprising, as the clients’ lossy, yet unbiased, updates
are eventually averaged over many users. However, server-to-client exchanges do not benefit from
such averaging. As such, they remain a main bottleneck in our goal of expanding FL’s reach.

In this work, we propose two novel strategies to mitigate the server-to-client communication foot-
print, and empirically demonstrate their efficacy and seamless integration with existing client-to-
server strategies. The specific contributions of this paper are as follows:

1. We study lossily compressing the models downloaded by the clients, thus addressing the open
question as to whether these approaches are amenable in the context of server-to-client ex-
changes. We also introduce the use of the theoretically motivated Kashin’s representation to
reduce the error associated with the lossy compression (Lyubarskii & Vershynin, 2010; Kashin,
1977).
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Figure 1: Combination of our proposed strategies during FL training. We reduce the size of the
model to be communicated by (1) constructing a sub-model via Federated Dropout, and by (2)
lossily compressing the resulting object. This compressed model is then sent to the client, who (3)
decompresses and trains it using local data, and (4) compresses the final update. This update is sent
back to the server, where it is (5) decompressed and finally, (6) aggregated into the global model.

2. We introduce Federated Dropout, a technique that builds upon the popular idea of dropout (Sri-
vastava et al., 2014), yet is primarily motivated by systems-related concerns. Our approach en-
ables each device to locally operate on a smaller sub-model (i.e. with smaller weight matrices)
while still providing updates that can be applied to the larger global model on the server. It thus
reduces communication costs by allowing for these smaller sub-models to be exchanged between
server and clients, while also reducing the computational cost of local training.

3. We empirically show that not only are these approaches compatible with one another, but with
existing client-to-server compression. Combining these approaches during FL training (see Fig-
ure 1) reduces the size of the downloaded models up to 14×, the size of the corresponding updates
up to 28×, and the required local computations by up to 1.7×, all without degrading the model’s
accuracy and only at the expense of a slightly slower convergence rate (in terms of number of
communication rounds).

2 RELATED WORK

We review the relevant related work given our objective of reducing the communication footprint in
server-to-client exchanges in Federated Learning (FL).

Federated Learning Federated Learning (FL) is a technique that aims to learn a global model over
data distributed across multiple edge devices (usually mobile phones) without the data ever leaving
the device on which it was generated (McMahan et al., 2017). It brings along a set of statistical (non-
IID, unbalanced data) and systems (stragglers, communication bottlenecks, etc.) challenges which
differentiate it from traditional distributed learning in the data center, and which have been tackled by
several works. For instance, McMahan et al. (2017) propose Federated Averaging (FedAvg), which
in its canonical form works by (1) sending the global model to a subset of the available devices,
(2) training the model on each device using the available local data, and (3) averaging the local
updates to thus end a round of training. In contrast Smith et al. (2017) present a multi-task variant
that also models the relationship between clients in order to learn personalized yet related models
for each device. Nonetheless, all approaches we are aware of (including the two aforementioned
ones) require continued exchanges between a central server and its clients across a potentially slow
network.

Communication-efficient distributed learning Distributed learning is known to suffer from com-
munication overheads associated with the frequent gradient updates exchanged among nodes (Wang
et al., 2018; Dean et al., 2012; Smith et al., 2018; Reddi et al., 2016). To reduce these bottlenecks,
recent studies focus on communicating a sparsified, quantized or randomly subsampled version of
the updates. Although these operations introduce noise, they have been shown both empirically and
theoretically to maintain the quality of the trained models. We refer the reader to the introduction
of Wang et al. (2018) for more details and references.
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In the context of FL, Konečný et al. (2016b) successfully perform lossy compression on the client-
to-server exchanges (i.e. the model updates). Of particular interest is their use of the randomized
Hadamard transform to reduce the error incurred by the subsequent quantization. This is due to the
fact that the Hadamard transform, in expectation, spreads a vector’s information more evenly across
its components (Suresh et al., 2017; Konečný & Richtárik, 2016).

We note, however, that neither the work on traditional distributed learning nor the work of Konečný
et al. (2016b) considers compressing the server-to-client exchanges. Nevertheless, in FL, down-
loading a large model can still be a considerable burden for users, particularly for those in regions
with network constraints. Furthermore, as FL is expected to deal with a large number of devices,
communicating the global model may even become a bottleneck for the server (as it would, ideally,
send the model to the clients in parallel).

Model compression Deep models tend to demand significant computational resources both for
training and inference. Using them on edge devices is therefore not a straightforward task. Be-
cause of this, several recent works have proposed compressing the models before deploying them
on-device (Ravi, 2018). Popular alternatives include pruning the least useful connections in a net-
work (Han et al., 2016; 2015), weight quantization (Hubara et al., 2016; Lin et al., 2017; De Sa
et al., 2018), and model distillation (Hinton et al., 2015). Many of these approaches, however, are
not applicable for the problems addressed in this work, as they are either ingrained in the training
procedure (and our server holds no data and performs no actual training) or are mostly optimized
for inference. In the context of FL, we need something computationally light that can be efficiently
applied in every round and that also allows for subsequent local training. We do note, however, that
some of the previously mentioned approaches could potentially be leveraged at inference time in the
federated setting, and exploring these directions would be an interesting avenue for further research.

3 METHODS

In this section, we present our proposed strategies for reducing Federated Learning’s (FL) server-
to-client communication costs, namely lossy compression techniques (Section 3.1) and Federated
Dropout (Section 3.2). We introduce the strategies separately, but they are fully compatible with one
another (as we show in Section 4.4).

3.1 LOSSY COMPRESSION

Our first approach at reducing bandwidth usage consists of using lightweight lossy compression
techniques that can be applied to an already trained model and that, when reversed (i.e. after decom-
pression), maintain the model’s quality. The particular set of techniques we propose are inspired by
those successfully used by Konečný et al. (2016b) to compress the client-to-server updates. We ap-
ply them, however, to the server-to-client exchanges, meaning we do not get the benefit of averaging
the noisy decompressions over many updates.

Our method works as follows: we reshape each to-be-compressed weight matrix in our model into a
vector w and (1) apply a basis transform to it. We then (2) subsample and (3) quantize the resulting
vector and finally send it through the network. Once received, we simply execute the respective
inverse transformations to finally obtain a noisy version of w.

Basis transform Previous work (Lyubarskii & Vershynin, 2010; Konečný et al., 2016b) has ex-
plored the idea of using a basis transform to reduce the error that will later be incurred by perturba-
tions such as quantization. In particular, Konečný et al. (2016b) use the random Hadamard transform
to more evenly spread out a vector’s information among its dimensions. We go even further and also
apply the classical results of Kashin (1977) to spread a vector’s information as much as possible
in every dimension (Lyubarskii & Vershynin, 2010). Thus, Kashin’s representation mitigates the
error incurred by subsequent quantization compared to using the random Hadamard transform. For
a more detailed discussion, we refer the reader to Section A.3 in the Appendix.

Subsampling For s ∈ [0, 1), we zero out a 1 − s fraction of the elements in each weight matrix,
appropriately re-scaling the remaining values. The elements to zero out are picked uniformly at
random. Thus, we only communicate the non-zero values and a random seed which allows recovery
of the corresponding indices.
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Figure 2: Federated Dropout applied to two fully-connected layers. Notices activation vectors a, b =
σ(Ua) and c = σ(V b) in (I). In this example, we randomly select exactly one activation from each
layer to drop, namely a1, b2, and c3, producing a sub-model with 2× 2 dense matrices, as in (II).

Probabilistic quantization For a vector w = (w1, . . . , wn), let us denote wmin = minj{wj}nj=1

and wmax = maxj{wj}nj=1. Uniform probabilistic 1-bit quantization replaces every element wi

by wmin with probability wmax−wi

wmax−wmin
, and by wmax otherwise. It is straightforward to verify this

yields an unbiased estimate of w. Now, for q-bit uniform quantization, we first equally divide
[wmin, wmax] into 2q intervals. If wi falls in the interval bounded by w′ and w′′, the quantization
operates by replacing wmin and wmax in step two of the above algorithm by w′ and w′′, respectively.

3.2 FEDERATED DROPOUT

To further reduce communication costs, we propose an algorithm in which each client, instead of
locally training an update to the whole global model, trains an update to a smaller sub-model. These
sub-models are subsets of the global model and, as such, the computed local updates have a natural
interpretation as updates to the larger global model. We call this technique Federated Dropout as it
is inspired by the well known idea of dropout (Srivastava et al., 2014), albeit motivated primarily by
systems-level concerns rather than as a strategy for regularization.

In traditional dropout, hidden units are multiplied by a random binary mask in order to drop an
expected fraction of neurons during each training pass through the network. Because the mask
changes in each pass, each pass is effectively computing a gradient with respect to a different sub-
model. These sub-models can have different sizes (architectures) depending on how many neurons
are dropped in each layer. Now, even though some units are dropped, in all implementations we
are aware of, activations are still multiplied with the original weight matrices, they just have some
useless rows and columns.

To extend this idea to FL and realize communication and computation savings, we instead zero out a
fixed number of activations at each fully-connected layer, so all possible sub-models have the same
reduced architecture; see Figure 2. The server can map the necessary values into this reduced archi-
tecture, meaning only the necessary coefficients are transmitted to the client, re-packed as smaller
dense matrices. The client (which may be fully unaware of the original model’s architecture) trains
its sub-model and sends its update, which the server then maps back to the global model1. For con-
volutional layers, zeroing out activations would not realize any space savings, so we instead drop
out a fixed percentage of filters.

This technique brings two additional benefits beyond savings in server-to-client communication.
First, the size of the client-to-server updates is also reduced. Second, the local training proce-
dure now requires a smaller number of FLOPS per gradient evaluation, either because all matrix-
multiplies are now of smaller dimensions (for fully-connected layers) or because less filters have to
be applied (for convolutional ones). Thus, we reduce local computational costs.

4 EXPERIMENTAL RESULTS

In this section, we first present our experimental setup (Section 4.1) before presenting results for
our lossy compression (Section 4.2) and Federated Dropout (Section 4.3) strategies. Finally, we

1This can be done by communicating a single random seed to the client and back, or via state on the server.
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Table 1: Summary of Datasets used in the experiments.

Dataset # of users IID Training samples per user Test samples per user
mean σ mean σ

MNIST 100 Yes 600 0 100 0
CIFAR-10 100 Yes 500 0 100 0
EMNIST 3550 No 181.46 71.15 45.37 17.79

show experiments that use both of these strategies in tandem with those proposed in Konečný et al.
(2016b) to also compress client-to-server exchanges (Section 4.4).

4.1 EXPERIMENTAL SETUP

Optimization Algorithm We focus on testing our strategies against already established FL
benchmarks. In particular, we restrict our experiments to the use of Federated Averaging (Fe-
dAvg) (McMahan et al., 2017).

Datasets We use three datasets in our experiments: MNIST (LeCun et al., 1998), CIFAR-
10 (Krizhevsky & Hinton, 2009) and Extended MNIST or EMNIST (Cohen et al., 2017). The
first two were used to benchmark the performance of FedAvg and of lossy compression for client-
to-server updates (Konečný et al., 2016b). For these two datasets, we use the artificial IID partition
proposed by these previous works. Meanwhile, EMNIST is a dataset that has only recently been
introduced as a useful benchmark for FL. Derived from the same source as MNIST, it also includes
the identifier of the user that wrote the character (digit, lower or upper case letter), creating a natural
and much more realistic partition of the data. Table 1 summarizes the basic dataset properties. Due
to space constraints, we relegate the MNIST results to Appendix B, though all conclusions presented
here also qualitatively hold for these experiments.

Models For MNIST’s digit recognition task we use the same model as McMahan et al. (2017): a
CNN with two 5x5 convolution layers (the first with 32 channels, the second with 64, each followed
by 2x2 max pooling), a fully connected layer with 512 units and ReLu activation, and a final softmax
output layer, for a total of more than 106 parameters. For CIFAR-10, we use the all convolutional
model taken from what is described as “Model C” in Springenberg et al. (2015), which also has a
total of over 106 parameters. Finally, for EMNIST we use a variant of the MNIST model with 2048
units in the final fully connected layer. While none of these models is the state-of-the-art, they are
sufficient for evaluating our methods, as we wish to measure accuracy degradation against a baseline
and not to achieve the best possible accuracy on these tasks.

Hyperparameters We do not optimize our experiments for FedAvg’s hyperparameters, always
using those that proved to work reasonably well in our baseline setting which involves no compres-
sion and no Federated Dropout. For local training at each client we use static learning rates of 0.15
for MNIST, 0.05 for CIFAR-10 and 0.035 for EMNIST. We select 10 random clients per round for
MNIST and CIFAR-10, and 35 for EMNIST. Finally, each selected client trains for one epoch per
round using a batch size of 10.

4.2 LOSSY COMPRESSION

We focus on testing how the compression strategies presented in Section 3.1 impact the global
model’s accuracy. Like Konečný et al. (2016b), we don’t compress all variables of our models. As
they mention, compressing smaller variables causes significant accuracy degradation but translates
into minuscule communication savings. As such, we don’t compress biases for any of the models2.

In our experiments, we vary three parameters:

1. The type of basis transform applied: no transform or identity (I), randomized Hadamard trans-
form (HD) and Kashin’s representation (K).

2Unlike Konečný et al. (2016b), we do compress all 9 convolutional layers in the CIFAR-10 model, not just
the 7 in the middle.

5



Under review as a conference paper at ICLR 2019

0 1000 2000 3000 4000 5000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: q = 2

0 1000 2000 3000 4000 5000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: q = 4

0 1000 2000 3000 4000 5000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: q = 8

repr = I, s = 0.5

repr = I, s = 1.0

repr = HD, s = 0.5

repr = HD, s = 1.0

repr = K, s = 0.5

repr = K, s = 1.0

no compression

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: q = 2

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: q = 4

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: q = 8

repr = I, s = 0.5

repr = I, s = 1.0

repr = HD, s = 0.5

repr = HD, s = 1.0

repr = K, s = 0.5

repr = K, s = 1.0

no compression

Figure 3: Effect of varying our lossy compression parameters on CIFAR-10 and EMNIST.

2. The subsampling rate s, which refers to the fraction of weights that are kept (i.e. 1 − s of the
weights are zeroed out).

3. The number of quantization bits q.

Figure 3 shows the effect of varying these parameters for CIFAR-10 and EMNIST. We repeat each
experiment 10 times and report the mean accuracy among these repetitions. The three main take-
aways from these experiments are: (1) for every model, we are able find a setting of compression
parameters that at the very least matches our baseline; (2) Kashin’s representation proves to be most
useful for aggressive quantization values; and (3) it appears that subsampling is not all that helpful
in the server-to-client setting. We proceed to give more details about these highlights.

The first takeaway is that, for every model, we are indeed able find a setting of compression param-
eters that matches or, in some cases, slightly outperforms our baseline. In particular, we are able to
quantize every model to 4 bits, which translates to a reduction in communication of nearly 8×.

The second takeaway is that Kashin’s representation proves to be most useful for aggressive quan-
tization values, i.e. for low values of q. In our experiments, gains were observed only in regimes
where the overall accuracy had already degraded, but we hypothesize that the use of Kashin’s rep-
resentation may provide clearer benefits in the compression of client-to-server gradient updates,
where more aggressive quantization is admissible. We also highlight that using Kashin’s repre-
sentation may be beneficial for other datasets. Indeed, its computational costs are comparable to
that of the random Hadamard transform while also providing better theoretical error rates (see Sec-
tion A.1). We refer the reader to Section A.3 in the Appendix, where we show preliminary results
that demonstrate Kashin’s potential to dominate over the randomized Hadamard transform in com-
pressing fully-trained models, particularly for small values of q.

Finally, it appears that subsampling is not all that helpful in this server-to-client setting. This con-
trasts with the results presented by Konečný et al. (2016b) for compressed client-to-server updates,
where aggressive values of s were admissible. This trend extends to the other compression pa-
rameters: server-to-client compression of global models requires much more conservative settings
than client-to-server compression of model updates. For example, for CIFAR-10, Konečný et al.
(2016b) get away with using s = 0.25 and q = 8 under a random Hadamard transform representa-
tion3. Meanwhile, in Figure 3 we can see that, for the same q and representation, s = 0.5 already
causes an unacceptable degradation of the accuracy. This is not surprising, since it is expected that
the updates’ error will cancel out once several of them get aggregated at the server, which is not true
for model downloads.

3The updates for CIFAR-10 can actually be compressed up to 2 bits.
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Figure 4: Results for Federated Dropout, varying the percentage of neurons kept in each layer.

4.3 FEDERATED DROPOUT

We focus on testing how the global model’s accuracy deteriorates once we use the strategy proposed
in Section 3.2. In these experiments, we vary the percentage of neurons (or filters for the case of
convolutional layers) that are kept on each layer of our models (we call this the federated dropout
rate). We always keep the totality of the input and logits layers, and never drop the neuron that can
be associated to the bias term.

Figure 4 shows how the convergence of our three models behaves under different federated dropout
rates. We repeat each experiment 10 times and report the mean among these repetitions. The main
takeaway from these experiments is that, for every model, it is possible to find a federated dropout
rate less than 1.0 that matches or, in some cases, even improves on the final accuracy of the model.

A federated dropout rate of 0.75 seems to work across the board. This corresponds to dropping
25% of the rows and columns of the weight matrices of fully-connected layers (which translates to
a ∼ 43% reduction in size), and to dropping the same percentage of filters of each convolutional
layer. Now, because fully connected layers correspond to most of the parameters of the MNIST
and EMNIST models, the ∼ 43% reduction will apply to them both in terms of the amount of data
that has to be communicated and of the number of FLOPS required for local training. Meanwhile,
because our CIFAR model is fully convolutional, gains will be of 25%.

As a final comment, we note that more aggressive federated dropout rates tend to slow down the
convergence rate of the model, even if they sometimes result in a higher accuracy.

4.4 REDUCING THE OVERALL COMMUNICATION COST

Our final set of experiments shows how our models behave once we combine our two strate-
gies, lossy compression and Federated Dropout, with existing client-to-server compression
schemes (Konečný et al., 2016b), in order to explore how the different components of this end-
to-end, communication efficient framework interact. To do this, we evaluate how our models behave
under 3 different compression schemes (aggressive, moderate and conservative) and 4 different fed-
erated dropout rates (0.5, 0.625, 0.75 and 0.875). The values for these schemes and rates were
picked based on the observed behavior during the previous experiments, being somewhat more con-
servative as we are now combining different sources of noise. Table 2 describes the settings for each
scheme.

Figure 5 shows how our CIFAR-10 and EMNIST models behave under each of the previously men-
tioned conditions. We repeat each experiment 5 times and report the mean among these repetitions.
For all three models, a federated dropout rate of 0.75 resulted in models with no accuracy degrada-
tion under all compression schemes except for the most aggressive. For MNIST and EMNIST, this
translates into server-to-client communication savings of 14×, client-to-server savings of 28× and a
reduction of 1.7× in local computation, all without degrading the accuracy of the final global model
(and sometimes even improving it). For CIFAR-10, we provide server-to-client communication
savings of 10×, client-to-server savings of 21× and local computation savings of 1.3×.

Based on these results, we also hypothesize that a federated dropout rate of 0.75 combined with
a moderate or conservative compression scheme will be a good starting point when setting these
parameters in practice.
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Table 2: Settings for each of our proposed compression schemes.

Scheme Client-to-Server Server-to-Client
transf. s q transf. s q

Aggressive Kashin’s 0.4 2 Kashin’s 1.0 3
Moderate Kashin’s 0.5 4 Kashin’s 1.0 5
Conservative Kashin’s 1.0 8 Kashin’s 1.0 8
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Figure 5: Effect of using both compression and Federated Dropout on CIFAR-10 and EMNIST.

5 CONCLUSIONS AND OPEN QUESTIONS

The ecosystem currently targeted by Federated Learning (FL) is marked by heterogeneous edge
networks that can potentially be orders of magnitude slower than the ones in datacenters. At the
same time, FL can be quite demanding in terms of bandwidth, particularly when used to train deep
models. We are thus at risk of either restricting the type of models we are able to train using this
technique, or of excluding large groups of users from federated training. Both issues are problematic,
but because access to high-end networks also appears to be correlated to sensitive factors such as
income and age (Anzilotti, 2016; Pew Research Center, 2018), the latter may have implications
related to fairness, making it particularly sensitive as we continue the adoption of FL systems.

Our work dramatically reduces the communication overheads in FL by (1) using lossy compression
techniques on the server-to-client exchanges and by (2) using Federated Dropout, a technique that
only communicates subsets of the global model to each client. We empirically show that a com-
bination of our strategies with previous work allows for up to a 14× reduction in server-to-client
communication, a 1.7× reduction in local computation and a 28× reduction in client-to-server com-
munication.

In future work, we plan to: explore the efficacy of introducing a server step size in order to account
for the use of different sub-models in Federated Dropout; investigate the possibility of using the
same sub-models for all the selected clients in one round; and further characterize the benefits of
Kashin’s representation in compressing the gradient updates in FL and in traditional model serving.
An additional future direction to pursue related to fairness involves studying the effect of adaptively
using these strategies (i.e. using more aggressive compression and federated dropout rates for some
users) to prevent unfairly biased models. Finally, we note that the success of Federated Dropout
suggests an entirely new avenue of research in which smaller, perhaps personalized, sub-models
are eventually aggregated into a larger, more complex model that can be managed by the server.
Contrary to the classic datacenter setting, the computational overhead associated with first creating
and then aggregating the sub-models is justified in FL.
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A KASHIN’S REPRESENTATION

For reasons of space, we have relegated a more detailed discussion of Kashin’s representation (see
Section 3) to the Appendix. In this section, we briefly discuss Kashin’s representation both from
a theoretical (Section A.1) and practical (Section A.2) standpoints. Finally, we present some pre-
liminary results that argue the potential of Kashin’s representation to dominate over the random
Hadamard transform with respect to the size vs. accuracy trade-off (Section A.3).

A.1 THEORETICAL OVERVIEW

The idea of using the classical results of Kashin (1977) to increase the robustness of coefficients to
perturbations was first introduced by Lyubarskii & Vershynin (2010). Their result states that, given
a tight frame satisfying a form of uncertainty principle, a weaker notion of the RIP (Candes et al.,
2006), it is possible to convert the frame representation of every vector into the more robust Kashin’s
representation, whose coefficients will have the smallest possible dynamic range.

Error rates Since the results of Suresh et al. (2017) (who quantified the reduction in quantization
error due to the Hadamard transform) rely on exactly this notion of dynamic range, and assuming
the subsampled randomized Hadamard transform satisfies the uncertainty principle, Theorem 3.5 of
Lyubarskii & Vershynin (2010) can be directly used as a drop-in replacement for Lemma 7 in Suresh
et al. (2017), removing the logarithmic dependence on dimension from Theorem 3 therein, matching
the lower bounds. We do not provide the complete proof as, beyond drawing this connection, it does
not imply any novelty whatsoever. However, an open question remains, as we are not aware of a
result showing what are the parameters of the uncertainty principle guaranteed by the subsampled
randomized Hadamard transform. They exist however, as the transform is known to satisfy the
RIP (Foucart & Rauhut, 2013), which is a stronger notion.

A.2 PRACTICAL CONSIDERATIONS

In practice, given a tight frame, the algorithm for computing Kashin’s representation is straightfor-
ward. It runs for n iterations, and takes parameters η, δ as input. In a single iteration, one first
computes the frame coefficients, projects them onto a L∞ ball, and reconstructs the error in the
original domain. Another iteration proceeds starting with the reconstructed error and a smaller ball.
We refer the reader to Lyubarskii & Vershynin (2010) for more details regarding η, δ and their rela-
tionship with the uncertainty principle.

In our work, we use the randomized Hadamard transform as the initial tight frame (see Section A.1
for details on why this is possible). We also run the algorithm for just n = 2 iterations (as very
often this provides most of the benefit), fixed δ = 1, and used a variant of the algorithm which
yields an exact representation (omitting the L∞ projection in the last iteration). Given this, the
choice of η is irrelevant. The dominant part of the computation is then three applications of the fast
Walsh-Hadamard transform, as opposed to a single one in Konečný et al. (2016b)).

As a particular example, say we are to compress an 80-dimensional vector. We first pad the vector
with zeros, so that its dimension is 128 (the closest larger power of 2). Then, we multiply the vector
by a diagonal matrix with independent Rademacher random variables (D ∈ R128×128), followed by
the application of the fast Walsh-Hadamard transform (H ∈ R128×128). The first 80 columns of the
matrix HD correspond to the tight frame used to find the Kashin’s representation. Nonetheless, we
avoid representing this explicitly.

Finally, note that, if the initial dimension was a power of 2, we need to pad zeros to the next power
of 2 in order to realize any benefit over just using the Hadamard transform.

A.3 DOMINANCE OVER HADAMARD

Given the theoretical properties of Kashin’s representation, we hypothesize it should dominate the
random Hadamard transform when it comes to the size vs. accuracy trade-off. A preliminary exper-
iment to corroborate this hypothesis is the following:

1. We train an MNIST model until we get an accuracy of around 99.3%.
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2. We compress the original model using some linear transform, some subsampling ratio and some
number of quantization bits.

3. We decompress the model and evaluate both its new accuracy and its L2 distance to the original
model.

4. We repeat the previous two steps for different linear transforms (identity, random Hadamard
transform and Kashin’s representation), subsampling ratios (0.25, 0.5 and 1.0) and quantization
bits (1, 2, 4, 8, 16).

An important detail is that, whenever we use Kashin’s representation, we do a grid search over the
best values for n (from 1 to 10) and η. However, δ is kept fixed as 1.

The results of this experiment are shown in Figure 6. In the legend, R corresponds to rotation — I
for identity, HD for randomized Hadamard, Kashin for Kashin based on the randomized Hadamard;
and SR corresponds to subsampling ratio — the fraction of elements to be kept non-zero. In the top
row, the figure shows the relationship of the accuracy of the compressed model vs. the number of
bits used for quantization, and vs. the model’s size (in MB). In the bottom row, the L2 error incurred
is plotted against the same. It is very clear then that Kashin’s representation does dominate the other
two representations when it comes to the size vs. accuracy trade-off, making up the Pareto frontier
for all combinations of subsampling ratio and quantization bits. Nevertheless, we did optimize over
the parameters associated with Kashin’s algorithm, something that does not need to be done for the
random Hadamard transform. In Section A.2, we propose a set of values that worked well enough
for our experiments, but further exploration on how to easily determine these values is in order.

Figure 6: Compressing an already trained MNIST model with linear transform + subsampling +
uniform quantization.
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B MNIST EXPERIMENTAL RESULTS

For reasons of space, we have relegated the experimental results using MNIST (see Section 4) (Sec-
tion A) to the Appendix.

Figure 7 shows the results of using our lossy compression on MNIST under the experimental setup
presented in Section 4.2. Meanwhile, Figure 8 shows the results of using Federated Dropout (see
Section 4.3 for details). Finally, Figure 9 shows the results of performing both lossy compression
for downloads and uploads, as well as Federated Dropout, as described in Section 4.4.
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Figure 7: Effect of varying our lossy compression parameters on the convergence MNIST.
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Figure 8: Effect of varying the percentage of neurons kept in each layer on MNIST.
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Figure 9: Effect of using both lossy compression and Federated Dropout on MNIST.
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