
Published as a conference paper at ICLR 2020

MEASURING THE RELIABILITY OF
REINFORCEMENT LEARNING ALGORITHMS

Stephanie C.Y. Chan,1∗ Samuel Fishman,1 John Canny,1, 2 Anoop Korattikara,1

& Sergio Guadarrama1

1Google Research 2Berkeley EECS
{scychan,sfishman,canny,kbanoop,sguada}@google.com

ABSTRACT

Lack of reliability is a well-known issue for reinforcement learning (RL) algorithms.
This problem has gained increasing attention in recent years, and efforts to improve
it have grown substantially. To aid RL researchers and production users with
the evaluation and improvement of reliability, we propose a set of metrics that
quantitatively measure different aspects of reliability. In this work, we focus on
variability and risk, both during training and after learning (on a fixed policy). We
designed these metrics to be general-purpose, and we also designed complementary
statistical tests to enable rigorous comparisons on these metrics. In this paper, we
first describe the desired properties of the metrics and their design, the aspects of
reliability that they measure, and their applicability to different scenarios. We then
describe the statistical tests and make additional practical recommendations for
reporting results. The metrics and accompanying statistical tools have been made
available as an open-source library.1 We apply our metrics to a set of common RL
algorithms and environments, compare them, and analyze the results.

1 INTRODUCTION

Reinforcement learning (RL) algorithms, especially Deep RL algorithms, tend to be highly variable
in performance and considerably sensitive to a range of different factors, including implementation
details, hyper-parameters, choice of environments, and even random seeds (Henderson et al., 2017).
This variability hinders reproducible research, and can be costly or even dangerous for real-world
applications. Furthermore, it impedes scientific progress in the field when practitioners cannot reliably
evaluate or predict the performance of any particular algorithm, compare different algorithms, or
even compare different implementations of the same algorithm.

Recently, Henderson et al. (2017) has performed a detailed analysis of reliability for several policy
gradient algorithms, while Duan et al. (2016) has benchmarked average performance of different
continuous-control algorithms. In other related work, Colas et al. (2018) have provided a detailed anal-
ysis on power analyses for mean performance in RL, and Colas et al. (2019) provide a comprehensive
primer on statistical testing for mean and median performance in RL.

In this work, we aim to devise a set of metrics that measure reliability of RL algorithms. Our analysis
distinguishes between several typical modes to evaluate RL performance: "evaluation during training",
which is computed over the course of training, vs. "evaluation after learning", which is evaluated on a
fixed policy after it has been trained. These metrics are also designed to measure different aspects of
reliability, e.g. reproducibility (variability across training runs and variability across rollouts of a
fixed policy) or stability (variability within training runs). Additionally, the metrics capture multiple
aspects of variability – dispersion (the width of a distribution), and risk (the heaviness and extremity
of the lower tail of a distribution).

Standardized measures of reliability can benefit the field of RL by allowing RL practitioners to
compare algorithms in a rigorous and consistent way. This in turn allows the field to measure

∗Work done as part of the Google AI Residency
1https://github.com/google-research/rl-reliability-metrics

1

Published as a conference paper at ICLR 2020

progress, and also informs the selection of algorithms for both research and production environments.
By measuring various aspects of reliability, we can also identify particular strengths and weaknesses
of algorithms, allowing users to pinpoint specific areas of improvement.

In this paper, in addition to describing these reliability metrics, we also present practical recommen-
dations for statistical tests to compare metric results and how to report the results more generally. As
examples, we apply these metrics to a set of algorithms and environments (discrete and continuous,
off-policy and on-policy). We have released the code used in this paper as an open-source Python
package to ease the adoption of these metrics and their complementary statistics.

Dispersion (D) Risk (R)

D
U

R
IN

G
T

R
A

IN
IN

G Across Time (T)
(within training

runs)

IQR∗ within windows, after
detrending

Short-term: CVaR† on
first-order differences

Long-term: CVaR† on
Drawdown

Across Runs (R) IQR∗ across training runs,
after low-pass filtering.

CVaR† across runs

A
F

T
E

R
L

E
A

R
N

IN
G

Across rollouts on
a Fixed Policy (F)

IQR∗ across rollouts for a
fixed policy

CVaR† across rollouts for a
fixed policy

Table 1: Summary of our proposed reliability metrics. For evaluation DURING TRAINING, which
measures reliability over the course of training an algorithm, the inputs to the metrics are the
performance curves of an algorithm, evaluated at regular intervals during a single training run (or on
a set of training runs). For evaluation AFTER LEARNING, which measures reliability of an already-
trained policy, the inputs to the metrics are the performance scores of a set of rollouts of that fixed
policy. ∗IQR: inter-quartile range. †CVaR: conditional value at risk.

2 RELIABILITY METRICS

We target three different axes of variability, and two different measures of variability along each axis.
We denote each of these by a letter, and each metric as a combination of an axis + a measure, e.g.
"DR" for "Dispersion Across Runs". See Table 1 for a summary. Please see Appendix A for more
detailed definitions of the terms used here.

2.1 AXES OF VARIABILITY

Our metrics target the following three axes of variability. The first two capture reliability "during
training", while the last captures reliability of a fixed policy "after learning".

During training: Across Time (T) In the setting of evaluation during training, one desirable
property for an RL algorithm is to be stable "across time" within each training run. In general, smooth
monotonic improvement is preferable to noisy fluctuations around a positive trend, or unpredictable
swings in performance.

This type of stability is important for several reasons. During learning, especially when deployed
for real applications, it can be costly or even dangerous for an algorithm to have unpredictable
levels of performance. Even in cases where bouts of poor performance do not directly cause harm,
e.g. if training in simulation, high instability implies that algorithms have to be check-pointed and
evaluated more frequently in order to catch the peak performance of the algorithm, which can be
expensive. Furthermore, while training, it can be a waste of computational resources to train an
unstable algorithm that tends to forget previously learned behaviors.

2

Published as a conference paper at ICLR 2020

During training: Across Runs (R) During training, RL algorithms should have easily and consis-
tently reproducible performances across multiple training runs. Depending on the components that
we allow to vary across training runs, this variability can encapsulate the algorithm’s sensitivity to
a variety of factors, such as: random seed and initialization of the optimization, random seed and
initialization of the environment, implementation details, and hyper-parameter settings. Depending on
the goals of the analysis, these factors can be held constant or allowed to vary, in order to disentangle
the contribution of each factor to variability in training performance. High variability on any of these
dimensions leads to unpredictable performance, and also requires a large search in order to find a
model with good performance.

After learning: Across rollouts of a fixed policy (F) When evaluating a fixed policy, a natural
concern is the variability in performance across multiple rollouts of that fixed policy. Each rollout
may be specified e.g. in terms of a number of actions, environment steps, or episodes. Generally,
this metric measures sensitivity to both stochasticity from the environment and stochasticity from the
training procedure (the optimization). Practitioners may sometimes wish to keep one or the other
constant if it is important to disentangle the two factors (e.g. holding constant the random seed of the
environment while allowing the random seed controlling optimization to vary across rollouts).

2.2 MEASURES OF VARIABILITY

For each axis of variability, we have two kinds of measures: dispersion and risk.

Dispersion Dispersion is the width of the distribution. To measure dispersion, we use "robust
statistics" such as the Inter-quartile range (IQR) (i.e. the difference between the 75th and 25th
percentiles) and the Median absolute deviation from the median (MAD), which are more robust
statistics and don’t require assuming normality of the distributions. 2 We prefer to use IQR over
MAD, because it is more appropriate for asymmetric distributions (Rousseeuw & Croux, 1993).

Risk In many cases, we are concerned about the worst-case scenarios. Therefore, we define risk
as the heaviness and extent of the lower tail of the distribution. This is complementary to measures
of dispersion like IQR, which cuts off the tails of the distribution. To measure risk, we use the
Conditional Value at Risk (CVaR), also known as “expected shortfall". CVaR measures the expected
loss in the worst-case scenarios, defined by some quantile α. It is computed as the expected value in
the left-most tail of a distribution (Acerbi & Tasche, 2002). We use the following definition for the
CVaR of a random variable X for a given quantile α:

CVaRα(X) = E [X|X ≤ V aRα(X)] (1)

where α ∈ (0, 1) and the V aRα (Value at Risk) is just the α-quantile of the distribution of X .
Originally developed in finance, CVaR has also seen recent adoption in Safe RL as an additional
component of the objective function by applying it to the cumulative returns within an episode, e.g.
Bäuerle & Ott (2011); Chow & Ghavamzadeh (2014); Tamar et al. (2015). In this work, we apply
CVaR to the dimensions of reliability described in Section 2.1.

2.3 DESIDERATA

In designing our metrics and statistical tests, we required that they fulfill the following criteria:

• A minimal number of configuration parameters – to facilitate standardization as well as to
minimize “researcher degrees of freedom" (where flexibility may allow users to tune settings
to produce more favorable results, leading to an inflated rate of false positives) (Simmons
et al., 2011).

• Robust statistics, when possible. Robust statistics are less sensitive to outliers and have
more reliable performance for a wider range of distributions. Robust statistics are especially

2Note that our aim here is to measure the variability of the distribution, rather than to characterize the
uncertainty in estimating a statistical parameter of that distribution. Therefore, confidence intervals and other
similar methods are not suitable for the aim of measuring dispersion.

3

Published as a conference paper at ICLR 2020

important when applied to training performance, which tends to be highly non-Gaussian,
making metrics such as variance and standard deviation inappropriate. For example, training
performance is often bi-modal, with a concentration of points near the starting level and
another concentration at the level of asymptotic performance.

• Invariance to sampling frequency – results should not be biased by the frequency at which
an algorithm was evaluated during training. See Section 2.5 for further discussion.

• Enable meaningful statistical comparisons on the metrics, while making minimal assump-
tions about the distribution of the results. We thus designed statistical procedures that are
non-parametric (Section 4).

Median Performance

Dispersion across Time Long-term Risk across TimeShort-term Risk across Time

Dispersion across Runs

OpenAI Gym -- During Training

Risk across Runs

no
rm

al
iz

ed
 m

ea
n

ra
nk

no
rm

al
iz

ed
 m

ea
n

ra
nk

Median PerformanceDispersion of Fixed Policy Risk of Fixed Policy

OpenAI Gym -- After Learning

no
rm

al
iz

ed
 m

ea
n

ra
nk

Figure 1: Reliability metrics and median performance for continuous control RL algorithms (DDPG,
TD3, SAC, REINFORCE, and PPO) tested on OpenAI Gym environments. Rank 1 always indicates
"best" reliability, e.g. lowest IQR across runs. Error bars are 95% bootstrap confidence intervals
(# bootstraps = 1,000). Significant pairwise differences in ranking between pairs of algorithms are
indicated by black horizontal lines above the colored bars. (α = 0.05 with Benjamini-Yekutieli
correction, permutation test with # permutations = 1,000). Note that the best algorithms by median
performance are not always the best algorithms on reliability.

2.4 METRIC DEFINITIONS

Dispersion across Time (DT): IQR across Time To measure dispersion across time (DT), we
wished to isolate higher-frequency variability, rather than capturing longer-term trends. We did not
want our metrics to be influenced by positive trends of improvement during training, which are in
fact desirable sources of variation in the training performance. Therefore, we apply detrending before

4

Published as a conference paper at ICLR 2020

Median Performance

Atari -- During Training

Dispersion across Time Long-term Risk across TimeShort-term Risk across Time

Dispersion across Runs

no
rm

al
iz

ed
 m

ea
n

ra
nk

no
rm

al
iz

ed
 m

ea
n

ra
nk

Risk across Runs

Atari -- After Learning

Median PerformanceDispersion of Fixed Policy Risk of Fixed Policy

no
rm

al
iz

ed
 m

ea
n

ra
nk

Figure 2: Reliability metrics and median performance for four DQN-variants (C51, DQN: Deep
Q-network, IQ: Implicit Quantiles, and RBW: Rainbow) tested on 60 Atari games. Rank 1 always
indicates "best" reliability, e.g. lowest IQR across runs. Significant pairwise differences in ranking
between pairs of algorithms are indicated by black lines above the colored circles. (α = 0.05 with
Benjamini-Yekutieli correction, permutation test with # permutations = 1,000). Note that the best
algorithms by median performance are not always the best algorithms on reliability. Error bars are
95% bootstrap confidence intervals (# bootstraps = 1,000).

computing dispersion metrics. For detrending, we used differencing (i.e. yt′ = yt − yt−1).3 The final
measure consisted of inter-quartile range (IQR) within a sliding window along the detrended training
curve.

Short-term Risk across Time (SRT): CVaR on Differences For this measure, we wish to measure
the most extreme short-term drop over time. To do this, we apply CVaR to the changes in performance
from one evaluation point to the next. I.e., in Eq. 1, X represents the differences from one evaluation
time-point to the next. We first compute the time-point to time-point differences on each training
run. These differences are normalized by the distance between time-points, to ensure invariance to
evaluation frequency (see Section 2.5). Then, we obtain the distribution of these differences, and find
the α-quantile. Finally, we compute the expected value of the distribution below the α-quantile. This
gives us the worst-case expected drop in performance during training, from one point of evaluation to
the next.

3Please see Appendix B for a more detailed discussion of different types of detrending, and the rationale for
choosing differencing here.

5

Published as a conference paper at ICLR 2020

Long-term Risk across Time (LRT): CVaR on Drawdown For this measure, we would also like
to be able to capture whether an algorithm has the potential to lose a lot of performance relative to
its peak, even if on a longer timescale, e.g. over an accumulation of small drops. For this measure,
we apply CVaR to the Drawdown. The Drawdown at time T is the drop in performance relative to
the highest peak so far, and is another measure borrowed from economics (Chekhlov et al., 2005).
I.e. DrawdownT = RT −maxt<=T Rt. Like the SRT metric, the LRT can capture unusually large
short-term drops in performance, but can also capture unusually large drops that occur over longer
timescales.

Dispersion across Runs (DR): IQR across Runs Unlike the rest of the metrics described here,
the dispersion across training runs has previously been used to characterize performance (e.g. Duan
et al. (2016); Islam et al. (2017); Bellemare et al. (2017); Fortunato et al. (2017); Nagarajan et al.
(2018)). This is usually measured by taking the variance or standard deviation across training runs
at a set of evaluation points. We build on the existing practice by recommending first performing
low-pass filtering of the training data, to filter out high-frequency variability within runs (this is
instead measured using Dispersion across Time, DT). We also replace variance or standard deviation
with robust statistics like IQR.

Risk across Runs (RR): CVaR across Runs In order to measure Risk across Runs (RR), we
apply CVaR to the final performance of all the training runs. This gives a measure of the expected
performance of the worst runs.

Dispersion across Fixed-Policy Rollouts (DF): IQR across Rollouts When evaluating a fixed
policy, we are interested in variability in performance when the same policy is rolled out multiple
times. To compute this metric, we simply compute the IQR on the performance of the rollouts.

Risk across Fixed-Policy Rollouts (RF): CVaR across Rollouts This metric is similar to DF,
except that we apply CVaR on the rollout performances.

2.5 INVARIANCE TO FREQUENCY OF EVALUATION

Different experiments and different tasks may produce evaluations at different frequencies during
training. Therefore, the reliability metrics should be unbiased by the choice of evaluation frequency.
As long as there are no cyclical patterns in performance, the frequency of evaluation will not bias
any of the metrics except Long-Term Risk across Time (LRT). For all other metrics, changes in the
frequency of evaluation will simply lead to more or less noisy estimates of these metrics. For LRT,
comparisons should only be made if the frequency of evaluation is held constant across experiments.

3 RECOMMENDATIONS FOR REPORTING METRICS AND PARAMETERS

Whether evaluating an algorithm for practical use or for research, we recommend evaluating all of
the reliability metrics described above. Each metric measures a different aspect of reliability, and can
help pinpoint specific strengths and weaknesses of the algorithm. Evaluating the metrics is easy with
the open-source Python package that we have released.

Reporting parameters. Even given our purposeful efforts to minimize the number of parameters
in the reliability metrics, a few remain to be specified by the user that can affect the results, namely:
window size (for Dispersion across Time), frequency threshold for low-pass and high-pass filtering
(Dispersion across Time, Dispersion across Runs), evaluation frequency (only for Long-term Risk
across Time), and length of training runs. Therefore, when reporting these metrics, these parameters
need to be clearly specified, and must also be held constant across experiments for meaningful
comparisons. The same is true for any other parameters that affect evaluation, e.g., the number of
roll-outs per evaluation, the parameters of the environment, whether on-line or off-line evaluation is
used, and the random seeds chosen.

Collapsing across evaluation points. Some of the in-training reliability metrics (Dispersion across
Runs, Risk across Runs, and Dispersion across Time) need to be evaluated at multiple evaluation

6

Published as a conference paper at ICLR 2020

points along the training runs. If it is useful to obtain a small number of values to summarize each
metric, we recommend dividing the training run into "time frames" (e.g. beginning, middle, and end),
and collapsing across all evaluation points within each time frame.

Normalization by performance. Different algorithms can have vastly different ranges of perfor-
mance even on the same task, and variability in performance tends to scale with actual performance.
Thus, we normalize our metrics in post-processing by a measure of the range of performance for
each algorithm. For "during training" reliability, we recommend normalizing by the median range of
performance, which we define as the pP95 − pt=0, where pP95 is the 95th percentile and pt=0 is the
starting performance. For "after learning" reliability, the range of performance may not be available,
in which case we use the median performance directly.

Ranking the algorithms. Because different environments have different ranges and distributions
of reward, we must be careful when aggregating across environments or comparing between envi-
ronments. Thus, if the analysis involves more than one environment, the per-environment median
results for the algorithms are first converted to rankings, by ranking all algorithms within each task.
To summarize the performance of a single algorithm across multiple tasks, we compute the mean
ranking across tasks.

Per-environment analysis. The same algorithm can have different patterns of reliability for dif-
ferent environments. Therefore, we recommend inspecting reliability metrics on a per-environment
basis, as well as aggregating across environments as described above.

4 CONFIDENCE INTERVALS AND STATISTICAL SIGNIFICANCE TESTS FOR
COMPARISON

4.1 CONFIDENCE INTERVALS

We assume that the metric values have been converted to mean rankings, as explained in Section 3.
To obtain confidence intervals on the mean rankings for each algorithm, we apply bootstrap sampling
on the runs, by resampling runs with replacement (Efron & Tibshirani, 1986).

For metrics that are evaluated per-run (e.g. Dispersion across Time), we can resample the metric
values directly, and then recompute the mean rankings on each resampling to obtain a distribution
over the rankings; this allow us to compute confidence intervals. For metrics that are evaluated
across-runs, we need to resample the runs themselves, then evaluate the metrics on each resampling,
before recomputing the mean rankings to obtain a distribution on the mean rankings.

4.2 SIGNIFICANCE TESTS FOR COMPARING ALGORITHMS

Commonly, we would like to compare algorithms evaluated on a fixed set of environments. To
determine whether any two algorithms have statistically significant differences in their metric rankings,
we perform an exact permutation test on each pair of algorithms. Such tests allow us to compute
a p-value for the null hypothesis (probability that the methods are in fact indistinguishable on the
reliability metric).

We designed our permutation tests based on the null hypothesis that runs are exchangeable across
the two algorithms being compared. In brief, let A and B be sets of performance measurements for
algorithms a and b. Let Metric(X) be a reliability metric, e.g. the inter-quartile range across runs,
computed on a set of measurements X . MetricRanking(X) is the mean ranking across tasks on X ,
compared to the other algorithms being considered. We compute test statistic

sMetricRanking(A,B) = MetricRanking(A)−MetricRanking(B).

Next we compute the distribution for sMetricRanking under the null hypothesis that the meth-
ods are equivalent, i.e. that performance measurements should have the same distribution for a
and b. We do this by computing random partitions A′, B′ of {A ∪ B}, and computing the test
statistic sMetricRanking(A

′, B′) on each partition. This yields a distribution for sMetricRanking

(for sufficiently many samples), and the p-value can be computed from the percentile value of

7

Published as a conference paper at ICLR 2020

sMetricRanking(A,B) in this distribution. As with the confidence intervals, a different procedure
is required for per-run vs across-run metrics. Please see Appendix C for diagrams illustrating the
permutation test procedures.

When performing pairwise comparisons between algorithms, it is critical to include corrections for
multiple comparisons. This is because the probability of incorrect inferences increases with a greater
number of simultaneous comparisons. We recommend using the Benjamini-Yekutieli method, which
controls the false discovery rate (FDR), i.e., the proportion of rejected null hypotheses that are false.4

4.3 REPORTING ON STATISTICAL TESTS

It is important to report the details of any statistical tests performed, e.g. which test was used, the
significance threshold, and the type of multiple-comparisons correction used.

5 ANALYSIS OF RELIABILITY FOR COMMON ALGORITHMS AND
ENVIRONMENTS

In this section, we provide examples of applying the reliability metrics to a number of RL algorithms
and environments, following the recommendations described above.

5.1 CONTINUOUS CONTROL ALGORITHMS ON OPENAI GYM

We applied the reliability metrics to algorithms tested on seven continuous control environments from
the Open-AI Gym (Greg Brockman et al., 2016) run on the MuJoCo physics simulator (Todorov et al.,
2012). We tested REINFORCE (Sutton et al., 2000), DDPG (Lillicrap et al., 2015), PPO (Schulman
et al., 2017), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018) on the following Gym
environments: Ant-v2, HalfCheetah-v2, Humanoid-v2, Reacher-v2, Swimmer-v2, and Walker2d-v2.
We used the implementations of DDPG, TD3, and SAC from the TF-Agents library (Guadarrama
et al., 2018). Each algorithm was run on each environment for 30 independent training runs.

We used a black-box optimizer (Golovin et al., 2017) to tune selected hyperparameters on a per-task
basis, optimizing for final performance. The remaining hyperparameters were defined as stated in the
corresponding original papers. See Appendix E for details of the hyperparameter search space and
the final set of hyperparameters. During training, we evaluated the policies at a frequency of 1000
training steps. Each algorithm was run for a total of two million environment steps. For the “online”
evaluations we used the generated training curves, averaging returns over recent training episodes
collected using the exploration policy as it evolves. The raw training curves are shown in Appendix
D. For evaluations after learning on a fixed policy, we took the last checkpoint from each training run
as the fixed policy for evaluation. Each of these policies was then evaluated for 30 roll-outs, where
each roll-out was defined as 1000 environment steps.

5.2 DISCRETE CONTROL: DQN VARIANTS ON ATARI

We also applied the reliability metrics to the RL algorithms and training data released as part of the
Dopamine package (Castro et al., 2018). The data comprise the training runs of four RL algorithms,
each applied to 60 Atari games. The RL algorithms are: DQN (Mnih et al., 2015), Implicit Quantile
(IQN) (Dabney et al., 2018), C51 (Bellemare et al., 2017), and a variant of Rainbow implementing
the three most important components (Hessel & Modayil, 2018). The algorithms were trained on
each game for 5 training runs. Hyper-parameters follow the original papers, but were modified as
necessary to follow Rainbow (Hessel & Modayil, 2018), to ensure apples-to-apples comparison. See
Appendix E for the hyperparameters.

During training, the algorithms were evaluated in an “online” fashion every 1 million frames,
averaging across the training episodes as recommended for evaluations on the ALE (Machado et al.,
2018). Each training run consisted of approximately 200 million Atari frames (rounding to the nearest

4For situations in which a user wishes instead to control the family-wise error rate (FWER; the probability of
incorrectly rejecting at least one true null hypothesis), we recommend using the Holm-Bonferroni method.

8

Published as a conference paper at ICLR 2020

episode boundary every 1 million frames).5 For evaluations after learning on a fixed policy (“after
learning”), we took the last checkpoint from each training run as the fixed policies for evaluation. We
then evaluated each of these policies for 125,000 environment steps.

5.3 PARAMETERS FOR RELIABILITY METRICS, CONFIDENCE INTERVALS, AND STATISTICAL
TESTS

For the MuJoCo environments, we applied a sliding window of 100000 training steps for Dispersion
across Time. For the Atari experiments, we used a sliding window size of 25 on top of the evaluations
for the Dispersion across Time. For metrics with multiple evaluation points, we divided each training
run into 3 time frames and averaged the metric rankings within each time frame. Because the results
were extremely similar for all three time frames, we here report just for the final time frames.

Statistical tests for comparing algorithms were performed according to the recommendations in
Section 4. We used pairwise permutation tests using 10,000 permutations per test, with a significance
threshold of 0.05 and Benjamini-Yekutieli multiple-comparisons correction.

5.4 MEDIAN PERFORMANCE

The median performance of an algorithm is not a reliability metric, but it is interesting to see side-by-
side with the reliability metrics. For analyzing median performance for the DQN variants, we used
the normalization scheme of (Mnih et al., 2015), where an algorithm’s performance is normalized
against a lower baseline (e.g. the performance of a random policy) and an upper baseline (e.g. the
performance of a human): Pnormalized = P−Blower

Bupper−Blower
. Median performance was not normalized for the

continuous control algorithms.

5.5 RESULTS

The reliability metric rankings are shown in Fig. 1 for the MuJoCo results. We see that, according to
Median Performance during training, SAC and TD3 have the best performance and perform similarly
well, while REINFORCE performs the worst. However, SAC outperforms TD3 on all reliability
metrics during training. Furthermore, both SAC and TD3 perform relatively poorly on all reliability
metrics after learning, despite performing best on median performance.

The reliability metric rankings are shown in Fig. 2 for the Atari results. Here we see a similar result
that, even though Rainbow performs significantly better than IQN in Median Performance, IQN
performs numerically or significantly better than Rainbow on many of the reliability metrics.

The differing patterns in these metrics demonstrates that reliability is a separate dimension that
needs to be inspected separately from mean or median performance – two algorithms may have
similar median performance but may nonetheless significantly differ in reliability, as with SAC
and TD3 above. Additionally, these results demonstrate that reliability along one axis does not
necessarily correlate with reliability on other axes, demonstrating the value of evaluating these
different dimensions so that algorithms can be compared and selected based on the requirements of
the problem at hand.

To see metric results evaluated on a per-environment basis, please refer to Appendix F. Rank order
of algorithms was often relatively consistent across the different environments evaluated. However,
different environments did display different patterns across algorithms. For example, even though
SAC showed the same or better Dispersion across Runs for most of the MuJoCo environments
evaluated, it did show slightly worse Dispersion across Runs for the HalfCheetah environment (Fig
7a). This kind of result emphasizes the importance of inspecting reliability (and other performance
metrics) on a per-environment basis, and also of evaluating reliability and performance on the
environment of interest, if possible.

5The raw training curves can be viewed at https://google.github.io/dopamine/baselines/plots.html

9

Published as a conference paper at ICLR 2020

6 CONCLUSION

We have presented a number of metrics, designed to measure different aspects of reliability of RL
algorithms. We motivated the design goals and choices made in constructing these metrics, and also
presented practical recommendations for the measurement of reliability for RL. Additionally, we
presented examples of applying these metrics to common RL algorithms and environments, and
showed that these metrics can reveal strengths and weaknesses of an algorithm that are obscured
when we only inspect mean or median performance.

ACKNOWLEDGMENTS

Many thanks to the following people for helpful discussions during the formulation of these metrics
and the writing of the paper: Mohammad Ghavamzadeh, Yinlam Chow, Danijar Hafner, Rohan Anil,
Archit Sharma, Vikas Sindhwani, Krzysztof Choromanski, Joelle Pineau, Hal Varian, Shyue-Ming
Loh, and Tim Hesterberg. Thanks also to Toby Boyd for his assistance in the open-sourcing process,
Oscar Ramirez for code reviews, and Pablo Castro for his help with running experiments using the
Dopamine baselines data.

REFERENCES

Carlo Acerbi and Dirk Tasche. Expected Shortfall: A Natural Coherent Alternative to Value at
Risk. Economic Notes, 31(2):379–388, July 2002. ISSN 0391-5026, 1468-0300. doi: 10.1111/
1468-0300.00091. URL http://doi.wiley.com/10.1111/1468-0300.00091.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional Perspective on Reinforcement
Learning. arXiv:1707.06887 [cs, stat], July 2017. URL http://arxiv.org/abs/1707.
06887. arXiv: 1707.06887.

Nicole Bäuerle and Jonathan Ott. Markov Decision Processes with Average-Value-at-Risk criteria.
Mathematical Methods of Operations Research, 74(3):361–379, December 2011. ISSN 1432-2994,
1432-5217. doi: 10.1007/s00186-011-0367-0. URL http://link.springer.com/10.
1007/s00186-011-0367-0.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A research framework for deep reinforcement learning. CoRR, abs/1812.06110, 2018.
URL http://arxiv.org/abs/1812.06110.

Alexei Chekhlov, Stanislav Uryasev, and Michael Zabarankin. Drawdown measure in portfolio
optimization. International Journal of Theoretical and Applied Finance, 8(1):46, 2005.

Yinlam Chow and Mohammad Ghavamzadeh. Algorithms for CVaR Optimization in MDPs. Advances
in Neural Information Processing Systems, pp. 9, 2014.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How Many Random Seeds? Statistical
Power Analysis in Deep Reinforcement Learning Experiments. arXiv:1806.08295 [cs, stat], June
2018. URL http://arxiv.org/abs/1806.08295. arXiv: 1806.08295.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A Hitchhiker’s Guide to Statistical Com-
parisons of Reinforcement Learning Algorithms. arXiv:1904.06979 [cs, stat], April 2019. URL
http://arxiv.org/abs/1904.06979. arXiv: 1904.06979.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit Quantile Networks for
Distributional Reinforcement Learning. Thirty-fith International Conference on Machine Learning,
pp. 10, 2018.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking Deep Rein-
forcement Learning for Continuous Control. In International Conference on Machine Learning, pp.
1329–1338, June 2016. URL http://proceedings.mlr.press/v48/duan16.html.

B. Efron and R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other
Measures of Statistical Accuracy. Statistical Science, 1(1):54–75, February 1986. ISSN 0883-4237,
2168-8745. doi: 10.1214/ss/1177013815. URL http://projecteuclid.org/euclid.
ss/1177013815.

10

http://doi.wiley.com/10.1111/1468-0300.00091
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
http://link.springer.com/10.1007/s00186-011-0367-0
http://link.springer.com/10.1007/s00186-011-0367-0
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1806.08295
http://arxiv.org/abs/1904.06979
http://proceedings.mlr.press/v48/duan16.html
http://projecteuclid.org/euclid.ss/1177013815
http://projecteuclid.org/euclid.ss/1177013815

Published as a conference paper at ICLR 2020

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy Networks for Exploration. arXiv:1706.10295 [cs, stat], June 2017. URL http://arxiv.
org/abs/1706.10295. arXiv: 1706.10295.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. arXiv:1802.09477 [cs, stat], February 2018. URL http://arxiv.
org/abs/1802.09477. arXiv: 1802.09477.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
Google Vizier: A Service for Black-Box Optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD ’17, pp. 1487–1495,
Halifax, NS, Canada, 2017. ACM Press. ISBN 978-1-4503-4887-4. doi: 10.1145/3097983.
3098043. URL http://dl.acm.org/citation.cfm?doid=3097983.3098043.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016.

Sergio Guadarrama, Anoop Korattikara, Pablo Castro Oscar Ramirez, Ethan Holly, Sam Fishman,
Ke Wang, Chris Harris Ekaterina Gonina, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents:
A library for reinforcement learning in tensorflow. https://github.com/tensorflow/
agents, 2018. URL https://github.com/tensorflow/agents. [Online; accessed
30-November-2018].

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv:1801.01290 [cs,
stat], January 2018. URL http://arxiv.org/abs/1801.01290. arXiv: 1801.01290.

James D. Hamilton. Time Series Analysis. Princeton University Press, 1994.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep Reinforcement Learning that Matters. arXiv:1709.06560 [cs, stat], September 2017. URL
http://arxiv.org/abs/1709.06560. arXiv: 1709.06560.

Matteo Hessel and Joseph Modayil. Rainbow: Combining Improvements in Deep Reinforcement
Learning. AAAI, pp. 8, 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of Bench-
marked Deep Reinforcement Learning Tasks for Continuous Control. arXiv:1708.04133 [cs],
August 2017. URL http://arxiv.org/abs/1708.04133. arXiv: 1708.04133.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. arXiv:1509.02971 [cs, stat], September 2015. URL http://arxiv.org/abs/1509.
02971. arXiv: 1509.02971.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open
Problems for General Agents. Journal of Artificial Intelligence Research, 61:523–562, March
2018. ISSN 1076-9757. doi: 10.1613/jair.5699. URL https://www.jair.org/index.
php/jair/article/view/11182.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL
https://www.nature.com/articles/nature14236/.

Prabhat Nagarajan, Garrett Warnell, and Peter Stone. Deterministic Implementations for Repro-
ducibility in Deep Reinforcement Learning. arXiv:1809.05676 [cs], September 2018. URL
http://arxiv.org/abs/1809.05676. arXiv: 1809.05676.

11

http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://dl.acm.org/citation.cfm?doid=3097983.3098043
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1708.04133
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://www.jair.org/index.php/jair/article/view/11182
https://www.jair.org/index.php/jair/article/view/11182
https://www.nature.com/articles/nature14236/
http://arxiv.org/abs/1809.05676

Published as a conference paper at ICLR 2020

Charles R Nelson and Charles I Plosser. Trends and random walks in macroeconomic time series.
Journal of Monetary Economics, 10:139–162, 1982.

Peter J. Rousseeuw and Christophe Croux. Alternatives to the MedianAbsolute Deviation. Journal of
the American Statistical Association, 1993.

Said E. Said and David A. Dickey. Testing for unit roots in autoregressive-moving average models of
unknown order. Biometrika, 71(3):599–607, 1984.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs], July 2017. URL http://arxiv.org/
abs/1707.06347. arXiv: 1707.06347.

Joseph P. Simmons, Leif D. Nelson, and Uri Simonsohn. False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psy-
chological Science, 22(11):1359–1366, November 2011. ISSN 0956-7976, 1467-9280. doi:
10.1177/0956797611417632. URL http://journals.sagepub.com/doi/10.1177/
0956797611417632.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In NIPS’99 Proceedings of
the 12th International Conference on Neural Information Processing Systems, pp. 7, 2000.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the CVaR via Sampling. Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 7, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
Vilamoura-Algarve, Portugal, October 2012. IEEE. ISBN 978-1-4673-1736-8 978-1-4673-1737-5
978-1-4673-1735-1. doi: 10.1109/IROS.2012.6386109. URL http://ieeexplore.ieee.
org/document/6386109/.

A ASSUMPTIONS AND DEFINITIONS

Reinforcement Learning algorithms vary widely in design, and our metrics are based on certain
notions that should span the gamut of RL algorithms.

Policy A policy πΘ(ai|si) is a distribution over actions ai given a current (input) state si. We assume
policies are parameterized by a parameter Θ.

Agent An agent is defined as a distribution over policies (or equivalently a distribution over pa-
rameters Θ). In many cases, an agent will be a single policy but for population-based RL
methods, the agent is a discrete set of policies.

Window A window is a collection of states over which the agent is assumed to have small variation.
A window could be a sequence of consecutive time steps for a sequential RL algorithm, or a
collection of states at the same training step of a distributed RL algorithm with a parameter
server (all agents share Θ).

Performance The performance of an agent is the mean or median per-epoch reward from running
that agent. If the agent is a single policy, then the performance p(πΘ) is the mean or median
per-epoch reward for that agent. If the agent is a distribution D(Θ) of policies, then the
performance is the median of p(πΘ) with Θ ∼ D.

Training Run A training run is a sequence of updates to the agent D(Θ) from running a reinforce-
ment learning algorithm. It leads to a trained agent Dfinal(Θ). Multiple training runs share
no information with each other.

We cannot directly measure performance since it is a statistic across an infinite sample of evaluation
runs of an agent. Instead we use windows to compute sample medians to approximate performance.

12

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://journals.sagepub.com/doi/10.1177/0956797611417632
http://journals.sagepub.com/doi/10.1177/0956797611417632
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/

Published as a conference paper at ICLR 2020

B DETRENDING BY DIFFERENCING

Typically, de-trending can be performed in two main ways (Nelson & Plosser, 1982; Hamilton, 1994).
Differencing (i.e. yt′ = yt − yt−1) is more appropriate for difference-stationary (DS) processes (e.g.
a random walk: yt = yt−1 + b+ εt), where the shocks εt accumulate over time. For trend-stationary
(TS) processes, which are characterized by stationary fluctuations around a deterministic trend, e.g.
yt = a+ b ∗ t+ εt, it is more appropriate to fit and subtract that trend.

We performed an analysis of real training runs and verified that the data are indeed approximately
DS, and that differencing does indeed remove the majority of time-dependent structure. For this
analysis we used the training runs on Atari as described in 5.2. Before differencing, the Augmented
Dickey-Fuller test (ADF test, also known as a difference-stationarity test; Said E. Said & David A.
Dickey (1984)) rejects the null hypothesis of a unit root on only 72% of the runs; after differencing,
the ADF test rejects the null hypothesis on 92% of the runs (p-value threshold 0.05). For the ADF
test, the rejection of a unit root (of the autoregressive lag polynomial) implies the alternate hypothesis,
which is that the time series is trend-stationary.

Therefore, our training curves are better characterized as an accumulation of shocks, i.e. as DS
processes, rather than as mean-reverting TS processes. They are not actually purely DS because the
shocks εt are not stationary over time, but because we compute standard deviation within sliding
windows, we can capture the non-stationarity and change in variability over time. Thus, we chose to
detrend using differencing.

As a further note in favor of detrending by differencing, it is useful to observe that many measures of
variability are defined relative to the central tendency of the data, e.g. the median absolute deviation
MAD = median(|Xi − X̃|) where X̃ is the median of X . On the raw data (without differencing),
the MAD would be defined relative to X̃ as median performance, so that any improvements in
performance are included in that computation of variability. On the other hand, if we compute MAD
on the 1st-order differences, we are using a X̃ that represents the median change in performance,
which is a more reasonable baseline to compute variability against, when we are in fact concerned
with the variability of those changes.

A final benefit of differencing is that it is parameter-free.

C ILLUSTRATIONS OF PERMUTATION TEST PROCEDURES

We illustrate the procedure for computing permutation tests to compare pairs of algorithms on a
specified metric, in Figs. 3 (for per-run metrics) and 4 (for across-run metrics).

D RAW TRAINING CURVES FOR OPENAI MUJOCO TASKS

In Figure 5, we show the raw training curves for the TF-Agents implementations of continuous-
control algorithms, applied to the OpenAI MuJoCo tasks. These are compared against baselines from
the literature, where available (DDPG and TD3: Fujimoto et al. (2018), PPO: Schulman et al. (2017),
SAC: Haarnoja et al. (2018))

E HYPERPARAMETER SETTINGS

For the continuous control experiments, hyperparameters were chosen on a per-environment ba-
sis according to the black-box optimization algorithm described in Golovin et al. (2017). The
hyperparameter search space is shown in Table 2.

For the discrete control experiments, hyperparameter selection is described in (Castro
et al., 2018). Hyperparameters are shown in Table 8, duplicated for reference from
https://github.com/google/dopamine/tree/master/baselines.

13

Published as a conference paper at ICLR 2020

0.1, 0.7, 3 2.3, 4.1, 3 3, 6, 9

-.4, .9, 1 2, 2.5, 1.2 0.6, 1, 4

0, -0.2, 4 0.9, 0, 1.6 8, -2, 0.3

4, 5, 8

1, 6, 7

3, 2, 9

6, 9, 8

5, 7, 3

2, 1, 4

5, 7, 9

3, 4, 6

8, 1, 2

Metric values

Metric rankings

Rank within
each task

tasks

al
go

rit
hm

s

tasks

al
go

rit
hm

s

Get difference in mean ranking:
algoA - algoB = 6.8 - 4.7

-1, -7, 3 2.5, 7, 3 77, 90, 4

-4, 2, 0 1.9, 0.3, 4 5, 32, 15

3, 2, 4 6, 10, 5 52, 64, 3

Raw values

Evaluate per-run
metrics for each run

e.g. 3 runs per (task, algo)

algoA

algoB

algoC

task1 task2 task3

permuted

null distribution actual
difference

1, 6, 7

5, 8, 4

3, 2, 9

7, 5, 3

6, 9, 8

2, 1, 4

3, 7, 9

5, 6, 4

8, 1, 2

Permuted rankings

tasks

al
go

rit
hm

s

Get difference in mean ranking:
algoA - algoB = 5.3 - 6.0

Repeat n_permutations times

Permute rankings across
algoA and algoB, within task

Comparing algorithms on per-run metrics

Figure 3: Diagram illustrating the computation of the permutation tests for per-run metrics (Disper-
sion across Time, Short-term Risk across Time, Long-term Risk across Time). In this example, we
are comparing Algorithm A and Algorithm B, and there are only 3 algorithms, 3 tasks, and 3 runs
per (task, algo) pair. To compute the difference in average rankings for two algorithms, follow the
gray arrows. To compute a null distribution of difference in average rankings (by permuting the runs),
follow the blue arrows a number of times (e.g. 1,000 times). Once the null distribution has been
computed, the actual value of the difference can be compared with the null distribution to obtain a
p-value.

14

Published as a conference paper at ICLR 2020

0.1 2.3 3

-0.4 2.5 0.6

-0.2 1.9 0.3

1

3

2

3

1

2

2

1

3

Metric values

Metric rankings

Rank within
each task

tasks

al
go

rit
hm

s

tasks

al
go

rit
hm

s

Get difference in mean ranking:
 algoA - algoB = 2 - 1.67
 = 0.33

-1, -7, 3 2.5, 7, 3 77, 90, 4

-4, 2, 0 1.9, 0.3, 4 5, 32, 15

3, 2, 4 6, 10, 5 52, 64, 3

Raw values

Evaluate across-run
metrics for each (task, algo)

e.g. 3 runs per (task, algo)

-7, 0, -1 2.5, 7, 3 77, 90, 4

-4, 2, 0 1.9, 0.3, 4 5, 32, 15

3, 2, 4 6, 10, 5 52, 64, 3

Permuted values

Permute runs across
algoA and algoB, within task

tasks

al
go

rit
hm

s

algoA

algoB

algoC

task1 task2 task3

null distribution

actual
difference

permuted

-0.6 3.0 1.4

1.2 2.1 0.8

-0.2 1.9 0.3

Metric values on permuted runs

tasks

al
go

rit
hm

s

1

3

2

3

1

2

2

1

3

Metric rankings on permuted runs

Rank within
each task

tasks

al
go

rit
hm

s

Get difference in mean ranking:
algoA - algoB = 2 - 1.67

Get difference in mean ranking:
algoA - algoB = 5.3 - 6.0

Evaluate across-run
metrics for each (task, algo)

null distribution actual
difference

Repeat n_permutations times

Comparing algorithms on across-run metrics

Figure 4: Diagram illustrating the computation of the permutation tests for across-run or across-
rollout metrics (Dispersion across Runs, Risk Across Runs, Dispersion across Fixed-policy rollouts,
Risk across Fixed-Policy rollouts). In this example, we are comparing Algorithm A and Algorithm B,
and there are only 3 algorithms, 3 tasks, and 3 runs per (task, algo) pair. To compute the difference
in average rankings for two algorithms, follow the gray arrows. To compute a null distribution of
difference in average rankings (by permuting the runs), follow the blue arrows a number of times (e.g.
1,000 times). Once the null distribution has been computed, the actual value of the difference can be
compared with the null distribution to obtain a p-value.

15

Published as a conference paper at ICLR 2020

Figure 5: Raw training curves for OpenAI MuJoCo tasks. The x-axes indicate environment steps,
and the y-axes indicate average per-episode return. Dotted lines indicate baseline performance from
the literature, where available.

16

Published as a conference paper at ICLR 2020

Table 2: Hyperparameter search space for continuous control algorithms.

Algorithm Hyperparameter Search min Search max
SAC actor learning rate 0.000001 0.001

α learning rate 0.000001 0.001
critic learning rate 0.000001 0.001

target update τ 0.00001 1.0
TD3 actor learning rate 0.000001 0.001

critic learning rate 0.000001 0.001
target update τ 0.00001 1.0

PPO learning rate 0.000001 0.001
DDPG actor learning rate 0.000001 0.001

critic learning rate 0.000001 0.001
target update τ 0.00001 1.0

REINFORCE learning rate 0.000001 0.001
episodes before each train step 1.0 10

Table 3: Final hyperparameters for SAC.

actor learning rate α learning rate critic learning rate target update τ
Ant-v2 0.000006 0.000009 0.0009 0.0002

HalfCheetah-v2 0.0001 0.000005 0.0004 0.02
Humanoid-v2 0.0003 0.0008 0.0006 0.8
Reacher-v2 0.00001 0.000002 0.0005 0.00002

Swimmer-v2 0.000004 0.000009 0.0002 0.009
Walker2d-v2 0.0002 0.0009 0.0008 0.01

Table 4: Final hyperparameters for TD3.

actor learning rate critic learning rate target update τ
Ant-v2 0.000001 0.0002 0.0003

HalfCheetah-v2 0.0003 0.0005 0.02
Humanoid-v2 0.0001 0.0001 0.0002
Reacher-v2 0.000001 0.00003 0.00003

Swimmer-v2 0.0004 0.0002 0.01
Walker2d-v2 0.00006 0.00009 0.001

Table 5: Final hyperparameters for PPO.

learning rate
Ant-v2 0.0008

HalfCheetah-v2 0.0008
Humanoid-v2 0.0008
Reacher-v2 0.00002

Swimmer-v2 0.0004
Walker2d-v2 0.0002

17

Published as a conference paper at ICLR 2020

Table 6: Final hyperparameters for DDPG.

actor learning rate critic learning rate target update τ
Ant-v2 0.00003 0.0004 0.0002

HalfCheetah-v2 0.00006 0.0005 0.02
Humanoid-v2 0.00006 0.00009 0.01
Reacher-v2 0.00005 0.0005 0.005

Swimmer-v2 0.0005 0.0003 0.004
Walker2d-v2 0.0003 0.0004 0.03

Table 7: Final hyperparameters for REINFORCE.

learning rate # episodes before
each train step

Ant-v2 0.00002 9
HalfCheetah-v2 0.0004 7
Humanoid-v2 0.0005 2
Reacher-v2 0.000004 6

Swimmer-v2 0.000005 3
Walker2d-v2 0.0001 6

Table 8: Hyperparameters for discrete control algorithms.

Training ε Evaluation ε ε decay schedule Min. history Target network
to start learning update frequency

0.01 0.001 1,000,000 frames 80,000 frames 32,000 frames

F PER-TASK METRIC RESULTS

Metric results are shown on a per-task basis in Figs. 6 to 8 for the OpenAI Gym MuJoCo tasks, and
Figs. 9 to 23 for the Atari environments. Note that because we are no longer aggregating across tasks
in this analysis, we do not need to convert the metric values to rankings.

18

Published as a conference paper at ICLR 2020

Dispersion across Time

(a) Dispersion across Time. Better reliability is indicated by less positive values. The x-axes indicate the
number of environment steps. Short-term Risk across Time

(b) Short-term Risk across Time. Better reliability is indicated by more positive values.Long-term Risk across Time

(c) Long-term Risk across Time. Better reliability is indicated by less positive values.

Figure 6: Across-time reliability metrics for continuous control RL algorithms tested on OpenAI
Gym environments, evaluated on a per-environment basis.

19

Published as a conference paper at ICLR 2020

Dispersion across Runs

(a) Dispersion across Runs. Better reliability is indicated by less positive values.Risk across Runs

(b) Risk across Runs. Better reliability is indicated by more positive values.Median Performance

(c) Median performance during training. Better performance is indicated by more positive values.

Figure 7: Across-run reliability metrics and median performance for continuous control RL algorithms
tested on OpenAI Gym environments, evaluated on a per-environment basis. The x-axes indicate the
number of environment steps.

20

Published as a conference paper at ICLR 2020

(a) Dispersion on Fixed-policy rollouts. Better reliability is indicated by less positive values.

(b) Risk on Fixed-policy rollouts. Better reliability is indicated by more positive values.

(c) Median performance on Fixed-policy rollouts. Better performance is indicated by more positive values.

Figure 8: Reliability metrics and median performance on fixed-policy rollouts for continuous control
RL algorithms tested on OpenAI Gym environments, evaluated on a per-environment basis.

21

Published as a conference paper at ICLR 2020

Dispersion across Time

Figure 9: Dispersion across Time for DQN-variants tested on 60 Atari games, evaluated on a per-
environment basis (page 1). Better reliability is indicated by less positive values. The x-axes indicate
millions of Atari frames.

22

Published as a conference paper at ICLR 2020

Figure 10: Dispersion across Time for DQN-variants tested on 60 Atari games, evaluated on a
per-environment basis (page 2). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

23

Published as a conference paper at ICLR 2020

Figure 11: Dispersion across Time for DQN-variants tested on 60 Atari games, evaluated on a
per-environment basis (page 3). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

24

Published as a conference paper at ICLR 2020

Figure 12: Short-term Risk across Time for DQN-variants tested on 60 Atari games, evaluated on
a per-environment basis (page 1). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

25

Published as a conference paper at ICLR 2020

Figure 13: Short-term Risk across Time for DQN-variants tested on 60 Atari games, evaluated on
a per-environment basis (page 2). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

26

Published as a conference paper at ICLR 2020

Figure 14: Short-term Risk across Time for DQN-variants tested on 60 Atari games, evaluated on
a per-environment basis (page 3). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

27

Published as a conference paper at ICLR 2020

Figure 15: Long-term Risk across Time for DQN-variants tested on 60 Atari games, evaluated on
a per-environment basis (page 1). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

28

Published as a conference paper at ICLR 2020

Figure 16: Long-term Risk across Time for DQN-variants tested on 60 Atari games, evaluated on
a per-environment basis (page 2). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

29

Published as a conference paper at ICLR 2020

Figure 17: Long-term Risk across Time for DQN-variants tested on 60 Atari games, evaluated on
a per-environment basis (page 3). Better reliability is indicated by less positive values. The x-axes
indicate millions of Atari frames.

30

Published as a conference paper at ICLR 2020

Figure 18: Dispersion across Fixed-policy Rollouts for DQN-variants tested on 60 Atari games,
evaluated on a per-environment basis (page 1). Better reliability is indicated by less positive values.
The x-axes indicate millions of Atari frames.

31

Published as a conference paper at ICLR 2020

Figure 19: Dispersion across Fixed-policy Rollouts for DQN-variants tested on 60 Atari games,
evaluated on a per-environment basis (page 2). Better reliability is indicated by less positive values.
The x-axes indicate millions of Atari frames.

32

Published as a conference paper at ICLR 2020

Figure 20: Dispersion across Fixed-policy Rollouts for DQN-variants tested on 60 Atari games,
evaluated on a per-environment basis (page 3). Better reliability is indicated by less positive values.
The x-axes indicate millions of Atari frames.

33

Published as a conference paper at ICLR 2020

Figure 21: Risk across Fixed-policy Rollouts for DQN-variants tested on 60 Atari games, evaluated
on a per-environment basis (page 1). Better reliability is indicated by more positive values. The
x-axes indicate millions of Atari frames.

34

Published as a conference paper at ICLR 2020

Figure 22: Risk across Fixed-policy Rollouts for DQN-variants tested on 60 Atari games, evaluated
on a per-environment basis (page 2). Better reliability is indicated by more positive values. The
x-axes indicate millions of Atari frames.

35

Published as a conference paper at ICLR 2020

Figure 23: Risk across Fixed-policy Rollouts for DQN-variants tested on 60 Atari games, evaluated
on a per-environment basis (page 3). Better reliability is indicated by more positive values. The
x-axes indicate millions of Atari frames.

36

	Introduction
	Reliability Metrics
	Axes of variability
	Measures of variability
	Desiderata
	Metric Definitions
	Invariance to frequency of evaluation

	Recommendations for reporting metrics and parameters
	Confidence Intervals and Statistical Significance Tests for Comparison
	Confidence intervals
	Significance Tests for Comparing algorithms
	Reporting on statistical tests

	Analysis of Reliability for Common Algorithms and Environments
	Continuous control algorithms on OpenAI Gym
	Discrete control: DQN variants on Atari
	Parameters for reliability metrics, confidence intervals, and statistical tests
	Median performance
	Results

	Conclusion
	Assumptions and Definitions
	Detrending by differencing
	Illustrations of Permutation Test Procedures
	Raw training curves for OpenAI MuJoCo tasks
	Hyperparameter settings
	Per-task metric results

