
Medical Imaging with Deep Learning 2019 MIDL 2019 – Extended Abstract Track

Dealing with Label Scarcity in Computational Pathology:
A Use Case in Prostate Cancer Classification

Koen Dercksen koen.dercksen@radboudumc.nl

Wouter Bulten wouter.bulten@radboudumc.nl

Geert Litjens geert.litjens@radboudumc.nl

Abstract

Large amounts of unlabelled data are commonplace for many applications in computational
pathology, whereas labelled data is often expensive, both in time and cost, to acquire. We
investigate the performance of unsupervised and supervised deep learning methods when
few labelled data are available. Three methods are compared: clustering autoencoder latent
vectors (unsupervised), a single layer classifier combined with a pre-trained autoencoder
(semi-supervised), and a supervised CNN. We apply these methods on hematoxylin and
eosin (H&E) stained prostatectomy images to classify tumour versus non-tumour tissue.
Results show that semi-/unsupervised methods have an advantage over supervised learning
when few labels are available. Additionally, we show that incorporating immunohistochem-
istry (IHC) stained data provides an increase in performance over only using H&E.
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1. Introduction

Prostate cancer is manually graded by pathologists on H&E stained specimens, based on
the morphological features of epithelial tissue. Since this is a labour intensive process,
an automated system to perform cancer grading would be of great value. However, to
develop such systems typically large sets of labelled data are required. To collect these
data, annotations from human experts (in this case uropathologists) would be required.
Such expertise is rare, and thus creating the required labelled datasets is challenging. This
inherently limits the potential for algorithm development. (Litjens et al., 2017).

Figure 1: The flow of data for each of the three methods. Note that the data flow for the supervised method
is identical to that of the semi-supervised method, but does not utilise unsupervised pre-training.
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We hypothesise that a semi- or unsupervised approach, leveraging unlabelled data, can learn
a good latent tissue representation which can be used to classify unseen tissue, without using
labelled data during training (Arevalo et al., 2015; Hou et al., 2019; Kallenberg et al., 2016).
While a supervised approach undoubtedly outperforms unsupervised methods given enough
data, we show the advantage of using a semi- or unsupervised approach when little labelled
data is available through a three-way comparison (Figure 1). In addition to H&E, we test
incorporating IHC stained images that highlight epithelial tissue in order to force learning
a more descriptive latent space.

2. Methodology

Data. We used the PESO dataset (Bulten et al., 2019), which consists of 102 registered
whole-slide image (WSI) pairs from patients that underwent a radical prostatectomy. Each
pair is made up of a H&E slide, and a slide that was processed using IHC with an epithelial
(CK8/18) and basal cell (P63) marker. The set was divided into 62 training and 40 test
slides. All H&E slides are publicly available.1

For training, two separate datasets were created: one completely randomly sampled set
Dr of 100.000 patches without labels. This set is used to pre-train the semi- and unsu-
pervised methods. Another labelled set Db of equal size was created in which the ratio of
stroma, benign epithelium and tumour tissue (class label determined by the center pixel)
is {0.25, 0.25, 0.50} respectively. Subsets of varying sizes were used for the experiments in
this paper. All patches have a size of 256 × 256 pixels (pixel resolution 0.96 µm) and are
sampled pair-wise from both stains.

(a) H&E (b) IHC (c) Supervised (d) Semi-
supervised

(e) Unsupervised

Figure 2: Classification maps of models trained with 1000 labelled patches applied to a benign (top row)
and tumour (bottom row) region (transparent = stroma, green = benign epithelium, red = tumour).

Semi- & unsupervised training. An autoencoder M is trained on Dr to reconstruct
either H&E or IHC patches given an H&E input patch by optimising the mean-squared
error (MSE). The encoder part of the network Me consists of strided convolution layers to

1. https://doi.org/10.5281/zenodo.1485967
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Table 1: F1 scores for all methods trained using various subsets of Db. NLP = Number of labelled patches,
SV = supervised.

H&E → H&E H&E → IHC H&E IHC

NLP Semi-SV Un-SV Semi-SV Un-SV SV SV

100 0.56 ± 0.07 0.71 ± 0.02 0.69 ± 0.04 0.71 ± 0.02 0.00 ± 0.00 0.00 ± 0.00
500 0.70 ± 0.03 0.72 ± 0.02 0.75 ± 0.01 0.74 ± 0.01 0.58 ± 0.12 0.67 ± 0.09
1000 0.73 ± 0.01 0.72 ± 0.01 0.77 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.77 ± 0.02
2000 0.74 ± 0.01 0.74 ± 0.02 0.77 ± 0.01 0.75 ± 0.00 0.73 ± 0.03 0.56 ± 0.27
10.000 0.76 ± 0.01 0.70 ± 0.01 0.78 ± 0.01 0.74 ± 0.01 0.74 ± 0.04 0.71 ± 0.29
100.000 0.75 ± 0.02 0.73 ± 0.01 0.74 ± 0.02 0.75 ± 0.01 0.88 ± 0.02 0.91 ± 0.02

compress the input into the 128-dimensional latent space. The decoder contains convolution
and upsampling layers to decompress the latent vector back to the original input size. After
training, the latent vectorsMe(Dr) are clustered using k-means with 50 clusters. Finally, the
clusters are assigned labels through majority voting by using subsets of varying sizes from
Db. Empty clusters are assigned the stroma label. For the semi-supervised experiments,
the same autoencoder M is trained, but instead of using k-means labels are now assigned
by training a single-layer classifier on subsets of Me(Db).

Supervised training. As a baseline, only Me is used and trained in a supervised fashion
on subsets of Db end-to-end, without using unsupervised pre-training on Dr. This acts as
an upper-bound to the classification performance on this dataset.
Every experiment uses data augmentation (flipping/hue/saturation/brightness/contrast)
and is repeated five times in order to report confidence intervals.

Validation. We sample 10.000 patches from the PESO test regions with the same tissue
ratio as Db to measure the final performance of each approach. Every method is trained
to predict all three classes (aiming to learn the difference between benign epithelium and
tumour), and the F1 score is reported for tumour versus non-tumour classification. At
test-time, all models except for the supervised IHC network are validated on H&E.

3. Results & Discussion

Semi- and unsupervised methods have an advantage over supervised training when few
labels are available (Table 1). The semi-supervised method reaches an F1 score of 0.75 with
as few as 500 labelled patches, compared to 0.58 for the supervised H&E classifier.
Additionally, the semi-/unsupervised performance is more robust than the supervised ap-
proach, which became unstable at small dataset sizes. At large dataset sizes the supervised
method performed substantially better than the other approaches, as expected.
Using IHC data as a reconstruction target (or input for the supervised approach) improves
the performance of every method, indicating that the extra information present in the IHC
data leads to better latent representations.
At larger labelled dataset sizes the performance of the semi- and unsupervised approaches
seems to saturate. This can be caused by the low complexity of the classification models (k-
means and single layer neural network) or by limitations in the representative power of the
latent space. In future work it might be interesting to investigate the latent representations
across the different methods to better understand this phenomenon.
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