
Under review as a conference paper at ICLR 2019

SELECTIVE CONVOLUTIONAL UNITS:
IMPROVING CNNS VIA CHANNEL SELECTIVITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Bottleneck structures with identity (e.g., residual) connection are now emerg-
ing popular paradigms for designing deep convolutional neural networks (CNN),
for processing large-scale features efficiently. In this paper, we focus on the
information-preserving nature of identity connection and utilize this to enable a
convolutional layer to have a new functionality of channel-selectivity, i.e., re-
distributing its computations to important channels. In particular, we propose
Selective Convolutional Unit (SCU), a widely-applicable architectural unit that
improves parameter efficiency of various modern CNNs with bottlenecks. During
training, SCU gradually learns the channel-selectivity on-the-fly via the alternative
usage of (a) pruning unimportant channels, and (b) rewiring the pruned parameters
to important channels. The rewired parameters emphasize the target channel in a
way that selectively enlarges the convolutional kernels corresponding to it. Our
experimental results demonstrate that the SCU-based models without any post-
processing generally achieve both model compression and accuracy improvement
compared to the baselines, consistently for all tested architectures.

1 INTRODUCTION

Nowadays, convolutional neural networks (CNNs) have become one of the most effective ap-
proaches in various fields of artificial intelligence. With a growing interest of CNNs, there has been
a lot of works on designing more advanced CNN architectures (Szegedy et al., 2015; Simonyan &
Zisserman, 2014; Ioffe & Szegedy, 2015). In particular, the simple idea of adding identity connec-
tion in ResNet (He et al., 2016a) has enabled breakthroughs in this direction, as it allows to train
substantially deeper/wider networks than before by alleviating existed optimization difficulties in
previous CNNs. Recent CNNs can scale over a thousand of layers (He et al., 2016b) or channels
(Huang et al., 2017b) without much overfitting, and most of these “giant” models consider identity
connections in various ways (Xie et al., 2017; Huang et al., 2017b; Chen et al., 2017). However,
as CNN models grow rapidly, deploying them in the real-world becomes increasingly difficult due
to computing resource constraints. This has motivated the recent literature such as network pruning
(Han et al., 2015; He et al., 2017; Liu et al., 2017; Neklyudov et al., 2017), weight quantization
(Rastegari et al., 2016; Courbariaux & Bengio, 2016; Chen et al., 2018), adaptive networks (Teer-
apittayanon et al., 2016; Figurnov et al., 2017; Bolukbasi et al., 2017; Huang et al., 2018), and
resource-efficient architectures (Huang et al., 2017a; Sandler et al., 2018; Ma et al., 2018).

For designing a resource-efficient CNN architecture, it is important to process succinct represen-
tations of large-scale channels. To this end, the identity connections are useful since they allow to
reduce the representation dimension to a large extent while “preserving” information from the previ-
ous layer. Such bottleneck architectures are now widely used in modern CNNs such as ResNet (He
et al., 2016a) and DenseNet (Huang et al., 2017b) for parameter efficiency, and many state-of-the-art
mobile-targeted architectures such as SqueezeNet (Iandola et al., 2016), ShuffleNet (Zhang et al.,
2017b; Ma et al., 2018), MoblileNet (Howard et al., 2017; Sandler et al., 2018), and CondenseNet
(Huang et al., 2017a) commonly address the importance of designing efficient bottlenecks.

Contribution. In this paper, we propose Selective Convolutional Unit (SCU), a widely-applicable
architectural unit for efficient utilization of parameters in particular as a bottleneck upon identity
connection. At a high-level, SCU performs a convolutional operation to transform a given input. The
main goal of SCU, however, is rather to re-distribute their computations only to selected channels

1

Under review as a conference paper at ICLR 2019

(a) (b)

Figure 1: (a) An illustration of channel de-allocation and re-allocation procedures. The higher the
saturation of the channel color, the higher the ECDS value. (b) The overall structure of SCU.

of importance, instead of processing the entire input naively. To this end, SCU has two special op-
erations: (a) de-allocate unnecessary input channels (dealloc), and (b) re-allocate the obstructed
channels to other channels of importance (realloc) (see Figure 1a). They are performed without
damaging the network output (i.e., function-preserving operations), and therefore one can call them
safely at any time during training. Consequently, training SCU is a process that increases the effi-
ciency of CNN by iteratively pruning or rewiring its parameters on-the-fly along with learning them.
In some sense, it is similar to how hippocampus in human brain learn, where new neurons are gen-
erated daily, and rewired into the existing network while maintaining them via neuronal apoptosis
or pruning (Sahay et al., 2011a;b).

We combine several new ideas to tackle technical challenges for such on-demand, efficient train-
able SCU. First, we propose expected channel damage score (ECDS), a novel metric of channel
importance that is used as the criterion to select channels for dealloc or realloc. Compared
to other popular magnitude-based metrics (Li et al., 2016; Liu et al., 2017; Neklyudov et al., 2017),
ECDS allows capturing not only low-magnitude channels but also channels of low-contribution un-
der the input distribution. Second, we impose channel-wise spatial shifting bias when a channel
is reallocated, providing much diversity in the input distribution. It also has an effect of enlarging
the convolutional kernel of SCU. Finally, we place a channel-wise scaling layer inside SCU with
sparsity-inducing regularization, which also promotes dealloc (and consequently realloc as
well), without further overhead in inference and training.

We evaluate the effectiveness of SCU by applying it to several modern CNN models including
ResNet (He et al., 2016a), DenseNet (Huang et al., 2017b), and ResNeXt (Xie et al., 2017), on
various classification datasets. Our experimental results consistently show that SCU improves the
efficiency of bottlenecks both in model size and classification accuracy. For example, SCU reduces
the error rates of DenseNet-40 model (without any post-processing) by using even less parameters:
6.57% → 5.95% and 29.97% → 28.64% on CIFAR-10/100 datasets, respectively. We also apply
SCU to a mobile-targeted CondenseNet (Huang et al., 2017a) model, and further improve its effi-
ciency: it even outperforms NASNet-C (Zoph et al., 2018), an architecture searched with 500 GPUs
for 4 days, while our model is constructed with minimal efforts automatically via SCU.

There have been significant interests in the literature on discovering which parameters to be pruned
during training of neural networks, e.g., see the literature of network sparsity learning (Wen et al.,
2016; Lebedev & Lempitsky, 2016; Scardapane et al., 2017; Molchanov et al., 2017; Neklyudov
et al., 2017; Louizos et al., 2017; 2018; Dai et al., 2018). On the other hand, the progress is, arguably,
slower for how to rewire the pruned parameters of a given model to maximize its utility. Han
et al. (2016) proposed Dense-Sparse-Dense (DSD), a multi-step training flow applicable for a wide
range of DNNs showing that re-training with re-initializing the pruned parameters can improve the
performance of the original network. Dynamic network surgery (Guo et al., 2016), on the other
hand, proposed a methodology of splicing the pruned connections so that mis-pruned ones can
be recovered, yielding a better compression performance. In this paper, we propose a new way
of rewiring for parameter efficiency, i.e., rewiring for channel-selectivity, and a new architectural
framework that enables both pruning and rewiring in a single pass of training without any post-
processing or re-training (as like human brain learning). Under our framework, one can easily
set a targeted trade-off between model compression and accuracy improvement depending on her
purpose, simply by adjusting the calling policy of dealloc and realloc. We believe that our
work sheds a new direction on the important problem of training neural networks efficiently.

2

Under review as a conference paper at ICLR 2019

2 SELECTIVE CONVOLUTIONAL UNITS

In this section, we describe Selective Convolutional Unit (SCU), a generic architectural unit for
bottleneck CNN architectures. The overall structure of SCU is described in Section 2.1 and 2.2. In
Section 2.3, we introduce a metric deciding channel-selectivity in SCU. We present in Section 2.4
how to handle a network including SCUs in training and inference.

2.1 OVERVIEW

Bottleneck structures in modern CNNs. We first consider a residual function defined in ResNet
(He et al., 2016a) which has an identity mapping: for a given input random variable X ∈ RI×H×W
(H and W are the height and width of each channel, respectively, and I is the number of channels
or feature maps) and a non-linear function F , the output of a residual function is written by Y =
X + F(X). This function has been commonly used as a building block for designing recent deep
CNN models, in a form that F is modeled by a shallow CNN. However, depending on how F is
designed, computing F(X) can be expensive when I is large. For tackling the issue, bottleneck
structure is a prominent approach, that is, to model F by F ′ ◦ R by placing a bottleneck R that
firstly maps X into a lower dimension of I ′ < I features. This approach, in essence, requires the
identity connection, for avoiding information loss from X to Y. Namely, the identity connection
enables a layer to save redundant computation (or parameters) for just “keeping” information from
the input. Bottleneck structures can be used other than ResNet as well, as long as the identity
connection exists. Recent architectures including DenseNet (Huang et al., 2017b), PyramidNet
(Han et al., 2017) and DPN (Chen et al., 2017) develop this idea with using a different aggregation
functionW instead of addition in ResNet, e.g.,W(X,X′) = [X,X′] (channel-wise concatenation)
for DenseNet. DesigningR-F ′-W is now a common way of handling large features.

Channel-selectivity for efficient bottlenecks. Although placing a bottleneck R reduces much
computation of the main function F ′, we point out the majority of modern CNNs currently use
inefficient design of R itself, so that even the computation of R often dominates the remaining. In
ResNet and DenseNet models, for example, bottlenecks are designed using a pointwise convolution
with a batch normalization layer (BN) (Ioffe & Szegedy, 2015) and ReLU (Nair & Hinton, 2010):

R ← Conv1×1
I→I′ ◦ ReLU ◦ BN, (1)

where Conv1×1
I→I′ denotes a pointwise convolution that maps I features into I ′ features, i.e., its

parameters can be represented by a I × I ′ matrix. This means that the parameters of R grows
linearly on I , and it can be much larger than F ′ if I � I ′. For example, in case of DenseNet-
BC-190 (Huang et al., 2017b), 70% of the total parameters are devoted for modeling R, which is
inefficient as the expressivity of a pointwise convolution is somewhat limited. In this paper, we
attempt to improve the efficiency of R in two ways: (a) reducing the parameters in Conv1×1

I→I′ by
channel pruning, and (b) improving its expressivity by using the pruned parameters again. This
motivates our goal to learn both channel-selectivity and parameters jointly.

Overall architecture of SCU. SCU is designed to learn the channel-selectivity via dynamic prun-
ing and rewiring of channels during training. In this paper, we focus on putting SCU as a bottleneck
R, and show that the channel-selectivity of SCU improves its parameter efficiency. Our intuition
is that (a) the information-preserving nature of identity connection brings optimization benefits if
neurons in its structure are dynamically pruned during training, and (b) such pruning can be particu-
larly effective on bottlenecks as their outputs are in a much lower dimension compared to the input.
Nevertheless, we believe that our ideas on SCU are not limited to the bottleneck structures, as the
concept of channel-selectivity can be generalized to other structures.

At a high level, SCU follows the bottleneck structure from (1), but for two additional layers: Channel
Distributor (CD) and Noise Controller (NC) whose details are presented in Section 2.2. We model
a non-linear function SCU : RI×H×W → RI′×H×W as follows (see Figure 1b):

R ← SCU := Conv1×1
I→I′ ◦NC ◦ ReLU ◦ BN ◦ CD. (2)

SCU has two special operations which control its input channels to process: (a) channel de-
allocation (dealloc), which obstructs unnecessary channels from being used in future compu-
tations, and (b) channel re-allocation (realloc), which allocates more parameters to important,

3

Under review as a conference paper at ICLR 2019

non-obstructed channels by copying them into the obstructed areas. We design those operations to be
function preserving, i.e. they do not change the original function of the unit, so that can be called at
anytime during training without damage. Repeating dealloc and realloc alternatively during
training translates the original input to what has only a few important channels, potentially dupli-
cated multiple times. Namely, the parameters originally allocated to handle the entire input now
operate on its important subset. On the way of designing the operations of function preserving, we
propose Expected Channel Damage Score (ECDS) that leads to an efficient, safe way to capture
unimportant channels by measuring how much the output of SCU changes on average (w.r.t. data
distribution) after removing each channel. The details of ECDS are in Section 2.3.

2.2 DESIGN OF SCU: CD AND NC

Channel Distributor (CD) is the principal mechanism of SCU and is placed at the beginning of
the unit. The role of CD is to “rebuild” the input, so that unnecessary channels can be discarded,
and important channels are copied to be emphasized. In essence, we implement this function by
re-indexing and blocking the input channel-wise: CD(X)i := gi · Xπi

with an index pointer πi ∈
{1, 2, · · · , I}, a gate variable gi ∈ {0, 1} for i = 1, 2, · · · , I . Here, we notice that CD(X) may
contain a channel copied multiple times, i.e., multiple πi’s can have the same value. Since SCU
has different parameters for each channel, setting multiple πi’s has an effect of allocating more
parameters to better process the channel pointed by πi.

Figure 2: The kernel enlarging
effect of spatial shifting.

We found that, however, it is hard to take advantage of the newly
allocated parameters by simply copying a channel due to sym-
metry, i.e., the parameters for each channel usually degenerates.
Due to this, we consider spatial shifting biases bi = (bhi , b

w
i) ∈

R2 for each channel, as illustrated in Figure 2. This trick can
provide the copied channels much diversity in input distributions
(and hence relaxing degeneracy), in a way that it is effective for
the convolutional layer in SCU: it enlarges the convolutional ker-
nel from 1× 1 for the re-allocated channels only.

To summerize, CD(X)i takes (a) the channel which πi is pointing, in the spatially shifted form
with bias bi, or (b) 0 if the gate gi is closed. Formally, CD can be represented by (π,g,b) =
(πi, gi,bi)

I
i=1. CD(X) has the same size to X, and defined as follows:

CD(X)i := gi · shift(Xπi , b
h
i , b

w
i). (3)

Here, shift(X, bh, bw) denotes the “shifting” operation along spatial dimensions of X . For each
pixel location (i, j) in X , we define shift(X, bh, bw)i,j as:

shift
(
X, bh, bw

)
i,j

:=

H∑
n=1

W∑
m=1

Xn,m ·max
(
0, 1− |i− n+ bh|

)
·max (0, 1− |j −m+ bw|) (4)

using a bilinear interpolation kernel. This formulation allows bh and bw to be continuous real values,
thereby to be learned via gradient-based methods with other parameters jointly.

Noise Controller (NC) is a component for more effective training of SCU. As SCU continuously
performs channel pruning via dealloc during training, the efficiency of SCU depends on which
regularization is used. The key role of NC is to induce the training of SCU to get more channel-wise
sparsity, so that more channels can be de-allocated safely. Formally, NC is a channel-wise re-scaling
layer: NC(X) := X � θ,1 where θ = (θi)

I
i=1 are parameters to be learned. For the channel-wise

sparsity, we impose sparsity-inducing regularization specifically on θ.

Although any sparsity-inducing regularization can be used for θ (Liu et al., 2017; Wen et al., 2016),
in this paper we adopt the Bayesian pruning approach proposed by Neklyudov et al. (2017)2 for two
reasons: (a) it is easy to incorporate into training process, and (b) we found that noise incurred from
Bayesian parameters helps to recover damage from channel pruning. In general, a Bayesian scheme
regards each parameter θ as a random variable with prior p(θ). Updating the posterior p(θ|D)
from data D often leads the model to have much sparsity, if p(θ) is set to induce sparsity, e.g., by

1� denotes the element-wise product.
2For completeness, we present for the readers an overview of Neklyudov et al. (2017) in Appendix B.

4

Under review as a conference paper at ICLR 2019

log-uniform prior (Kingma et al., 2015). Meanwhile, p(θ|D) is usually approximated with a simpler
model qφ(θ), whereφ are parameters to be learned. In case of NC, we regard each scaling parameter
as a random variable, so that they become channel-wise multiplicative noises on input. We follow
Neklyudov et al. (2017) for the design choices on qφ(θ) and p(θ), by fully-factorized log-normal
distribution qφ(θ) =

∏
i LogN(θi|µi, σ2

i) and log-uniform prior p(θ) =
∏
i LogU(θi) ∝ 1

θi
.

2.3 METRIC FOR CHANNEL-SELECTIVITY: ECDS

Consider an input random variable X = (Xi ∈ RH×W)Ii=1 of I features. From now on, we denote
a SCU by S = (W NC,W CD,W BN,W Conv), where each denotes the parameters in NC, CD, BN, and
Conv, respectively. Here, W BN = (γi, βi)

I
i=1, and W Conv = (W Conv

i ∈ RI′×1×1)Ii=1.

Expected channel damage score (ECDS) aims for measuring E[SCU(X; S) − SCU(X; S−i)] ∈
RI′×H×W , where S−i denotes a SCU identical to S but gi = 0. In other words, it is the expected
amount of changes in outputs when Si is “damaged” or “pruned”. The primary goal of this criteria
is to make dealloc to be function preserving. We define ECDS(S)i by the (Euclidean) norm of
the averaged values of E[SCU(X; S)− SCU(X; S−i)] over the spatial dimensions:

ECDS(S)i :=

∥∥∥∥ 1

HW

∑
h,w

E[SCU(X; S)− SCU(X; S−i)]:,h,w

∥∥∥∥. (5)

Notice that the above definition requires a marginalization over random variable X. One can es-
timate it via Monte Carlo sampling using training data, but this is computationally too expensive
compared to other popular magnitude-based metrics (Li et al., 2016; Liu et al., 2017; Neklyudov
et al., 2017). Instead, we utilize the BN layer inside SCU, to infer the current input distribution
of each channel at any time of training. This trick enables to approximate ECDS(S)i by a closed
formula of Si, avoiding expensive computations of SCU(X; ·), as in what follows.

Consider a hidden neuron x following BN and ReLU, i.e., y = ReLU(BN(x)), and suppose one
wants to estimate E[y] without sampling. To this end, we exploit the fact that BN already “accu-
mulates” its input statistics continuously during training. Under assuming that BN(x) ∼ N (β, γ2)
where γ and β are the scaling and shifting parameter in BN, respectively, it is elementary to check:

E[y] = E[ReLU(BN(x))] = |γ|φN
(
β

|γ|

)
+ βΦN

(
β

|γ|

)
, (6)

where φN and ΦN denote the p.d.f. and the c.d.f. of the standard normal distribution, respectively.
The assumption is quite reasonable during training BN as each mini-batch is exactly normalized
before applying the scaling and shifting inside BN. The idea is directly extended to obtain a closed
form formula of ECDS(S)i under some assumptions, as stated in the following proposition.
Proposition 1. Assume BN(CD(X;W CD);W BN)i,h,w ∼ N (βi, γ

2
i) for all i, h, w.3 Then, it holds

ECDS(S)i = gi ·
(
|γi|φN

(
βi
|γi|

)
+ βiΦN

(
βi
|γi|

))
︸ ︷︷ ︸

(a)

·E[θi]︸︷︷︸
(b)

·
∥∥W Conv

i

∥∥︸ ︷︷ ︸
(c)

, for all i.

The proof of the above proposition is given in Appendix D. In essence, there are three main terms
in the formula: (a) a term that measures how much the input channel is active, (b) how much the
NC amplifies the input, and (c) the total magnitude of weights in the convolutional layer. Therefore,
it allows a way to capture not only low-magnitude channels but also channels of low-contribution
under the input distribution (see Section 3.2 for comparisons with other metrics).

2.4 TRAINING AND INFERENCE PROCEDURES

Consider a CNN model p(Y|X,Θ) employing SCU, where Θ denotes the collection of model
parameters. For easier explanation, we rewrite Θ by (V,W): V consists of (π,g) in CDs, and W
is the remaining ones. Given dataset D = {(xn, yn)}Nn=1, (V,W) is trained via alternating two
phases: (a) training W via stochastic gradient descent (SGD), and (b) updating V via dealloc

3In Appendix E, we also provide empirical supports on why the assumption holds in modern CNNs.

5

Under review as a conference paper at ICLR 2019

or realloc. The overall training process is mainly driven by (a), and the usage of (b) is optional.
In (a), we use stochastic variational inference (Kingma & Welling, 2013) in order to incorporate
stochasticity incurred from NC, so that SCU can learn its Bayesian parameters in NC jointly with
the others via SGD. On the other hand, in (b), dealloc and realloc are called on demand during
training depending on the purpose. For example, one may decide to call dealloc only throughout
the training to obtain a highly compressed model, or one could use realloc as well to utilize more
model parameters. Once (b) is called, (a) is temporally paused and V are updated.

Training via stochastic variational inference. We can safely ignore the effect of V during train-
ing of W, since they remain fixed. Recall that, each noise θ from a NC is assumed to follow
qφ(θ) = LogN(θ|µ, σ2). Then, θ can be “re-parametrized” with a noise ε from the standard normal
distribution as follows: θ = f (φ = (µ, σ), ε) = exp (µ+ σ · ε) , where ε ∼ N (0, 12). Stochas-
tic variational inference (Kingma & Welling, 2013) allows a minibatch-based stochastic gradient
method for θ, in such case that θ can be re-parametrized with an non-parametric noise. The final
loss we minimize for a minibatch {(xik , yik)}Mk=1 becomes (see Appendix F for more details):

LSCU(W) = − 1

M

M∑
k=1

log p(yik |xik , f(φ, εik),W) +
1

N

∑
(θ,φ)

DKL(qφ(θ)‖p(θ)) (7)

where εik = (εik,u)
|φ|
u=1 is a sampled vector from the fully-factorized standard normal distribution.

Channel de-allocation and re-allocation. Consider a SCU S = (W NC,W CD,W BN,W Conv). The
main role of dealloc and realloc is to update W CD in S that are not trained directly via SGD.
They are performed as follows: select slices to operate by thresholding ECDS(S), and update S
from the selected channels. More formally, when dealloc is called, Si’s where ECDS(S)i < Tl
for a fixed threshold Tl are selected, and gi’s in W CD are set by 0. If one chooses small Tl, this
operation does not hurt the original function. On the other hand, realloc selects channels by
collecting Si where ECDS(S)i > Th, for another threshold Th. Each of the selected channels can
be re-allocated only if there is a closed channel in S. If there does not exist a enough space, channels
with higher ECDS have priority to be selected. A single re-allocation of a channel Si to a closed
channel Sj consists of several steps: (i) open Sj by gj ← 1, (ii) copy W NC

j ,W
BN
j ← W NC

i ,W
BN
i

(iii) set W Conv
j ← 0, (iv) re-initialize the shifting bias bj , and (v) set πj ← πi. This procedure is

function-preserving, due to (iii).

After training a SCU S, one can safely remove Si’s that are closed, to yield a compact unit. Then,
CDs are now operated by “selecting” channels rather than by obstructing, thereby the subsequent
layers play with smaller dimensions. Hence, at the end, SCU is trained to select only a subset of
the input for performing the bottleneck operation. For NC, on the other hand, one can still use it
for inference, but efficient inference can be performed by replacing each noise θi by constant E[θi],
following the well-known approximation used in many dropout-like techniques (Hinton et al., 2012).

3 EXPERIMENTAL RESULTS

In our experiments, we apply SCU to several well-known CNN architectures that uses bottlenecks,
and perform experiments on CIFAR-10/100 (Krizhevsky, 2009) and ImageNet (Russakovsky et al.,
2015) classification datasets. The more details on our experimental setups, e.g., datasets, training
details, and configurations of SCU, are given in Appendix G.

3.1 IMPROVED CNN MODELS WITH SCU

Improving existing CNNs with SCU. We consider models using ResNet (He et al., 2016a),
DenseNet (Huang et al., 2017b) and ResNeXt (Xie et al., 2017) architectures. In general, every
model we used in this paper forms a stack of multiple bottlenecks, where the definition of each
bottleneck differs depending on its architecture except that it can be commonly expressed by R-
F ′-W (the details are given in Table 5 in the appendix). We compare the existing models with
the corresponding new ones in which the bottlenecks are replaced by SCU. For each SCU-based
model, we consider three cases: (a) neither dealloc nor realloc is used during training, (b)
only dealloc is used, and (c) both dealloc and realloc are used. We measure the total
number of parameters in bottlenecks, and error rates.

6

Under review as a conference paper at ICLR 2019

Table 1: Comparison of performances on CIFAR-10/100 datasets in terms of their total parameter
usage in R-parts of the models, and their classification error rates. Here, “S” denotes whether SCU
is used, and “D”, “R” denote the use of dealloc and realloc, respectively. We indicate k by
the growth rate of DenseNet. All the values in the table are taken from averaging over 5 trials.

CIFAR-10 CIFAR-100

Model S D R R-Params Error (%) R-Params Error (%)

DenseNet-40 X O O 0.11M 6.57 0.11M 29.97
(bottleneck, k = 12) V X X 0.12M (+4.00%) 6.30 (-4.11%) 0.12M (+4.00%) 29.25 (-2.40%)

V V X 0.10M (-12.6%) 6.32 (-3.81%) 0.11M (-2.84%) 29.31 (-2.20%)
V V V 0.11M (-4.13%) 5.95 (-9.44%) 0.11M (-0.95%) 28.64 (-4.44%)

DenseNet-100 X O O 0.73M 4.49 0.73M 22.71
(bottleneck, k = 12) V X X 0.76M (+4.11%) 4.23 (-5.79%) 0.76M (+4.11%) 22.23 (-2.11%)

V V X 0.36M (-51.4%) 4.41 (-1.78%) 0.55M (-24.9%) 22.16 (-2.42%)
V V V 0.60M (-18.2%) 4.12 (-8.24%) 0.68M (-7.63%) 21.34 (-6.03%)

ResNet-164 (bottleneck) X O O 0.39M 4.23 0.39M 21.28
V X X 0.41M (+5.13%) 4.20 (-0.71%) 0.41M (+5.13%) 20.94 (-1.60%)
V V X 0.20M (-48.0%) 4.10 (-3.07%) 0.29M (-24.8%) 20.94 (-1.60%)
V V V 0.32M (-19.3%) 3.97 (-6.15%) 0.35M (-10.65%) 20.49 (-3.71%)

ResNeXt-29 (4× 32d) X O O 1.72M 4.05 1.72M 19.82
V X X 1.73M (+0.05%) 3.92 (-3.21%) 1.73M (+0.05%) 19.39 (-2.17%)
V V X 1.09M (-33.8%) 3.96 (-2.22%) 1.45M (-15.7%) 19.56 (-1.31%)
V V V 1.42M (-17.2%) 3.74 (-7.65%) 1.52M (-11.72%) 19.17 (-3.28%)

DenseNet-BC-190 (k = 40) X O O 17.5M 2.72 17.5M 16.20
+ mixup (Zhang et al., 2018) V X X 17.7M (+1.22%) 2.76 (+1.47%) 17.7M (+1.22%) 15.87 (-2.04%)

V V X 4.21M (-76.0%) 2.77 (+1.84%) 7.12M (-59.4%) 16.26 (+0.37%)
V V V 8.22M (-53.1%) 2.69 (-1.10%) 12.4M (-29.0%) 16.10 (-0.62%)

Table 2: Comparison of model performances on
ImageNet classification dataset. Here, we mea-
sure the single-crop validation error rates. “S”
denotes whether the model uses SCU or not,
and “D”, “R” denote the use of dealloc and
realloc, respectively.

Model S D R R-Params Error (%)

ResNet-50 X O O 3.50M 23.19
(bottleneck) V X X 3.52M 23.22

V V X 2.22M 23.19
V V V 3.04M 22.82

DenseNet-121 X O O 1.00M 23.63
(k = 32) V X X 1.01M 23.62

V V X 0.79M 23.62
V V V 0.97M 23.24

Table 3: Comparison of performance on CIFAR-
10 between different CNN models including
ours: CondenseNet-SCU-182. Models named “X-
Pruned” are the results by Liu et al. (2017).

Model Params FLOPs Error

ResNet-1001 16.1M 2,357M 4.62%
WRN-28-10 36.5M 5,248M 4.17%
ResNeXt-29 68.1M 10,704M 3.58%
DenseNet-190 25.6M 9,388M 3.46%
NASNet-C 3.1M - 3.73%
VGGNet-Pruned 2.30M 391M 6.20%
ResNet-164-Pruned 1.10M 275M 5.27%
DenseNet-40-Pruned 0.35M 381M 5.19%

CondenseNet-182 4.20M 513M 3.76%
CondenseNet-SCU-182 2.59M 286M 3.63%

Table 1 compares the existing CNN models with the corresponding ones using SCU, on CIFAR-
10/100. The results consistently demonstrate that SCU improves the original models, showing their
effectiveness in different ways. When only dealloc is used, the model tends to be trained with
minimizing their parameter to use. Using realloc, SCU now can utilize the de-allocated pa-
rameters to improve their accuracy aggressively. Note that SCU can improve the accuracy of the
original model even neither dealloc nor realloc is used. This gain is from the regulariza-
tion effect of stochastic NC, acting a dropout-like layer. We also emphasize that one can set a
targeted trade-off between compression of SCU and accuracy improvement depending on her pur-
pose, simply by adjusting the calling policy of dealloc and realloc. For example, in case of
DenseNet-100 model on CIFAR-10, one can easily trade-off between reductions in (compression,
error) = (−51.4%,−1.78%) and (−18.2%,−8.24%). In overall, SCU-based models achieve both
model compression and accuracy improvement under all tested architectures. Table 2 shows the
results on ImageNet, which are consistent to those on CIFAR-10/100. Notice that reducing parame-
ters and error simultaneously is much more non-trivial in the case of ImageNet, e.g., reducing error
23.6%→ 23.0% requires to add 51 more layers to ResNet-101 (i.e., ResNet-152), as reported in the
official repository of ResNet (He et al., 2016c).

Designing efficient CNNs with SCU. We also demonstrate that SCU can be used to design a totally
new efficient architecture. Recall that, in this paper, SCU focus on the bottlenecks inside the overall

7

Under review as a conference paper at ICLR 2019

E
rr

or
 ra

te
s

(%
)

5.6

5.8

6.0

6.2

6.4

6.6

D +R +R
+S

(a)

M1
M2

0%

3%

6%

9%

12%

ECDS
0 0.03 0.06 0.09

(b)

Error rates (%)
de-allocated

with ECDS without ECDS

6.2

6.3

6.4

6.5

6.6

0

100

200

300

400

M1 M2 M3 M4 M5

(c)
Figure 3: Ablation study on SCU. The model configurations for (b, c) are presented in Table 4. (a)
Comparison of error rates between SCU (green) and the ablation on shifting (red). (b) Histograms
on ECDS for all the channels of SCUs, using neither dealloc nor realloc. (c) Comparisons of
the number of de-allocated channels and error rates. Here, all the models are trained with dealloc.

structure. The other parts, F ′ orW , are other orthogonal design choices. To improve the efficiency
of the parts, we adopt some components from CondenseNet (Huang et al., 2017a), which is one of
the state-of-the-art architectures in terms of computational efficiency, designed for mobile devices.
Although we do not adopt their main component, i.e., learned group convolution (LGC) as it also tar-
gets for the bottleneck as like SCU, we can still utilize other components of CondenseNet: increasing
growth rate (IGR) (doubles the growth rate of DenseNet for every N blocks starting from 8) and the
use of group convolution for F ′. Namely, we construct a new model, coined CondenseNet-SCU by
adopting IGR and GC upon a DenseNet-182 model with SCU. We replace each 3×3 convolution for
F ′ by a group convolution of 4 groups. We train this model using dealloc only to maximize the
computational efficiency. In Table 3, we compare our model with state-of-the-art level CNNs, in-
cluding ResNet-1001 (He et al., 2016b), WRN-28-10 (Zagoruyko & Komodakis, 2016), NASNet-C
(Zoph et al., 2018), and the original CondenseNet-182. As one can observe, our model shows better
efficiency compared to the corresponding CondenseNet, suggesting the effectiveness of SCU over
LGC. Somewhat interestingly, ours even outperforms NASNet-C that is an architecture searched
over thousands of candidates, in both model compression and accuracy improvement. We finally
remark that CondenseNet-SCU-182 model presented in Table 3 originally has 6.29M parameters in
total before training, devoting 5.89M for bottlenecks, i.e., it is about 93.7% of the total number of
parameters. This is indeed an example in that reducing overhead from bottlenecks is important for
better efficiency, which is addressed by SCU.

3.2 ABLATION STUDY

We also perform numerous ablation studies on the proposed SCU, investigating the effect of the key
components: CD, NC, and ECDS. For evaluation, we use the DenseNet-SCU-40 model (DenseNet-
40 using SCU) trained for CIFAR-10. We also follow the training details described in Appendix G.

Spatial shifting and re-allocation. We propose spatial shifting as a trick in realloc procedure to
provide diversity in input distributions. To evaluate its effect, we compare three DenseNet-SCU-40
models with different configurations of SCU: (D) only dealloc during training, (+R) realloc
together but without spatial shifting, and (+R+S) further with the shifting. Figure 3a shows that
+R does not improve the model performance much compared to D, despite +R+S outperforms both
of them. This suggests that copying a channel naively is not enough to fully utilize the rewired
parameters, and spatial shifting is an effective way to overcome the issue.

Table 4: Configurations.
Model Metric NC

M1 ECDS V
M2 ECDS X

M3 SNR < 1 V
M4 SNR < 2.3 V
M5 `2 < 0.25 V

Sparsity-inducing effect of NC. We place NC in SCU to encourage
more sparse channels. To verify such an effect, we consider DenseNet-
SCU-40 model (say M1) and its variant removing NC from SCU
(say M2). We first train M1 and M2 calling neither dealloc nor
realloc, and compare them how the ECDS of each channel is dis-
tributed. Figure 3b shows that M1 tends to have ECDS closer to zero,
i.e., more channels will be de-allocated than M2. Next, we train these
models using dealloc, to confirm that NC indeed leads to more de-
allocation. The left panel of Figure 3c shows that the number of de-allocated channels of M1 is
relatively larger than that of M2, which is the desired effect of NC. Note that M1 also outperforms
M2 on error rates, which is an additional advantage of NC from its stochastic regularization effect.

8

Under review as a conference paper at ICLR 2019

Effectiveness of ECDS. Nevertheless, remark that M2 in Figure 3c already de-allocates many chan-
nels, which suggests that SBP (used in NC) is not crucial for efficient de-allocation. Rather, the
efficiency mainly comes from ECDS. To prove this claim, we evaluate three variants of M1 which
use different de-allocation policies than ECDS < Tl: (a) SNR < 1 (thresholding the signal-to-noise
ratio of NC in each channel by 1, proposed by the original SBP; M3), (b) SNR < 2.3 (M4) and (c)
`2 < 0.25 (thresholding ‖W Conv

i ‖2; M5). We train them using only dealloc, and compare the
performances with the proposed model (M1). The right panel of Figure 3c shows the results of the
three variants. First, we found that the M3 could not de-allocate any channel in our setting (this
is because we prune a network on-the-fly during training, while the original SBP only did it after
training). When we de-allocate competitive numbers of channels against M1 by tuning thresholds
of others (M4 and M5), the error rates are much worse than that of M1. These observations confirm
that ECDS is a more effective de-allocation policy than other magnitude-based metrics.

4 CONCLUSION

We demonstrate that CNNs of large-scale features can be trained effectively via channel-selectivity,
primarily focusing on bottleneck architectures. The proposed ideas on channel-selectivity, however,
would be applicable other than the bottlenecks, which we believe is an interesting future research
direction. We also expect that channel-selectivity has a potential to be used for other tasks as well,
e.g., interpretability (Selvaraju et al., 2017), robustness (Goodfellow et al., 2014), and memorization
(Zhang et al., 2017a).

REFERENCES

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for efficient
inference. In International Conference on Machine Learning (ICML), pp. 527–536, 2017.

Changan Chen, Frederick Tung, Naveen Vedula, and Greg Mori. Constraint-aware deep neural network com-
pression. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 400–415, 2018.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path networks. In
Advances in Neural Information Processing Systems (NIPS), pp. 4470–4478, 2017.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights and activa-
tions constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the variational infor-
mation bottleneck. In International Conference on Machine Learning (ICML), pp. 1135–1144, 2018.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for residual networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1039–1048, 2017.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial Examples. ArXiv e-prints,
December 2014.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Advances in
Neural Information Processing Systems (NIPS), pp. 1379–1387, 2016.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6307–6315. IEEE Computer Society,
2017.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network with
pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan Catanzaro, John Tran, and
William J. Dally. DSD: regularizing deep neural networks with dense-sparse-dense training flow. CoRR,
abs/1607.04381, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
IEEE Computer Society, 2016a.

9

Under review as a conference paper at ICLR 2019

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European Conference on Computer Vision (ECCV), volume 9908 of Lecture Notes in Computer Science, pp.
630–645. Springer, 2016b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual networks. https://github.
com/KaimingHe/deep-residual-networks, 2016c.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1389–1397,
2017.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision ap-
plications. CoRR, abs/1704.04861, 2017.

Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Condensenet: An efficient
densenet using learned group convolutions. CoRR, abs/1711.09224, 2017a.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2261–2269. IEEE Computer Society, 2017b.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger. Multi-
scale dense networks for resource efficient image classification. In International Conference on Learning
Representations (ICLR), 2018. URL https://openreview.net/forum?id=Hk2aImxAb.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1MB model size. CoRR,
abs/1602.07360, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), volume 37 of JMLR
Workshop and Conference Proceedings, pp. 448–456. JMLR, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. In Advances in Neural Information Processing Systems (NIPS), pp. 2575–2583, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Department of
Computer Science, University of Toronto, 2009.

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2554–2564. IEEE, 2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
CoRR, abs/1608.08710, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400, 2013.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In IEEE International Conference on Computer Vision
(ICCV), pp. 2755–2763. IEEE, 2017.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR, abs/1608.03983,
2016.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In Advances in
Neural Information Processing Systems (NIPS), pp. 3290–3300, 2017.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through L0

regularization. In International Conference on Learning Representations (ICLR), 2018. URL https:
//openreview.net/forum?id=H1Y8hhg0b.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In The European Conference on Computer Vision (ECCV), September 2018.

10

https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
https://openreview.net/forum?id=Hk2aImxAb
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b

Under review as a conference paper at ICLR 2019

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural networks.
In International Conference on Machine Learning (ICML), pp. 2498–2507, 2017.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Interna-
tional Conference on Machine Learning (ICML), pp. 807–814. Omnipress, 2010.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Structured bayesian pruning
via log-normal multiplicative noise. In Advances in Neural Information Processing Systems (NIPS), pp.
6778–6787, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet classification
using binary convolutional neural networks. In European Conference on Computer Vision (ECCV), pp. 525–
542. Springer, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Amar Sahay, Kimberly N Scobie, Alexis S Hill, Colin M O’carroll, Mazen A Kheirbek, Nesha S Burghardt,
André A Fenton, Alex Dranovsky, and René Hen. Increasing adult hippocampal neurogenesis is sufficient
to improve pattern separation. Nature, 472(7344):466, 2011a.

Amar Sahay, Donald A Wilson, and René Hen. Pattern separation: a common function for new neurons in
hippocampus and olfactory bulb. Neuron, 70(4):582–588, 2011b.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. CoRR,
abs/1801.04381, 2018.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regularization for
deep neural networks. Neurocomputing, 241:81–89, 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv
Batra, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In IEEE
International Conference on Computer Vision (ICCV), pp. 618–626, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. In Advances in Neural Information Processing Systems (NIPS), pp. 3738–3746, 2016.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In Advances
in Neural Information Processing Systems (NIPS), pp. 2377–2385, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. IEEE Computer Society, 2015.

Surat Teerapittayanon, Bradley McDanel, and HT Kung. Branchynet: Fast inference via early exiting from
deep neural networks. In International Conference on Pattern Recognition (ICPR), pp. 2464–2469. IEEE,
2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. In Advances in Neural Information Processing Systems (NIPS), pp. 2074–2082, 2016.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5987–5995. IEEE Computer Society, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British Machine
Vision Conference (BMVC). BMVA Press, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. In International Conference on Learning Representations (ICLR), 2017a.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations (ICLR), 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

11

http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Under review as a conference paper at ICLR 2019

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. CoRR, abs/1707.01083, 2017b.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for
scalable image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

12

Under review as a conference paper at ICLR 2019

A STOCHASTIC VARIATIONAL INFERENCE FOR BAYESIAN MODELS

Consider a probabilistic model p(Y|X,θ) between two random variables X and Y, and suppose one
wants to infer θ from a datasetD = {(xn, yn)}Nn=1 consisting N i.i.d. samples from the distribution
of (X,Y). In Bayesian inference, θ is regarded as a random variable, under assuming some prior
knowledge in terms of a prior distribution p(θ). The dataset D is then used to update the posterior
belief on θ, namely p(θ|D) = p(D|θ)p(θ)/p(D) from the Bayes rule. In many cases, however,
computing p(θ|D) through Bayes rule is intractable since it requires to compute intractable integrals.
To address the issue, variational inference approximates p(θ|D) by another parametric distribution
qφ(θ), and tries to minimize the KL-divergence DKL(qφ(θ)‖p(θ|D)) between qφ(θ) and p(θ|D).
Instead of directly minimizing it, one typically maximizes the variational lower bound L(φ), due
to the following:

DKL(qφ(θ)‖p(θ|D)) = −L(φ) +

N∑
n=1

log p(yn|xn), (8)

where L(φ) =

N∑
n=1

Eqφ [log p(yn|xn,θ)]−DKL(qφ(θ)‖p(θ)). (9)

In case of complex models, however, expectations in (9) are still intractable. Kingma & Welling
(2013) proposed an unbiased minibatch-based Monte Carlo estimator for them, which can be used
when qφ(θ) is representable by θ = f(φ, ε) with a non-parametric noise ε ∼ p(ε). For a minibatch
{(xik , yik)}Mk=1 of size M , one can obtain

LD(φ) :=

N∑
n=1

Eqφ [log p(yn|xn,θ)] ' N

M

M∑
k=1

log p(yik |xik , f(φ, εik)) =: LSGVB
D (φ) (10)

L(φ) ' LSGVB(φ) = LSGVB
D (φ)−DKL(qφ(θ)‖p(θ)). (11)

Now we can solve optimize L(φ) by stochastic gradient ascent methods, if f is differentiable. For
a model having non-Bayesian parameters, say W, we can still apply the above approach by maxi-
mizing

L(φ,W) =

N∑
n=1

Eqφ [log p(yn|xn,θ,W)]−DKL(qφ(θ)‖p(θ)), (12)

where φ and W can be jointly optimized under LSGVB(φ,W) ' L(φ,W).

B STRUCTURED BAYESIAN PRUNING

Structured Bayesian pruning (SBP) (Neklyudov et al., 2017) is a good example to show how stochas-
tic variational inference can be incorporated into deep neural networks. The SBP framework as-
sumes X to be an object of I features, that is, X = (Xi)

I
i=1. For example, X ∈ RI×H×W can be

a convolutional input consisting I channels, of the form X = (Xi ∈ RW×H)Ii=1 where W and H
denote the width and the height of each channel, respectively. It considers a dropout-like layer with
a noise vector θ = (θi)

I
i=1 ∼ pnoise(θ), which outputs X � θ of the same size as X.4 Here, θ is

treated as a random vector, and the posterior p(θ|D) is approximated by a fully-factorized truncated
log-normal distribution qφ(θ):

qφ(θ) =

I∏
i=1

q(θi|µi, σi) =

I∏
i=1

LogN[a,b](θi|µi, σ2
i) (13)

LogN[a,b](θi|µi, σ2
i) ∝ LogN(θi|µi, σ2

i) · 1[a,b](log θi), (14)

where 1[a,b] denotes the indicator function for the inveral [a,b].

4� denotes the element-wise product.

13

Under review as a conference paper at ICLR 2019

Meanwhile, the prior p(θ) is often chosen by a fully-factorized log-uniform distribution, e.g., Sparse
Variational Dropout (Molchanov et al., 2017), and SBP use the truncated version:

p(θ) =

I∏
i=1

p(θi) =

I∏
i=1

LogU[a,b](θi). (15)

The reason why they use truncations for qφ(θ) and p(θ) is to prevent DKL(qφ(θ)‖p(θ)) to be im-
proper. Previous works (Kingma et al., 2015; Molchanov et al., 2017) ignore this issue by implicitly
regarding them as truncated distributions on a broad interval, but SBP treats this issue explicitly.

Note that, each θi ∼ qφ(θi) = LogN(θi|µi, σ2
i) in the noise vector θ can be re-parametrized with a

non-parametric uniform noise εi ∼ U(ε|0, 1) by:

θi = f(µi, σi, εi) = exp
(
µi + σiΦ

−1 (Φ(αi) + εi(Φ(βi)− Φ(αi)))
)

(16)

where αi = a−µi

σi
, βi = b−µi

σi
, and Φ denotes the cumulative distribution function of the standard

normal distribution. Now one can optimizeφ = (µ,σ) jointly with the weights W of a given neural
network via stochastic variational inference described in Section A. Unlike Molchanov et al. (2017),
SBP regards W as a non-Bayesian parameter, and the final loss LSBP to optimize becomes

LSBP(φ,W) = −N
M

M∑
k=1

log p(yik |xik , f(φ, εik),W) + α ·DKL(qφ(θ)‖p(θ)). (17)

Here, the KL-divergence term is scaled by α to compensate the trade-off between sparsity and
accuracy. In practice, SBP starts from a pre-trained model, and re-trains it using the above loss. Due
to the sparsity-inducing behavior of log-uniform prior, θ is forced to become more noisy troughout
the re-training. Neurons with θ of signal-to-noise ratio (SNR) below 1 are selected, and removed
after the re-training:

SNR(θi) =
Eθi√
Vθi

=
(Φ(σi − αi)− Φ(σi − βi))/

√
Φ(βi)− Φ(αi)√

exp(σ2
i)(Φ(2σi − αi)− Φ(2σi − βi))− (Φ(σi − αi)− Φ(σi − βi))2

.

(18)

C BAYESIAN PRUNING AND IDENTITY CONNECTIONS

SCU requires “training-time removal” of input channels for the channel de-allocation and re-
allocation to work. But usually, this process should be done carefully since it can make the op-
timization much difficult and put the network into a bad local minima. In particular, it occurs if we
select channels to remove too aggressively. It is known that this issue becomes more pronounced in
Bayesian neural networks (Sønderby et al., 2016; Molchanov et al., 2017; Neklyudov et al., 2017;
Louizos et al., 2017), such as SBP we use in this paper. Recall the variational lower bound ob-
jective in (12), for Bayesian parameters φ and non-Bayesian W. If the gradient of the first term∑N
n=1 Eqφ [log p(yn|xn,θ,W)] on the right-hand side does not contribute much on ∇φL(φ,W),

thenφwill be optimized mostly by−∇φDKL(qφ(θ)‖p(θ)), that is, to follow the prior p(θ). Unfor-
tunately, in practice, we usually observe this phenomena at the early stage of training, when W are
randomly initialized. In that case then, qφ(θ) will become p(θ) too fast because of the “uncertain”
W, thereby many channels will be pruned forever, in SBP for example.

This problem is usually dealt with in one of two ways: (a) using a pre-trained network as a starting
point of W (Molchanov et al., 2017; Neklyudov et al., 2017), and (b) a “warm-up” strategy, where
the KL-divergence term is rescaled by β that increases linearly from 0 to 1 during training (Sønderby
et al., 2016; Louizos et al., 2017). In this paper, however, neither methods are used, but instead we
have found that the problem can be much eased with identity connections, as it can eliminate a possi-
ble cause of the optimization difficulty from removing channels: optimization difficulty from losing
information as an input passes through a deep network. The presence of identity connection implies
that the information of an input will be fully preserved even in the case when all the parameters
in a layer are pruned. This may not be true in models without identity, for example, in VGGNet
(Simonyan & Zisserman, 2014), one can see that the information of an input will be completely
lost if any of the layers removes its entire channels. This suggests us that identity connections can
be advantageous not only for scaling up the network architectures, but also for reducing the size of
them.

14

Under review as a conference paper at ICLR 2019

D PROOF OF PROPOSITION 1

One can assume that Si is open, i.e. gi = 1, otherwise ECDS(S)i = 0 by definition since S = S−i.
Say Y := BN(CD(X;W CD);W BN), and let Conv

1×1,(i)
I→I′ : R1×H×W → RI′×H×W be the i-th slice

of Conv1×1
I→I′ , which can be defined by the convolution with W Conv

i so that Conv1×1
I→I′(X;W Conv) =∑I

i=1 Conv
1×1,(i)
I→I′ (Xi,:,:;W

Conv
i). Then, we have:

SCU(X; S)− SCU(X; S−i) =: Si(X) = Conv
1×1,(i)
I→I′ ((NC ◦ ReLU ◦ BN ◦ CD)(X)i)

= Conv
1×1,(i)
I→I′ (NC(ReLU(Y))i)

= Conv
1×1,(i)
I→I′ (max(Y, 0)i � θ)

= Conv
1×1,(i)
I→I′ (max(Yi,:,:, 0) · θi) =: Conv

1×1,(i)
I→I′ (Zi).

(19)
Now, check that ECDS(Si) becomes:

ECDS(Si) =

∥∥∥∥ 1

HW

∑
h,w

E[Si(X)]:,h,w

∥∥∥∥ =

∥∥∥∥ 1

HW

∑
h,w

E[Conv
1×1,(i)
I→I′ (Zi)]:,h,w

∥∥∥∥ (20)

By the assumption that Yi,h,w ∼ N (βi, γ
2
i) for all h,w, we get:

Zi,h,w = max(Yi,h,w, 0) · θi, and (21)
E[Zi,h,w] = E[max(Yi,h,w, 0) · θi] = E[max(Yi,h,w, 0)] · E[θi]

=

(
|γi|φN

(
βi
|γi|

)
+ βiΦN

(
βi
|γi|

))
· E[θi] =: f(Si) ∀h,w (22)

where φN and ΦN denote the probability distribution function and the cumulative distribution func-
tion of the standard normal distribution.

Therefore, the desired formula for ECDS(Si) can be obtained by using the linearity of expectation:

ECDS(Si) =

∥∥∥∥ 1

HW

∑
h,w

E[Conv
1×1,(i)
I→I′ (Zi)]:,h,w

∥∥∥∥
=

∥∥∥∥ 1

HW

∑
h,w

E

 b1/2c∑
x=−b1/2c

b1/2c∑
y=−b1/2c

W Conv
i,j,x,y · Zi,h+x,w+y

I′

j=1

∥∥∥∥
=

∥∥∥∥ 1

HW

∑
h,w

(W Conv
i,j · E[Zi,h,w])I

′

j=1

∥∥∥∥
= f(Si) ·

∥∥∥∥ 1

HW

∑
h,w

(W Conv
i,j)I

′

j=1

∥∥∥∥
= f(Si) ·

∥∥W Conv
i

∥∥ = gi · f(Si) ·
∥∥W Conv

i

∥∥. (23)
This completes the proof of Proposition 1.

E EMPIRICAL SUPPORTS ON THE ASSUMPTION OF PROPOSITION 1

To validate whether the assumption BN(CD(X;W CD);W BN)i,h,w ∼ N (βi, γ
2
i) holds in modern

CNNs, we first observe that, once we ignore the effects from spatial shifting,5 a necessary condition
of the assumption is that (Xi,:,:) are identically distributed normal for a given channel Xi. This
is because BN and CD do not change the “shape” of pixel-wise distributions of Xi. From this
observation, we conduct a set of experiments focusing on a randomly chosen hidden layer in a
DenseNet-40 model. We analyze the empirical distribution of the hidden activation incoming to the
layer calculated from CIFAR-10 test dataset. Since the data consists of 10,000 samples, we get an
hidden activation Xtest ∈ R10000×C×32×32,6 where C denotes the number of channels of the input.

5However, we emphasize that one can safely ignore this effect, since it can be successfully bypassed in
practice by padding the input with boundary pixels.

6Here, we get a tensor of 32× 32 channels, since we choose a layer from the first block of the model.

15

Under review as a conference paper at ICLR 2019

−2 −1 0 1 2

(a) Non-boundary pixels

−2 −1 0 1 2

(b) Boundary pixels

0

1

2

3

4

−10 −8 −6 −4 −2 0 2

(c) Initialized randomly

0.2

0.4

0.6

0.8

1.0

1.2

−1.5 −1.0 −0.5 0

(d) Trained to converge

Figure 4: Pixel-wise input distributions of a layer in DenseNet-40 model. (a, b) Empirical distribu-
tions of three randomly chosen pixels in a fixed channel of input, which are inferred from CIFAR-10
test dataset. (c, d) Scatter plots between empirical mean and standard deviation of each pixel dis-
tributions, plotted for 3 representative channels in the input. Each plot consists 1,024 points, as a
channel have 32× 32 pixels. Pixels in boundaries are specially marked as ×.

Now, suppose that we focus on a specific channel in Xtest, say Xtest
c ∈ R10000×32×32. Notice that

if our assumption is perfectly satisfied, then all the slices Xtest
c,h,w ∈ R10000 will represent a fixed

normal distribution for any h,w. Interestingly, by analyzing empirical distributions of Xtest
c,h,w for

varying h and w, we found that: (a) for a fixed c, most of the empirical distributions from Xtest
c,h,w

have unimodal shapes, except for the pixels in boundaries of the channel (Figure 4a, 4b), and (b) for
a large portion of c ∈ {1, · · · , C}, the empirical means and variances of Xtest

c,h,w’s are concentrated
in a cluster (Figure 4c, 4d).

These observations suggest us that the assumption of Proposition 1 can be reasonable except for the
boundaries. We also emphasize that these trends we found are also appeared even when the model
is not trained at all (Figure 4c), that is, all the weights are randomly initialized, which implies that
these properties are not “learned”, but come from a structural property of CNN, e.g. equivariance
on translation, or the central limit theorem. This observation provides us another support why the
ECDS formula stated in Proposition 1 is valid at any time during training.

F TRAINING SCU VIA STOCHASTIC VARIATIONAL INFERENCE

From Θ = (V,W): V consists of (π,g) in CDs, we further rewrite W by (WNC,WC): WNC the
parameters in NCs, and WC is the remaining ones. One can safely ignore the effect of V during
training of (WNC,WC), since they remain fixed. Recall that each noise θ from a NC is assumed to
follow LogN(θ|µ, σ2). They can be re-written with a noise ε from the standard normal distribution,
i.e., θ = f ((µ, σ), ε) = exp (µ+ σ · ε), where ε ∼ N (0, 12). In such case that each noise θ
from NC can be “re-parametrized” with an non-parametric noise and the corresponding parameters
φ = (µ, σ), we can then use stochastic variational inference (Kingma & Welling, 2013) for the
optimization of (WNC,WC) with a minibatch-based stochastic gradient method (see Appendix A
for more details). Then, the final loss we minimize for a minibatch {(xik , yik)}Mk=1 becomes:

LSCU(WNC,WC) = − 1

M

M∑
k=1

log p(yik |xik , f(WNC, εik),WC) +
1

N

∑
(θ,φ)

DKL(qφ(θ)‖p(θ)) (24)

where εik = (εik,u)
|φ|
u=1 is a sampled vector from the fully-factorized standard normal distribution,

and DKL(·‖·) denotes the KL-divergence. Although not shown in (24), an extra regularization term
R(WC) can be added to the loss for the non-Bayesian parameters WC, e.g., weight decays.

In fact, in our case, i.e. qφ(θ) = LogN(θ|µ, σ2) and p(θ) = LogU(θ), DKL(qφ(θ)‖p(θ)) becomes
improper:

DKL(LogN(θ|µ, σ2)‖LogU(θ)) = C − log σ, where C →∞. (25)
As we explain in Appendix B, SBP bypasses this issue by using truncated distributions on a compact
interval [a, b] for qφ(θ) and p(θ). We found that, however, this treatment also imposes extra compu-
tational overheads on several parts of training process, such as on sampling noises and computing

16

Under review as a conference paper at ICLR 2019

DKL(qφ(θ)‖p(θ)). These overheads are non-negligible on large models like ResNet or DenseNet,
which we are mainly focusing on. Therefore, unlike SBP, here we do not take truncations on qφ(θ)
and p(θ) due to practical consideration, assuming an approximated form between the truncated dis-
tributions of qφ(θ) and p(θ) on a large interval. Then we can replace each DKL(qφ(θ)‖p(θ)) in (24)
by − log σ for optimization. In other words, each noise θ in NC is regularized to a larger variance,
i.e., the more “noisy”. We observed that this approximation does not harm much on the perfor-
mance of SCU. Nevertheless, one should be careful that qφ(θ) and p(θ) should not be assumed as
the un-truncated forms itself, but instead as approximated forms of truncated distributions on a large
interval, not to make the problem ill-posed. As used in SBP, if they are truncated, the KL-divergence
becomes:

DKL(LogN[a,b](θ|µ, σ2)‖LogU[a,b](θ)) = log
b− a√
2πeσ2

− log Φ(β)− Φ(α)− αφ(α)− βφ(β)

2(Φ(β)− Φ(α))
,

(26)
where α = a−µ

σ , β = b−µ
σ , φ(·) and Φ(·) are the p.d.f. and c.d.f. of the standard normal distribution,

respectively.

G EXPERIMENT SETUPS

Datasets. We perform our experiments extensively on CIFAR-10 and CIFAR-100 (Krizhevsky,
2009) classification datasets. CIFAR-10/100 contains 60,000 RGB images of size 32 × 32 pixels,
50,000 for training and 10,000 for test. Each image in the two datasets is corresponded to one of 10
and 100 classes, respectively, and the number of data is set evenly for each class. We use a common
scheme for data-augmentation (Srivastava et al., 2015; Lin et al., 2013; He et al., 2016a; Huang et al.,
2017b). ImageNet classification dataset, on the other hand, consists of 1.2 million training images
and 50,000 validation images, which are labeled with 1,000 classes. We follow (Huang et al., 2017a;
He et al., 2016a) for preprocessing of data in training and inference time.

Training details. All models in our experiments is trained by stochastic gradient descent (SGD)
method, with Nesterov momentum of weight 0.9 without dampening. We use a cosine shape learning
rate schedule (Loshchilov & Hutter, 2016), i.e., decreasing the learning rate gradually from 0.1
to 0 throughout the training. We set the weight decay 10−4 by for non-Bayesian parameters of
each model. We train each CIFAR model for 300 epochs with mini-batch size 64 following Huang
et al. (2017b), except for the “DenseNet-BC-190+mixup” models as they are trained for 200 epochs
following the original setting (Zhang et al., 2018). For ImageNet models, on the other hand, we train
for 120 epochs with mini-batch size 256.

Configurations of SCU. When a SCU S = (W NC,W CD,W BN,W Conv) is employed in a model, we
initialize W NC = (µ,σ) by (0, e−3), and W CD = (πi, gi,bi)

I
i=1 by (i, 1,0)Ii=1. Initializations

of W BN and W Conv may differ depending on models, and we follow the initialization scheme of
the given model. In our experiments, we follow a pre-defined calling policy when dealloc and
realloc will be called throughout training. If dealloc is used, it is called at the end of each
epoch of training. On the other hand, if realloc is used, it start to be called after 10% of the
training is done, called for every 3 epochs, and stopped in 50% of training is done. The thresholds
for dealloc and realloc, i.e. Tl and Th, is set by 0.0025 and 0.05, respectively, except for
CondenseNet-SCU-182 (Table 3), in which Tl is adjusted by 0.001 for an effective comparison
with the baseline. For all the CIFAR-10/100 models, we re-initialize bi by a random sample from
[−1.5, 1.5] × [−1.5, 1.5] pixels uniformly whenever a channel slice Si is re-open via realloc
process. We set the weight decay on each bi to 10−5 separately from the other parameters. For
the ImageNet results (Table 2), however, we did not jointly train b for faster training. Instead,
each bi is set fixed unless it is re-initialized via realloc. In this case, we sampled a point from
[−2.5, 2.5] × [−2.5, 2.5] pixels uniformly for the re-initialization. We found that this simple re-
allocation scheme can also improve the efficiency of SCU.

Models. In general, every model we used here forms a stack of multiple bottlenecks, where the def-
inition of each bottleneck differs depending on its architecture (see Table 5). Each stack is separated
into three (CIFAR-10/100) or four (ImageNet) stages by average pooling layers of kernel 2 × 2 to
perform down-sampling. Each of the stages consists N bottleneck blocks, and we report which N
is used for all the tested models in Table 6. The whole stack of each model follows a global average
pooling layer (Lin et al., 2013) and a fully connected layer, and followed by single convolutional

17

Under review as a conference paper at ICLR 2019

layer (See Table 7). There exist some minor differences between the resulting models and the origi-
nal papers (He et al., 2016a; Huang et al., 2017b; Xie et al., 2017). In ResNet and ResNeXt models,
we place an explicit 2× 2 average pooling layer for down-sampling, instead of using convolutional
layer of stride 2. Also, we use a simple zero-padding scheme for doubling the number of channels
between stages. In case of DenseNet, on the other hand, our DenseNet models are different from
DenseNet-BC proposed by Huang et al. (2017b), in a sense that we do not place a 1 × 1 convolu-
tional layer between stages (which is referred as the “compression” layer in the original DenseNet).
Nevertheless, we observed that the models we used are trained as well as the originals.

Table 5: Listing of definition for each architecture block used in our experiments. Here, BRCK×KI→I′

denotes ConvK×KI→I′ ◦ ReLU ◦ BN, GConvK×KI→I′ denotes a group convolution with 4 groups with
kernel size K × K, and LGC denotes the learned group convolution layer originally proposed by
Huang et al. (2017a).

Architecture R F ′ W

ResNet BRC1×1
I→I/4 BRC1×1

I/4→I ◦ BRC3×3
I/4→I/4 X + X′

DenseNet BRC1×1
I→4k BRC3×3

4k→k [X,X′]
ResNeXt BRC1×1

I→I/2 BRC1×1
I/2→I ◦GConv3×3

I/2→I/2 ◦ ReLU ◦ BN X + X′

CondenseNet LGC1×1
I→4k GConv3×3

4k→k ◦ ReLU ◦ BN [X,X′]

Table 6: Listing of N values used for each model, with respect to the dataset that each model is
trained. For ImageNet models, we use different values of N for each stage.

Dataset Model N

CIFAR-10/100 DenseNet-40 6
DenseNet-100 16
ResNet-164 18
ResNeXt-29 3
CondenseNet-SCU-182 30

ImageNet ResNet-50 3, 4, 6, 3
DenseNet-121 6, 12, 24, 16

Table 7: The generic model configurations used in our experiments with CIFAR-10/100 and Im-
ageNet datasets. Here, AvgPool and MaxPool denotes the average pooling and the max pooling
layer with kernel size 2×2 of stride 2, respectively. GAvgPool indicates the global average pooling
layer, and FullyConnected indicates a fully-connected layer. Unless otherwise specified, the stride
of the other operations are set to 1.

CIFAR-10/100 ImageNet

Module Channel size Module Channel size

Conv3×3 32× 32 Conv7×7
stride:2 112× 112

- - MaxPool 56× 56

Block×N 32× 32 Block×N1 56× 56
AvgPool 16× 16 AvgPool 28× 28

Block×N 16× 16 Block×N2 28× 28
AvgPool 8× 8 AvgPool 14× 14

Block×N 8× 8 Block×N3 14× 14
- - AvgPool 7× 7
- - Block×N4 7× 7

AvgPool 1× 1 AvgPool 1× 1
FullyConnected - FullyConnected -

18

	Introduction
	Selective convolutional units
	Overview
	Design of SCU: CD and NC
	Metric for Channel-Selectivity: ECDS
	Training and inference procedures

	Experimental results
	Improved CNN models with SCU
	Ablation study

	Conclusion
	Stochastic variational inference for Bayesian models
	Structured Bayesian pruning
	Bayesian pruning and identity connections
	Proof of Proposition 1
	Empirical supports on the assumption of Proposition 1
	Training SCU via stochastic variational inference
	Experiment setups

