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ABSTRACT

The goal of survival clustering is to map subjects (e.g., users in a social network,
patients in a medical study) to K clusters ranging from low-risk to high-risk. Ex-
isting survival methods assume the presence of clear end-of-life signals or intro-
duce them artificially using a pre-defined timeout. In this paper, we forego this
assumption and introduce a loss function that differentiates between the empirical
lifetime distributions of the clusters using a modified Kuiper statistic. We learn
a deep neural network by optimizing this loss, that performs a soft clustering of
users into survival groups. We apply our method to a social network dataset with
over 1M subjects, and show significant improvement in C-index compared to al-
ternatives.

1 INTRODUCTION

Free online subscription services (e.g., Facebook, Pandora) use survival models to predict the rela-
tionship between observed subscriber covariates (e.g. usage patterns, session duration, gender, loca-
tion, etc.) and how long a subscriber remains with an active account (Kapoor et al., 2014; Ciampaglia
and Taraborelli, 2015). Using the same tools, healthcare providers make extensive use of survival
models to predict the relationship between patient covariates (e.g. smoking, administering drug A
or B) and the duration of a disease (e.g., herpes, cancer, etc.). In these scenarios, rarely there is an
end-of-life signal: non-paying subscribers do not cancel their accounts, tests rarely declare a pa-
tient cancer-free. We want to assign subjects into K clusters, ranging from short-lived to long-lived
subscribers (diseases).

Despite the recent community interest in survival models (Alaa and van der Schaar, 2017; Luck
et al., 2017), existing survival analysis approaches require an unmistakable end-of-life signal (e.g.,
the subscriber deletes his or her account, the patient is declared disease-free), or a pre-defined end-
of-life “timeout” (e.g., the patient is declared disease-free after 5 years, the subscriber is declared
permanently inactive after 100 days of inactivity). Methods that require end-of-life signals also
include (Iorio et al., 2009; Bohlourihajjar and Khazaei, 2017; Bair and Tibshirani, 2004; Eleuteri et
al., 2003; 2007; Ishwaran et al., 2010; Lagani and Tsamardinos, 2010; LeBlanc and Crowley, 1993;
Witten and Tibshirani, 2010b; Bøvelstad et al., 2007; Hothorn et al., 2006; Shivaswamy, Chu, and
Jansche, 2007; Shipp et al., 2002; Gaynor and Bair, 2013; Yang et al., 2010; Kapoor et al., 2014;
Aggarwal, Gates, and Yu, 2004; Basu, Banerjee, and Mooney, 2002; Basu, Bilenko, and Mooney,
2004; Nigam et al., 1998; Witten and Tibshirani, 2010a; Law, Urtasun, and Zemel, 2017).

In this work, we propose to address the lifetime clustering problem without end-of-life signals for
the first time, to the best of our knowledge. We begin by describing two possible datasets where such
a clustering approach could be applied.

• Social Network Dataset : Users join the social network at different times and participate in
activities defined by the social network (login, send/receive comments). The covariates are the
various attributes of a user like age, gender, number of friends, etc., and the inter-event time is
the time between user’s two consecutive activities. In this case, censoring is due to a fixed point
of data collection that we denote tm, the time of measurement. Thus, time till censoring for a
particular user is the time from her last activity to tm. Lifetime of a user is defined as the time
from her joining till she permanently deletes her account.
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• Medical Dataset : Subjects join the medical study at the same time and are checked for the
presence of a particular disease. The covariates are the attributes of the disease-causing cell in
subject, inter-event time is the time between two consecutive observations of the presence of
disease. The time to censoring is the difference between the time of last observation when the
disease was present and the time of final observation. If the final observation for a subject indi-
cates presence of the disease, then time to censoring is zero. Lifetime of the disease is defined as
the time between the first observation of the disease and the time until it is permanently cured.

We use a deep neural network and a new loss function, with a corresponding backpropagation mod-
ification, for clustering subjects without end-of-life signals. We are able to overcome the technical
challenges of this problem, in part, thanks to the ability of deep neural networks to generalize while
overfitting the training data (Zhang et al., 2017). The task is challenging for the following reasons:

• The problem is fully unsupervised, as there is no pre-defined end-of-life timeout. While semi-
supervised clustering approaches exist (Aggarwal, Gates, and Yu, 2004; Basu, Banerjee, and
Mooney, 2002; Basu, Bilenko, and Mooney, 2004; Nigam et al., 1998; Witten and Tibshirani,
2010a), they assume that end-of-life signals appearing before the observation time are observed;
to the best of our knowledge, there are no fully unsupervised approach that can take complex
input variables.

• There is no hazard function that can be used to define the “cure” rate, as we cannot determine
whether the disease is cured, or whether the subscriber will never return to the website, without
observing for an infinitely long time.

• Cluster assignments may depend on highly complex interactions between the observed covari-
ates and the observed events. The unobserved lifetime distributions may not be smooth func-
tions.

Contributions. Using the ability of deep neural networks to model complex nonlinear relation-
ships in the input data, our contribution is a loss function (using the p-value from a modified Kuiper
nonparametric two-sample test (Kuiper, 1960)) and a backpropagation algorithm that can perform
model-free (nonparametric) unsupervised clustering of subjects based on their latent lifetime dis-
tributions, even in the absence of end-of-life signals. The output of our algorithm is a trained deep
neural network classifier that can (soft) assign test and training data subjects intoK categories, from
high-risk and to low-risk individuals. We apply our method to a large social network dataset and
show that our approach is more robust than competing methods and obtains better clusters (higher
C-index scores).

Why deep neural networks. As with any optimization method that returns a point estimate (a
set of neural network weights W in our case), our approach is subject to overfitting the training
data. And because our loss function uses p-values, the optimization and overfitting have a rather
negative name: p-hacking (Nuzzo, 2014). That is, the optimization is looking for a W (hypothesis)
that decreases the p-value. Deep neural networks, however, are known to both overfit the training
data and generalize well Zhang et al. (2017). That is, the hypothesis (W ) tends to also have small
p-values in the (unseen) test data, despite overfitting in the training data (p-hacking).

Outline: In section 3, we describe the traditional survival analysis concepts that assume the presence
of end-of-life signals. In section 4, we define a loss function that quantifies the divergence between
empirical lifetime distributions of two clusters without assuming end-of-life signals. We also pro-
vide a neural network approach to optimize said loss function. We describe the dataset used in our
experiments followed by results in section 5. In section 6, we describe a few methods in literature
that are related to our work. Finally, we present our conclusions in section 7.

2 FORMAL FRAMEWORK

In this section, we formally define the statistical framework underlying the clustering approach in-
troduced later in this paper. We begin by defining the datasets relevant to the survival clustering
task.
Definition 1 (Dataset). Dataset D consists of a set of n subjects with each subject u having the
following observable quantities Ψu = {Xu, {Yu,i}qui=1, Su}, where Xu are the covariates of subject
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u, {Yu,i}qui=1 are the observed inter-event times (disease outbreaks, website usage), qu is the number
of observed events of u, and Su is the time till censoring.

Note that the two example datasets described in section 1 fit into this definition. For instance, in the
social network dataset, for a particular user u, Xu is a vector of her covariates (such as age, gender,
etc.), Yu,i is the time between her ith and (i− 1)st activity (login, send/receive comments), and her
time till censoring is given by, Su = tm −

∑
i Yu,i, where tm is the time of measurement.

Next, we define the lifetime clustering problem applicable to the aforementioned datasets.

Definition 2 (Clustering problem). Consider a dataset of n subjects, D, constructed as in defini-
tion 1. Let P̂ (Uk) be the latent lifetime distribution of all subjects Uk = {u} that belong to cluster
k ∈ {1, . . . ,K}. Our goal is to find a mapping κ : Xu → {1, . . . ,K}, of covariates into clusters, in
the set of all possible such mappings K, that maximizes the divergence d between the latent lifetime
distributions of all subjects:

κ? = arg max
κ∈K

K∑
i=1

K∑
j=1

1{i 6= j}d(P̂ (Ui(κ)), P̂ (Uj(κ))), (1)

whereUk(κ) is the set of users inU mapped to cluster k through κ, and d is a distribution divergence
metric. κ∗ optimized in this fashion clusters the subjects into low-risk/high-risk groups.

However, because P̂ (Uk) are latent distributions, we cannot directly optimize Eq.(1). Rather, our
loss function must provide an indirect way to optimize Eq.(1) without end-of-life signals. In what
follows, we define the activity process of subjects in cluster k as a Random Marked Point Processes
(RMPP).

Definition 3 (Observable RMPP cluster process). Consider the k-th cluster. The RMPP is Φk =
{Xk, {(Ak,i, Yk,i)}i∈Z∗ , Sk}, where Yk,i is the inter-event time between the (i − 1)-st and the i-th
activities, Xk are the random variable representing the covariates of subjects in cluster k, Sk is the
time from last event until censoring at cluster k, and Ak,i = 0 indicates an activity with an end-of-
life signal, otherwise Ak,i = 1. All these variables may be arbitrarily dependent. This definition is
model-free, i.e., we will not prescribe a model for Φk.

Note that, at least theoretically, Φk continues to evolve beyond the end-of-life signal, but this evo-
lution will be ignored as it is irrelevant to us. The relative time of the i-th activity of a subject of
cluster k, since the subject’s first activity, is

∑
i′≤i Yk,i′ , as long as we haven’t seen an end-of-life

signal, i.e.,
∏
i′<iAk,i = 1.

Definition 4 (RMPP Lifetime). The random variable that defines the lifetime of a subject of cluster
k is

Tk := max
i

∑
i′≤i

Yk,i′
∏
i′′<i

Ak,i′′

 . (2)

We now define censored lifetimes using Φk.

Definition 5 (RMPP Censored Lifetimes). The random variable that defines the last observed action
time of a subject u of cluster k is

Hk := max
i

δk,i∑
i′≤i

Yk,i′
∏
i′<i

Ak,i

 . (3)

where δk,i = 1{
∑
i′≤i Yk,i′ ≤ Sk}.

Let i?(Sk) be a random variable that denotes the number of events until the censoring time Sk. The
main challenge is not knowing when Hk = Tk, because we are unable to observed the end-of-life
signal Ak,i?(Sk) = 0. Clearly, this affects the decision of which subjects have been censored and
which have not. Later, we introduce probability of end-of-life, p : (Xu, Su) → [0, 1], that provides
a way around this challenge.
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3 BACKGROUND

In this section, we review the major concepts in survival analysis that are used in this paper. Let
Tu denote the lifetime of a subject u. For now, our description assumes an Oracle that provides
end-of-life signals. Thus, in addition to Ψu, we assume for each subject u and, another observable
quantity, Au,i that denotes whether end-of-life has been reached at the user’s ith activity. In survival
applications,Au is typically used to specify if the required event did not occur until the end of study,
known as right-censoring. We shall forego this assumption in subsequent sections and provide a
way around the lack of these signals.

Lifetime distribution & Hazard function (Oracle). Lifetime (or survival) distribution is defined
as the probability that a subject u survives at least until time t,

Su(t) = P [Tu > t] = 1− Fu(t), 0 < t <∞, (4)
where Fu(t) is the cumulative distribution function of Tu.

In survival applications, it is typically convenient to define the hazard function, that represents the
instantaneous rate of death of a subject given that she has survived until time t. The hazard function
of a subject u is λu(t) = dFu(t)

Su(t)
, where dFu is the probability density of Fu.

Kaplan-Meier Estimates and the Cox Model of Lifetime Distribution (Oracle). Due to right-
censoring, we do not observe the true lifetimes of the subjects even in the presence of end-of-life
signals, Au. We define the observed lifetime of subject u, Hu, as the difference between the time of
first event and time of last observed event, i.e.,

Hu =

qu∑
i=1

Yu,i − Yu,1 . (5)

Kaplan and Meier (1958) provide a way to estimate the lifetime distribution for a set of subjects
while incorporating the right censoring effect. The Kaplan-Meier estimates of lifetime distribution
are given by,

S(t;D) =
∏
∀j≤t

θj =
∏
∀j≤t

rj − dj
rj

, (6)

where dj =
∑
u∈D I[Hu = j] · (1− Au,qu) denotes the number of subjects with end-of-life at time

j, and rj =
∑
u∈D I[Hu ≥ j] denotes the number of subjects at risk just prior to time j.

Cox regression model (Cox, 1992) is a widely used method in survival analysis to estimate the
hazard function λu(t) using the covariates, Xu, of a subject u. The hazard function has the form,
λ(t|Xu) = λ0(t) · e{βTXu}, where λ0(t) is a base hazard function common for all subjects, and
β are the regression coefficients. The model assumes that the ratio of hazard functions of any two
subjects is constant over time. This assumption is violated frequently in real-world datasets (Li et
al., 2015). A near-extreme case when this assumption does not hold is shown in Figure 1(c), where
the survival curves of two groups of subjects cross each other.

Survival Based Clustering Methods (Oracle). There have been relatively fewer works that per-
form survival based clustering. Bair and Tibshirani (2004) proposed a semi-supervised method for
clustering survival data in which they assign Cox scores (Cox, 1992) for each feature in their dataset
and considered only the features with scores above a predetermined threshold. Then, an unsuper-
vised clustering algorithm, like k-means, is used to group the individuals using only the selected
features.

Gaynor and Bair (2013) proposed supervised sparse clustering as a modification to the sparse clus-
tering algorithm of Witten and Tibshirani (2010a). The sparse clustering algorithm has a modified
k-means score that uses distinct weights in the feature set. Supervised sparse clustering initializes
these feature weights using Cox scores (Cox, 1992) and optimizes the same objective function.

Both these methods assume the presence of end-of-life signals. In this paper, we consider the case
when end-of-life signals are not available. We provide a loss function that quantifies the divergence
between survival distributions of the clusters, and we minimize said loss function using a neural
network in order to obtain the optimal clusters.
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Figure 1: (a) Lifetime distributions can have different shapes (thus, a nonparametric approach). Also,
distributions can cross each other thus violating the proportional hazards assumption (drawback with
Logrank test) (b) KL divergence does not account for the uncertainty in the distributions and can lead
to highly imbalanced groups (c) L̃ (= −L) is not a metric. Due to very few samples in group b, L̃a,b
and L̃b,c are very low compared to L̃a,c such that L̃a,c > L̃a,b + L̃b,c, hence violating triangle
inequality.

4 METHODOLOGY

Our goal is to cluster the subjects into K clusters ranging from low-risk to high-risk by keeping the
empirical lifetime distributions of these K groups as different as they can be, while ensuring that
the observed difference is statistically significant. In this section, we assume there are no end-of-life
signals.

4.1 LOSS FUNCTION

We introduce a loss function that is based on a divergence measure between empirical lifetime
distributions of two groups, and at the same time takes into account the uncertainty regarding the
end-of-life of the subjects. Instead of a clear end-of-life signal, we specify a probability for each
subject u that represents how likely her last observed activity coincides with her end-of-life.

Definition 6 (Probability of end-of-life). Given a dataset D (Definition 1), we define a function, by
an abuse of notation, p(Xu, Su)→ [0, 1] that gives a probability of end-of-life of each subject u.

Divergence measures like Kullback-Leibler divergence and Earth-Mover’s distance that do not in-
corporate the empirical nature of the given probability distributions are not appropriate for our task
as they do not discourage highly imbalanced groups (Figure 1b). This motivates the use of two-
sample tests that allow for the probability distributions to be empirical. Logrank test (Mantel, 1966;
Peto and Peto, 1972; Bland and Altman, 2004) is commonly used to compare groups of subjects
based on their hazard rates. However, the test assumes proportional hazards (section 3) and will not
be able to find groups whose hazard rates are not proportional to each other (Figure 1a). Fleming
et al. (1980) introduced Modified Kolmogorov-Smirnov (MKS) statistic that works for arbitrarily
right-censored data and does not assume hazards proportionality. But MKS suffers from the same
drawback as the standard Kolmogorov-Smirnov statistic, namely that it is not sensitive to the differ-
ences in the tails of the distributions. In this paper, we use p-value from the Kuiper statistic (Kuiper,
1960) which extends the Kolmogorov-Smirnov statistic to increase the statistical power of distin-
guishing distribution tails (Tygert, 2010).

Definition 7 (Optimization of Kuiper loss). Given a dataset D (Definition 1), we define a loss
L(κ, p) where, by an abuse of notation, κ(Xu) → [0, 1] is a mapping that performs soft clustering
of subjects into two clusters 0 & 1 by outputting a probability of a subject belonging in cluster 0,
and p(Xu, Su) → [0, 1] is a function that gives a probability of end-of-life of a subject in D. Our
goal is to obtain

κ̂, p̂ = arg min
κ,p

L(κ, p),
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(a) (b)
Figure 2: (a) End-of-life probability defined by non-decreasing functions of the difference between
the time of last observed activity and the time of measurement. Figure depicts two such functions.
(b) A feedforward neural network that clusters the user by optimizing the Kuiper loss.

where the loss function

L(κ, p) = log

2

∞∑
j=1

(4j2 [λ(κ, p)]
2 − 1)e−2j

2[λ(κ,p)]2

 , (7)

returns the logarithm of a p-value from the Kuiper statistic (Press et al., 1996), with

λ(κ, p) =

(√
n(κ) + 0.155 +

0.24√
n(κ)

)
·
(
D+(κ, p) +D−(κ, p)

)
,

and D+(κ, p) = supt{S0(t;κ, p) − S1(t;κ, p)}, D−(κ, p) = supt{S1(t;κ, p) − S0(t;κ, p)},
n(κ) = n0(κ)·n1(κ)

n0(κ)+n1(κ)
, and for k = 0, 1,

Sk(t;κ, p) =
∏
∀j≤t

rj(κ)− dj(κ, p)
rj(κ)

, (8)

where dj(κ, p) =
∑
u∈D I[Hu = j] · p(Xu, Su) · αu,k(κ), rj(κ) =

∑
u∈D I[Hu ≥ j] · αu,k(κ),

with Hu computed from {Yu,i}qui=1 in eq. (5), and nk(κ) =
∑
u αu,k(κ), αu,k(κ) = κ(Xu)1−k ·

(1− κ(Xu))
k
.

The following theorem states a few properties of our loss function.
Theorem 1 (Kuiper loss properties). From Definition 7, consider two clusters with true lifetime dis-
tributions P̂ (U1) and P̂ (U2). Assume an infinite number of samples/subjects. Then, the loss function
defined in equation (7) has the following properties:

(a) If the two clusters have distinct lifetime distributions, i.e. P̂ (U1) 6= P̂ (U2) then, either
∃κ̂, p̂ such that L(κ̂, p̂)→ −∞, or ∀κ, p, L(κ, p)→ 0.

(b) If the two clusters have the same stochastic process Ψu (Definition 1), Ψu = Ψv , for any
two subjects u and v, regardless of cluster assignments, then ∀κ, p, L(κ, p)→ 0.

We prove Theorem 1 in Appendix 8.1 by defining the activity process of the subjects using shifted
Random Marked Point Processes. The loss defined above solves all the aforementioned issues; a)
does not need clear end-of-life signals, b) use of a p-value forces sufficient number of examples in
both groups, c) does not assume proportionality of hazards and works even for crossing survival
curves, and d) accounts for differences at the tails.

4.2 NEURAL NETWORK APPROACH TO OPTIMIZE KUIPER LOSS

In this section, we describe the functions κ(·) and p(·) in definition 7 κ(·) gives the probability of a
subject u being in cluster 0, and we define it using a neural network as follows,

κ(Xu) := σ (bL +WL · φ(. . . φ(b2 +W2 · φ(b1 +W1 ·Xu)) . . .)) , (9)
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where {Wi, bi}Li=1 are the weights and the biases of a neural network with L− 1 hidden layers, Xu

are the covariates of subject u, φ is an activation function (tanh or relU in our experiments), and σ
is the softmax function. An example of a feedforward neural network that optimizes Kuiper loss is
shown in figure 2b.

Next, we describe the form of end-of-life probability function, p(·). We make the reasonable as-
sumption that p(·) is an increasing function of Su. For example, consider two subjects a and b, with
last activities one year and one week before their respective time of censoring. Clearly, it is more
likely that subject a’s activity is her last one than that b’s activity is her last one. In our experiments,
we also assume that p(·) only depends on Su, and not on the covariates Xu. Survival tasks com-
monly use the following naive technique to identify the end-of-life signal. They define p(·) using a
step function, p(Xu, Su) = 1[Su > W ], where W is the size of an arbitrary window from the time
of censoring (see Figure 2a). However, this approach does not allow learning of the window size
parameter W , and hence, the analysis can be highly coupled with the choice of W .

We remedy this by choosing p(·) to be a smooth non-decreasing function of Su, parameters of which
can be learnt by minimizing the loss function L(κ, p). We use the cumulative distribution function
of an exponential distribution in our experiments, i.e, p(Xu, Su) = 1− e−β·Su (Figure 2a). The rate
parameter, β, is learnt using gradient descent along with the weights of the neural network.

Extension to K Clusters Until now, we dealt with clustering the subjects into two groups. How-
ever, it is not hard to extend the framework for K clusters. We increase the number of units in the
output layer from 2 to K. As before, a softmax function applied at the output layer gives probabil-
ities that define a soft clustering of the subjects into K groups. These probabilities can be used to
obtain the loss, LA,B , between any two groups, DA and DB .

We define the total loss for K groups as the average of all the pairwise losses between individual
groups and get the geometric mean of the pairwise p-values, i.e.,

L1...K =

∑
a

∑
a 6=b La,b(
K
2

) . (10)

In other words, the loss L1...K is minimized only if each of the individual p-values are low indicating
that each group’s lifetime distribution is different (in divergence) from every other group’s lifetime
distribution.

Implementation We implement a feedforward neural network in Theano (Theano Development
Team, 2016) and use ADAM (Kingma and Ba, 2014) to optimize the loss L1...K defined in equa-
tion 10. Each iteration of the optimization takes as input a batch of subjects (full batch or a
minibatch), generates a value for the loss, calculates the gradients, and updates the parameters
(β, {Wi, bi}Li=1). This is done repeatedly until there is no improvement in the validation loss. We
use L2 regularization over the weights and experiment with different values for the regularization
parameter. We also experiment with different neural network sizes (number of hidden layers, num-
ber of hidden units), activation functions for the hidden layers, and weight initialization techniques.
We applied different deep learning techniques like batch normalization (Ioffe and Szegedy, 2015)
and dropout (Srivastava et al., 2014) to better learn the neural network.

5 RESULTS

Dataset In this paper, we analyze a large-scale social network dataset collected from Friendster.
After processing 30TB of data, originally collected by the Internet Archive in June 2011, the re-
sulting network has around 15 million users with 335 million friendship links. Each user has profile
information such as age, gender, marital status, occupation, and interests. Additionally, there are
user comments on each other’s profile pages with timestamps that indicate activity in the site.

In our experiments, we only use the data up to March 2008 as Friendster’s monthly active users have
been significantly affected with the introduction of “new Facebook wall” (Ribeiro and Faloutsos,
2015). From this, we only consider a subset of 1.1 million users who had participated in atleast
one comment, and had specified their basic profile information like age and gender. We make our
processed data available to the public at location (anonymized).
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(c)
Figure 3: Empirical lifetime distributions (calculated using end-of-life signals) of clusters obtained
from the proposed neural network approach for different values of K. The figures clearly indicate
only two clusters in the Friendster social network : short-lived and long-lived users.

We build the dataset D : {Xu, {Yu,i}qui=1, Su} (Definition 1) for our clustering task as follows.
Xu : We use each user’s profile information (like age, gender, relationship status, occupation and
location) as features. For the high-dimensional discrete attributes like location and occupation, we
use 20 most frequently occurring values. To help improve the performance of competing methods,
we also construct additional features using the user’s activity over the initial 5 months (like number
of comments sent and received, number of individuals interacted with, etc.). In total, we construct
60 features that are used for each of the models in our experiments.
Yu,i : We define Yu,i as the time between u’s ith comment (sent or received) and (i− 1)st comment
(sent or received). q(u) is then defined as the total number of comments the user participated in.
Su : We calculate Su as the time between u’s last activity and the chosen time of measurement
(March 2008).

Model Training & Evaluation We experimented with different neural network architectures as
shown in Table 2. In Table 1, we show the results for a simple neural network configuration with
one fully-connected hidden layer with 128 hidden units and tanh activation function. We use a batch
size of 8192 and a learning rate of 10−4. We also use batch normalization (Ioffe and Szegedy, 2015)
to facilitate convergence, and regularize the weights of the neural network using an L2 penalty of
0.01. Appendix 8.2 shows a more detailed evaluation of different architecture choices.

We evaluate the models using 10-fold cross validation as follows. We split the dataset D randomly
into 10 folds, sample 100,000 users without replacement from ith fold for testing and sample
100,000 users similarly from the remaining 9 folds for training. We use 20% of the training data
as validation data for early stopping in our neural network training. We repeat this for i ranging
from 1 to 10.

We compare our clustering approach with the only two survival-based clustering methods in liter-
ature; a) Semi-supervised clustering (Bair and Tibshirani, 2004) and b) Supervised sparse clus-
tering (Gaynor and Bair, 2013). Since both these methods require clear end-of-life signals, we use
an arbitrary window of 10 months (i.e., a pre-defined “timeout”) prior to the time of measurement
in order to obtain these signals (Figure 2a). We also try window sizes of 0 months (only the users
with activity at tm are censored) and 5 months, and obtain similar results (not reported here). We
test our approach in two cases – in the presence and lack of end-of-life signals. In the former case,
we optimize the loss function in equation (10) keeping p(·) fixed to the end-of-life signals obtained
from using a window of 10 months. In the latter case, our approach learns the latent end-of-life sig-
nals. We also experiment with a loss function based on the Kolmogorov-Smirnov statistic (denoted
NN-KS) and report the performance for the same. We evaluate the clusters obtained from each of
these methods using concordance index.

Concordance Index Concordance index or C-index (Harrell et al., 1982) is a commonly used
metric in survival applications (Alaa and van der Schaar, 2017; Luck et al., 2017) to quantify a
model’s ability to discriminate between subjects with different lifetimes. It calculates the fraction of
pairs of subjects for which the model predicts the correct order of survival while also incorporating
censoring. We use the end-of-life signals calculated using a pre-defined “timeout” of 10 months.
Rather than populating all possible pairs of users, we sample 10000 random pairs to calculate the
C-index. Table 1 shows the C-index values for the baselines and the proposed method.

8
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Method K = 2 K = 3 K = 4
Semi Supervised Clustering (timeout) 63.00 ± 02.33 64.68 ± 08.52 69.90 ± 05.09
Supervised Sparse Clustering (timeout) 67.71 ± 02.69 70.51 ± 04.57 68.83 ± 05.99
Proposed NN-Kuiper (timeout) 73.18 ± 00.43 73.61 ± 01.91 72.38 ± 01.23
Proposed NN-Kuiper (learnt exponential) 74.31 ± 00.33 75.45 ± 01.93 73.64 ± 00.92
Proposed NN-KS (learnt exponential) 74.76 ± 00.51 74.32 ± 01.94 72.83 ± 00.75

Table 1: C-index (%) for clusters from different methods with K = 2, 3, 4 where K is the number
of clusters. The proposed approach is more robust with lower values of standard deviations than the
competing methods.

Discussion The proposed neural network approach performs better on average than the two com-
peting methods. Even without end-of-life signals, the proposed approach achieves comparable scores
for K = 3, 4 and the best C-index score for K = 2. Although NN-Kuiper is theoretically more ro-
bust than NN-KS because of its increased statistical power in distinguishing distribution tails (Tygert,
2010), we do not observe a performance difference in the Friendster dataset. Further, we use the end-
of-life signals obtained using a window of 10 months to calculate the empirical lifetime distributions
of the clusters identified by the neural network (Figure 3). The empirical lifetime distributions of
clusters seem distinct from each other at K = 2 but not at K = 3, 4. In addition, there is not sig-
nificant gain in the C-index values as we increase the number of clusters from K = 2 to K = 4.
Hence, we can conclude that there are only two types of users in the Friendster dataset – long-lived
and short-lived.

6 RELATED WORK

Majority of the work in survival analysis has dealt with the task of predicting the survival outcome
especially when the number of features is much higher than the number of subjects (Witten and
Tibshirani, 2010b; Bøvelstad et al., 2007; Hothorn et al., 2006; Shivaswamy, Chu, and Jansche,
2007). A number of approaches have also been proposed to perform feature selection in survival
data (Ishwaran et al., 2010; Lagani and Tsamardinos, 2010). In the social network scenario, Sun et
al. (2012) tried to predict the relationship building time, that is, the time until a particular link is
formed in the network.

Many unsupervised approaches have been proposed to identify cancer subtypes in gene expression
data without considering the survival outcome (Eisen et al., 1998; Alizadeh et al., 2000; Bhattachar-
jee et al., 2001). Traditional semi-supervised clustering methods (Aggarwal, Gates, and Yu, 2004;
Basu, Banerjee, and Mooney, 2002; Basu, Bilenko, and Mooney, 2004; Nigam et al., 1998) do not
perform well in this scenario since they do not provide a way to handle the issues with right censor-
ing. Semi-supervised clustering (Bair and Tibshirani, 2004) and supervised sparse clustering Witten
and Tibshirani (2010a) use Cox scores (Cox, 1992) to identify features associated with survival.
They treat these features differently in order to perform clustering based on the survival outcome.

Although there are quite a few works on using neural networks to predict the hazard rates of indi-
viduals (Eleuteri et al., 2003; 2007), to the best of our knowledge, there hasn’t been a work on using
neural networks for a survival-based clustering task. Recently, Alaa and van der Schaar (2017) pro-
posed a nonparametric Bayesian approach for survival analysis in the case of more than one compet-
ing events (multiple diseases). They not only assume the presence of end-of-life signals but also the
type of event that caused the end-of-life. Luck et al. (2017) optimize a loss based on Cox’s partial
likelihood along with a penalty using a deep neural network to predict the probability of survival
at a point in time. Here we considered the task of clustering subjects into low-risk/high-risk groups
without observing any end-of-life signals.

Extensive research has been done on what is known as frailty analysis, for predicting survival out-
comes in the presence of clustered observations (Hougaard, 1995; Chuang et al., 2005; Huang and
Wolfe, 2002). Although frailty models provide more flexibility in the presence of clustered observa-
tions, they do not provide a mechanism for obtaining the clusters themselves, which is our primary
goal. In addition, our approach does not assume proportional hazards unlike most frailty models.

9
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7 CONCLUSION

In this work we introduced a Kuiper-based nonparametric loss function, and a corresponding back-
propagation procedure (which backpropagates the loss over clusters rather than the loss per training
example). These procedures are then used to train a feedforward neural network to inductively assign
observed subject covariates intoK survival-based clusters, from high-risk to low-risk subjects, with-
out requiring an end-of-life signal. We showed that the resultant neural network produces clusters
with better C-index values than other competing methods. We also presented the survival distribu-
tions of the clusters obtained from our procedure and concluded that there were only two groups of
users in the Friendster dataset.
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8 APPENDIX

8.1 PROOF OF THEOREM 1

We restate the theorem for convenience.

Theorem 1 (Kuiper loss properties). From Definition 7, consider two clusters with true lifetime dis-
tributions P̂ (U1) and P̂ (U2). Assume an infinite number of samples/subjects. Then, the loss function
defined in equation (7) has the following properties:

(a) If the two clusters have distinct lifetime distributions, i.e. P̂ (U1) 6= P̂ (U2) then, either
∃κ̂, p̂ such that L(κ̂, p̂)→ −∞, or ∀κ, p, L(κ, p)→ 0.

(b) If the two clusters have the same stochastic process Ψu (Definition 1), Ψu = Ψv , for any
two subjects u and v, regardless of cluster assigments, then ∀κ, p, L(κ, p)→ 0.

12
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Both parts (a) and (b) of our proof need definition 3 that translates the observed data Du for subject
u into a stochastic process.

Proof of (a): If the two clusters have distinct lifetime distributions, it means that the distributions
of T0 and T1 in eq. (2) are different. Then, either the right-censoring δ in eq. (3) does not allow us
to see the difference between T0 and T1, and then there is no mappings p̂ and κ̂ that can get the
distribution of S0(t; κ̂, p̂) and S1(t; κ̂, p̂) to be distinct, implying an L(κ, p)→ 0, as n→∞ as the
observations come from the same distribution, making the Kuiper score asymptotically equal to one;
or δ does allow us to see the difference and then, clearly p̂ ≡ 0 with a mapping κ̂ that assigns more
than half of the subjects to their correct clusters, which would allow us to see the difference in H0

and H1, would give Kuiper score asymptotically equal to zero. Thus, L(κ, p)→ −∞, as n→∞.

Proof of (b): Because κ only take the subject covariates as input, and there are no dependencies
between the subject covariates and the subject lifetime in eq. (2), any clustering based on the covari-
ates will be a random assignment of users into clusters. Moreover, from eq. (3), the censoring time
of subject u, Su, has the same distribution for both clusters because the RMPPs are the same. Thus,
H0

d
= H1, i.e., H0 and H1 have the same distributions, and the Kuiper p-value test returns zero,

L(κ, p)→ 0, as n→∞.

8.2 NEURAL NETWORK ARCHITECTURE

Table 2 shows all the different parameters and the corresponding values used in our experiments.
Concordance index scores of our approach over different values for number of hidden layers and
number of hidden units is shown in Table 3, and that over different batch sizes and learning rates is
shown in Table 4.

Parameter Values Default
nHiddenLayers [1, 2, 3] 1
nHiddenUnits [128, 256, 512] 128
Minibatch Size [256, 512, 1024, 2048, 8192] 8192
Learning Rate [10−4, 10−2, 10−1, 1] 10−4

Activation [tanh, relU] tanh
Batch Normalization [True, False] True

L2 Regularization [10−2, 10−1] 10−2

Dropout [0, 0.25, 0.5] 0

Table 2: Different neural network architectures that we experiment with in our experiments. While
varying the value of a set of parameters, we keep the other parameters fixed to the default value.

nHiddenUnits
128 256 512

nHiddenLayers
1 74.31 ± 0.33 74.85 ± 0.52 74.15 ± 0.60
2 74.91 ± 0.82 74.76 ± 1.10 74.81 ± 0.72
3 74.63 ± 1.34 74.43 ± 0.55 74.44 ± 0.81

Table 3: C-index (%) over different NN architectures for the proposed approach with Kuiper loss
(learnt exponential) and K = 2.

Batch Size
256 512 1024 2048 8192

Learning Rate

10−4 72.93 ± 6.07 71.48 ± 7.52 70.93 ± 7.86 73.19 ± 5.32 74.31 ± 0.33
10−2 57.23 ± 1.36 56.29 ± 2.06 57.60 ± 1.96 61.78 ± 6.95 72.99 ± 4.88
10−1 59.41 ± 4.48 61.20 ± 4.47 63.80 ± 3.66 64.47 ± 4.02 68.73 ± 3.65

1 61.37 ± 3.82 63.20 ± 3.34 61.86 ± 4.31 64.68 ± 3.27 67.10 ± 4.28

Table 4: C-index (%) over different learning rates and batch sizes for the proposed NN approach
with Kuiper loss (with learnt exponential) and K = 2.

13


	Introduction
	Formal Framework
	Background
	Methodology
	Loss Function
	Neural Network Approach to Optimize Kuiper Loss

	Results
	Related Work
	Conclusion
	Appendix
	Proof of Theorem 1
	Neural Network Architecture


