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ABSTRACT

Training large neural networks requires distributing learning over multiple work-
ers. The rate limiting step is often in sending gradients from workers to parameter
server and back again. We present SIGNSGD with majority vote: the first gradient
compression scheme to achieve 1-bit compression of worker-server communica-
tion in both directions with non-vacuous theoretical guarantees. To achieve this,
we build an extensive theory of sign-based optimisation, which is also relevant to
understanding adaptive gradient methods like ADAM and RMSPROP. We prove
that SIGNSGD can get the best of both worlds: compressed gradients and SGD-
level convergence rate. SIGNSGD can exploit mismatches between `1 and `2 ge-
ometry: when noise and curvature are much sparser than the gradients, SIGNSGD
is expected to converge at the same rate or faster than full-precision SGD. Mea-
surements of the `1 versus `2 geometry of real networks support our theoretical
claims, and we find that the momentum counterpart of SIGNSGD is able to match
the accuracy and convergence speed of ADAM on deep Imagenet models.

1 INTRODUCTION

Training deep networks can be accelerated by distributing learning over multiple GPUs. Li et al.
(2014) describe a popular framework where gradients from each GPU are sent up to a parameter
server, aggregated and sent back down to the GPUs. The communication cost can be greatly reduced
by compressing gradients. Here we propose and analyse a scheme for gradient compression where
gradients are compressed in both directions of transport between parameter server and GPUs.

In our scheme, workers (i.e. GPUs) vote on the sign of the true gradient. The parameter server counts
the votes and sends the majority decision back to each worker. Therefore conceptually the parameter
server holds a referendum at every iteration to estimate the true sign of the gradient. Remarkably,
under natural assumptions that are validated by experiment, we prove that majority vote as described
converges at the same theoretical rate as full-precision distributed SGD.

The first step in our theoretical journey is to rigorously characterise the properties of sign-based
methods for non-convex optimisation. We describe the geometry of a class of objective functions
where SIGNSGD is expected to converge at equal or better rate than SGD. We expect these insights
to be relevant to other adaptive gradient methods like RPROP, RMSPROP and ADAM.

We also extend our theoretical framework to the SIGNUM optimiser—which takes the sign of the
momentum. Our theory suggests that momentum may be useful for controlling a tradeoff between
bias and variance in the estimate of the stochastic gradient. On the practical side, we show that
SIGNUM easily scales to large Imagenet models, and provided the learning rate and weight decay
are tuned, all other hyperparameter settings—such as momentum, weight initisialiser, learning rate
schedules and data augmentation—may be lifted from an SGD implementation.

∗Work carried out at Amazon AI, Palo Alto.
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2 THEORY

We make assumptions that are fine-grained
enough to encode heterogeneous curvature and
sparsity, which SIGNSGD naturally exploits.
Our assumptions imply the standard SGD as-
sumptions with gradient Lipschitz constant L :=

‖~L‖∞ and total variance bound σ2 = ‖~σ‖22.
Assumption 1 (Lower bound). For all x and
some constant f∗, we have objective value

f(x) ≥ f∗.

Assumption 2 (Smooth). Let g(x) denote the
gradient of the objective f(.) evaluated at point
x. And let δ be an upper bound on our learn-
ing rate. Then ∀x, y satisfying ‖x− y‖∞ ≤ δ
we require that for some non-negative constant
~L := [L1, ..., Ld]∣∣∣f(y)− [f(x) + g(x)T (y − x)

]∣∣∣
≤ 1

2

∑
i

Li(yi − xi)2.

Assumption 3 (Variance bound). Upon receiv-
ing query x ∈ Rd, the stochastic gradient oracle
gives us an independent unbiased estimate g̃ that
has coordinate bounded variance:

E[g̃(x)] = g(x), E
[
(g̃(x)i − g(x)i)2

]
≤ σ2

i

for a vector of non-negative constants ~σ :=
[σ1, .., σd].

Algorithm 1: SIGNSGD
Input: learning rate δ, current point xk
g̃k ← stochasticGradient(xk)
xk+1 ← xk − δ sign(g̃k)

Algorithm 2: SIGNSGD with majority vote
Input: learning rate δ, current point xk, #
workers M each with an independent
gradient estimate g̃m(xk)
on server

pull sign(g̃m) from each worker
push sign

[∑M
m=1 sign(g̃m)

]
to each

worker
on each worker

xk+1 ← xk − δ sign
[∑M

m=1 sign(g̃m)
]

Theorem 1 (Non-convex convergence rate
of SIGNSGD). Run algorithm 1 for K it-
erations under Assumptions 1 to 3. Set
the learning rate and mini-batch size (in-
dependently of step k) as

δk =
1√
‖~L‖1K

nk = K

Let N be the cumulative number of
stochastic gradient calls up to step K, i.e.
N = O(K2). Then we have

E
[

min
0≤k≤K−1

‖gk‖1

]2
≤ 1√

N

[√
‖~L‖1

(
f0 − f∗ +

1

2

)
+ 2‖~σ‖1

]2

Theorem 2 (Non-convex convergence rate
of distributed SIGNSGD with majority
vote). Run algorithm 2 for K iterations
under Assumptions 1 to 3. Set the learning
rate and mini-batch size for each worker
(independently of step k) as

δk =
1√
‖~L‖1K

nk = K

Then (a) majority vote with M workers
converges at least as fast as SIGNSGD in
Theorem 1.

And (b) further assuming that the noise in
each component of the stochastic gradient
is unimodal and symmetric about the mean
(e.g. Gaussian), majority vote converges at
unilaterally improved rate:

E
[

min
0≤k≤K−1

‖gk‖1

]2
≤ 1√

N

[√
‖~L‖1

(
f0 − f∗ +

1

2

)
+

2√
M
‖~σ‖1

]2
where N is the cumulative number of
stochastic gradient calls per worker up to
step K.

For proofs as well as a detailed discussion of all theoretical results, please see the full paper here:
https://jeremybernste.in/projects/amazon/signum.pdf. The paper also con-
tains a proof of the convergence rate for SIGNUM, which takes the sign of the momentum. The
theorem suggests that momentum may be used to control a bias-variance tradeoff in stochastic gra-
dient estimates.
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3 EXPERIMENTS
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Figure 1: Top left: gradient and noise density during training of Resnet-20 on CIFAR-10, evaluated
using Welford’s algorithm (Welford, 1962; Knuth, 1997). φ(.) = 0 is fully sparse and φ(.) = 1
is fully dense. Since gradient and noise density are of the same order, our theory suggests that
SIGNSGD should be competitive with SGD. Bottom left: indeed SIGNUM—the momentum version
of SIGNSGD—is a competitive Imagenet optimiser. Right: stochastic gradient distributions at epoch
50 of training, for three non-cherry-picked weights. CIFAR-10 corresponds to training Resnet-
20 with batch size 128. Imagenet corresponds to training Resnet-50 with batch-size 256. The
stochasticity is approximately unimodal and symmetric in both cases.

4 DISCUSSION

In the theory section we derive the non-convex convergence rate of SIGNSGD and SIGNSGD with
majority vote. There are two crucial aspects of the theory. First, the convergence rates naturally
depend on the `1-norm of gradients, curvature and stochasticity. Contrast this to SGD results where
the naturally induced geometry is `2. `1 and `2 norms can differ by as much as a factor of dimension,
depending on the sparsity/density of typical vectors. This suggests that when the typical density of
all relevant vectors is of the same order, then SIGNSGD should be naturally competitive with SGD,
whilst also enjoying the benefits of gradient quantisation. Figure 1 suggests that gradient and noise
densities are indeed of the same order for deep networks.

More heuristic gradient compression schemes like TERNGRAD (Wen et al., 2017) quantise gradients
into three levels {0,±1}. This can sometimes be desirable, and in practical settings we may wish to
integrate ternary quantisation with our framework of majority vote. Our scheme should easily enable
ternary quantisation—in both directions. This can be cast as “majority vote with abstention”. The
scheme is as follows: workers send their vote to the parameter server, unless they are very unsure
about the sign of the true gradient in which case they send zero. The parameter-server counts the
votes, and if quorum is not reached (i.e. too many workers disagreed or abstained) the parameter-
server sends back zero. This extended algorithm should readily fit into our theory.

SIGNSGD and SIGNUM, like ADAM, are members of the family of adaptive gradient methods. In
all our experiments we find that SIGNUM and ADAM get extremely similar performance, although
both lose out to SGD by about 2% test accuracy on Imagenet. Wilson et al. (2017) also observed
that ADAM tends to generalise slightly worse than SGD. It is still unclear whether this is due to
the experimental baselines being biased towards models where SGD had previously been found
to work well, or whether there is a deficiency in adaptive gradient methods like ADAM. Perhaps
SIGNUM and ADAM could be generalising slightly worse because we don’t know how to properly
regularise such methods. One idea, suggested by our theory, is that SIGNSGD could be squashing
down noise levels. There is some empirical evidence, for example by (Smith & Le, 2018), that a
certain level of noise can be good for generalisation, biasing the optimiser towards wider valleys in
the objective function. Perhaps, then, adding Gaussian noise to the SIGNUM update might help it
generalise better. This can be achieved in a communication efficient manner in the distributed setting
by sharing a random seed with each worker, and then generating the same noise on each worker. We
leave this idea for future work.

3



Workshop track—ICLR 2018

REFERENCES

Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd: Training resnet-
50 on imagenet in 15 minutes, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems 30. 2017.

Zeyuan Allen-Zhu. Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex
Parameter. ICML, 2017a.

Zeyuan Allen-Zhu. Natasha 2: Faster Non-Convex Optimization Than SGD. arXiv:1708.08694 [cs,
math, stat], August 2017b. arXiv: 1708.08694.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients, 2018. URL https://openreview.net/forum?id=S1EwLkW0W.

Francesco Paolo Cantelli. Sui confini della probabilit. Atti del Congresso Internazionale dei Matem-
atici, 1928.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and Attacking the Saddle Point Problem in High-dimensional Non-convex
Optimization. In NIPS, 2014.

Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabas Poczos, and Aarti Singh. Gradient
Descent Can Take Exponential Time to Escape Saddle Points. arXiv:1705.10412, May 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 2011.

Carl Friedrich Gauss. Theoria combinationis observationum erroribus minimis obnoxiae, pars prior.
Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 1823.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural network
optimization problems. ICLR, 2015. arXiv: 1412.6544.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. DRAW: A Recur-
rent Neural Network For Image Generation. ICML, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision –
ECCV 2016, pp. 630–645, Cham, 2016b. Springer International Publishing. ISBN 978-3-319-
46493-0.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to Escape
Saddle Points Efficiently. ICML, 2017a. arXiv: 1703.00887.

Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent, 2017b.

4

https://openreview.net/forum?id=S1EwLkW0W
http://distill.pub/2017/momentum


Workshop track—ICLR 2018

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. ICLR, 2015.
arXiv: 1412.6980.

Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997. ISBN 0-201-
89684-2.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, 2012.

Yann LeCun, Yoshua Bengio, and Hinton Geoffrey. Deep learning. Nature, 2015.

Kfir Y. Levy. The Power of Normalization: Faster Evasion of Saddle Points. CoRR, abs/1611.04831,
2016.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the
parameter server. OSDI. USENIX Association, 2014.

Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. Difacto: Distributed factorization ma-
chines. In WSDM, 2016.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam, 2017.

David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University
Press, New York, NY, USA, 2002. ISBN 0521642981.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yurii Nesterov and B.T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, (1):177–205, August 2006.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In-
ternational Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ryQu7f-RZ.
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