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Figure 1: Results and Pipeline. We show our method for 3D style customization, as well as geom-
etry and texture editing. Our pipeline involves editing images and generating the 3D object using
Dual-sided LRM, with each step completed in just 5s, allowing for rapid 3D object customization.

ABSTRACT

Recent advances in 3D AIGC have shown promise in directly creating 3D objects
from text and images, offering significant cost savings in animation and product
design. However, detailed edit and customization of 3D assets remains a long-
standing challenge. Specifically, 3D Generation methods lack the ability to follow
finely detailed instructions as precisely as their 2D image creation counterparts.
Imagine you can get a toy through 3D AIGC but with undesired accessories and
dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D,
which swiftly creates customized 3D assets from editable dual-side images. We
aim to emulate a tailor’s ability to locally change objects or perform overall style
transfer. Unlike creating 3D assets from multiple views, using dual-side images
eliminates conflicts on overlapping areas that occur when editing individual views.
Specifically, it begins by editing the front view, then generates the back view of
the object through multi-view diffusion. Afterward, it proceeds to edit the back
views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the
front and back 3D features, akin to a tailor sewing together the front and back
of a garment. The Dual-sided LRM rectifies imperfect consistencies between the
front and back views, enhancing editing capabilities and reducing memory bur-
dens while seamlessly integrating them into a unified 3D representation with the
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LoRA Triplane Transformer. Experimental results demonstrate Tailor3D’s effec-
tiveness across various 3D generation and editing tasks, including 3D generative
fill and style transfer. It provides a user-friendly, efficient solution for editing 3D
assets, with each editing step taking only seconds to complete.

1 INTRODUCTION

In recent years, technologies like Stable Diffusion Rombach et al. (2022) and ControlNet Zhang
et al. (2023) have revolutionized 2D AI-generated content (AIGC), making tasks like text-to-image
synthesis, image editing, and style transfer more accessible and efficient. Concurrently, the potential
of 3D AIGC has been recognized, allowing for the direct generation of 3D objects by integrating
text and images, significantly reducing costs. Early optimization-based methods Xu et al. (2023);
Poole et al. (2023); Wang et al. (2023b), where each object needs to be individually optimized, used
multi-view stable diffusion Liu et al. (2024b;c); Sun et al. (2024) which means generating images
of an object from multiple perspectives by inputting an image from one perspective—to produce
fine-grained objects but were slow, taking minutes to hours. However, feed-forward methods lever-
aging large-scale 3D asset datasets Deitke et al. (2023) and Transformer models now enable the
creation of high-quality 3D objects in seconds. Despite progress in generation, advancements in 3D
customization and editing, such as adding patterns or changing styles of 3D objects, are still scarce.

In Feed-Forward Methods, although LRM Hong et al. (2024) can generate high-quality 3D objects
from a single view, it often lacks comprehensive details from other perspectives. In contrast, tech-
niques like Instant3D Li et al. (2024) and LGM Tang et al. (2024a) use multi-view diffusion Shi
et al. (2023b); Wang & Shi (2023) to generate images from four perspectives (front, back, left, and
right) before reconstruction. While increasing the number of perspectives can capture more visual
information, it also brings some challenges: managing multiple views simultaneously increases the
complexity of editing tasks. For instance, if we want to change the color of a specific part of the
object, it is difficult to precisely correspond the changes across all four images. To balance the rich-
ness of visual information and the ease of editing, we recommend prioritizing the front and back
views. These views typically contain comprehensive information about the object and have minimal
overlap, allowing them to be edited independently, thus simplifying operations.

We propose an efficient and user-friendly 3D rapid editing framework, Tailor3D, which introduces
a novel 3D editing way by leveraging advanced 2D image editing techniques. This framework del-
egates the generation and editing tasks to 2D image editing technologies and generates 3D objects
through rapid 3D reconstruction, allowing users to iteratively refine the desired 3D objects through
a combination of 2D editing and 3D reconstruction steps. The process is shown in Figure 1: As-
sume the users have a front-view image of a dog. First, they edit the front view using image editing
methods to generate space glasses and a dashboard seamlessly into the scene. Next, employing
multi-view diffusion technology, they can generate a back view. Then they edit the back-view image
with the image editing methods again to add the backpack. Finally, the edited front and back images
are input into a Dual-sided LRM model to generate a 3D model of the space dog. The entire process
allows for step-by-step editing and completes each step within seconds, providing great convenience
for rapidly editing the required 3D objects. This step-by-step method provides more precise con-
trol than end-to-end editing, enabling specific adjustments to image textures before reconstruction.
Additionally, separately editing front and back views allows for more detailed customization.

Our proposed Dual-sided LRM, used in the final step of Tailor3D, generates 3D objects by receiv-
ing front and back images. As shown in the lower part of Figure 1, Having information from both
sides allows for a more comprehensive understanding of the object, but it may lead to View incon-
sistency, referring to differences in geometry, color, and brightness in images taken from various
angles and conditions, which can affect the quality of reconstruction. We extends LRM’s capabil-
ity from single-view to dual-view input, effectively handling inconsistencies between views. We
introduce the LoRA Triplane Transformer Hu et al. (2022), which fine-tunes the LRM model with
minimal memory consumption on a small dataset of 20K images to generate triplane features for
both front and back views. This approach efficiently produces accurate triplane features, providing
a solid foundation for subsequent feature fusion. Instead of merely stitching 2D image features, we
combine the 3D triplane features of both views within 3D space. By applying Viewpoint Cross-
Attention on the triplane, we merge these features swiftly, enhancing the quality of the final 3D
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object. Additionally, we use data augmentation during training to further improve the model’s ro-
bustness. Experimental results demonstrate that it excels in various 3D editing tasks, including
geometric fill, texture synthesis, and style transfer.

Our contributions can be summarized as follows:

1. We propose Tailor3D, a rapid 3D editing pipeline. By combining 2D image editing and
rapid 3D reconstruction techniques, it significantly enhances the efficiency of 3D editing.

2. Our Dual-sided LRM, combined with the LoRA Triplane Transformer, efficiently handles
inconsistencies between front and back views, improving the overall reconstruction quality.

3. Tailor3D excels in various 3D editing and customization, particularly in local 3D generative
fill, overall style transfer, and style fusion for objects, showcasing immense practical utility.

2 RELATED WORK

Multi-view Diffusion for Objects. Utilizing a single front-view image, multi-view diffusion
demonstrates remarkable capabilities in synthesizing images from alternate viewpoints of the ob-
ject Liu et al. (2024b); Shi et al. (2023a); Kong et al. (2024); Liu et al. (2024c); Tang et al. (2024b);
Shi et al. (2023b); Wang & Shi (2023). These synthesized images are pivotal for subsequent stages
of 3D object reconstruction to generate a mesh. Early efforts in this domain faced hurdles, particu-
larly with small-scale training data and the imperative to ensure generalization performance Watson
et al. (2023); Zhou & Tulsiani (2023); Chan et al. (2023); Szymanowicz et al. (2023); Wu et al.
(2024); Fang et al. (2024). The improvement journey began with Zero-1-to-3 Liu et al. (2024b)
refining Stable Diffusion Rombach et al. (2022) with the extrinsic camera parameters, marking a
significant step in generalized multi-view diffusion. However, geometric consistency remained a
challenge. SyncDreamer Liu et al. (2024c) built upon Zero-1-to-3, introducing a 3D-aware feature
attention mechanism for enhanced synchronization, yielding 16 highly coherent multi-view images.
Recent large models prefer using fewer overlapping canonical views (e.g., front, back, left, right) as
inputs. This trend has led to the emergence of fixed-camera-parameter multi-view diffusion, simpli-
fying training and enhancing multi-view consistency. For example, MVDream Shi et al. (2023b) and
ImageDream Wang & Shi (2023) efficiently generate these four views, while zero123++ Shi et al.
(2023a) extends this to six fixed views. Tailor3D improves practical utility by generating only the
back image from the front, effectively addressing imperfect consistencies in diverse input scenarios.

Large Model for 3D Reconstruction and Generation. Early 3D generation methods initially
focused on optimizing individual objects separately. SDS-based approaches Poole et al. (2023); Xu
et al. (2023); Lin et al. (2023); Melas-Kyriazi et al. (2023); Wang et al. (2023a); Raj et al. (2023);
Chen et al. (2023a); Tang et al. (2023); Wang et al. (2023b); Zhu & Zhuang (2024); Liang et al.
(2023) utilized multi-view images from Zero-1-to-3 for this purpose. Subsequently, Diffusion +
Reconstruction methods Liu et al. (2024a; 2023); Chen et al. (2024a); Long et al. (2024) expanded
on SyncDreamer to optimize higher-consistency multi-view images. With the Large Reconstruction
Model (LRM) scaling up in data and model size, it rapidly generates high-quality NeRF from single
images in under 5s. This led to a shift where 2D methods handled generation tasks, and LRM
managed 3D reconstruction. Consequently, 3D stable diffusion methods with fewer views, like
MVDream Shi et al. (2023b), became preferred. For instance, Instant3D Li et al. (2024) uses 2D
stable diffusion for four-view generation followed by LRM-like reconstruction. Similarly, LGM
Tang et al. (2024a) and GRM Xu et al. (2024a) use Gaussian Splatting for reconstruction. For
extensive 3D editing, we reduce perspectives to front and back, requiring lower consistency.

3D Object Editing. In 3D object domain, ”customized editing” involves shape alterations, pattern
addition, and texture application under user control. Traditional methods include explicit geomet-
ric representation editing, such as mesh deformation Yuan et al. (2021); Sorkine (2005); Sorkine &
Alexa (2007), proxy-driven deformation Jacobson et al. (2012); Magnenat et al. (1988); Sederberg
& Parry (1986); Yifan et al. (2020); Sumner et al. (2005); Gao et al. (2016), and data-driven defor-
mation Gao et al. (2019; 2016), which utilize prior shapes for realistic outcomes. Over time, editing
has moved towards implicit radiance fields Liu et al. (2019); Tan et al. (2018); Xu et al. (2021), es-
pecially on NeRFs Liu et al. (2021); Yang et al. (2021); Yuan et al. (2022). Earlier works focused on
specific objects or scenes, lacking generalization Qi et al. (2024). In the 3D-AIGC era, 3D editing
has evolved towards 2D image editing, reconstructed to generate new 3D objects Chen et al. (2023b;
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Figure 2: Model Architecture of Dual-sided LRM. We start with front and back view images.
Then, using LoRA Triplane Transformer, we obtain front and back triplanes. Finally, we ‘tailor’ the
two triplane features through rotation and Viewpoint Cross-Attention to obtain the 3D object.

2024b). MVEdit Chen et al. (2024b) denoises multi-view images and outputs high-quality textured
meshes. However, its inference process takes 2-5 minutes, lacking real-time editing. In contrast,
Tailor3D uses dual-side LRM to process inputs from both object sides, completing each editing step
within seconds, enabling interactive 3D object editing.

3 METHODOLOGY

In this section, we present the pipeline and model architecture of Tailor3D. Firstly, we introduce the
Large Reconstruction Model (LRM) and multi-view diffusion in Section 3.1. Next, in Section 3.2,
we outline Tailor3D’s process, illustrating 2D editing and rapid reconstruction into 3D objects. In
Section 3.3, we delve into the Dual-sided LRM, accommodating inputs from imperfect consistent
front and back views. We explain how the LoRA Triplane Transformer reduces memory usage and
Viewpoint Cross-Attention to fuse 3D Triplanes from front and back views.

3.1 PRELIMINARIES

Large Reconstruction Model (LRM). LRM enables direct single-view to 3D reconstruction. The
input image I is encoded by an image encoder, producing patch-wise feature tokens F ∈ RN×dE ,
where N is the number of image feature patches and dE is the dimension of the image encoder.
Initial learnable positional embeddings for the triplane are defined as f init and engage in cross-
attention with the image features F . They are modulated by the corresponding camera extrinsic
parameters E to generate the triplane feature map T .

T = (Txy,Tyz,Txz) = TRI-FORMER(f init , F , E). (1)

Here, f init ∈ (3×32×32)×dD, where dD is the hidden dimension of the transformer decoder.
TRI-FORMER incorporates self-attention, cross-attention, and modulation. The resultant triplane
feature map T ∈ (3×64×64)×dT comprises three planes: TXY , TYZ , and TXZ . Resolution in-
creases from 32×32 to 64×64 via deconvolutional layers. Finally, it undergoes MLPnerf for color
and density derivation in NeRF rendering.
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Figure 3: LoRA Triplane Transformer. (a) For Cross-Attention, we use the LoRA structure to
replace the connection layers of qkv and output. (b) For Self-Attention, we replace the connection
layers of input and output. Details of the LoRA are shown in (c).

2D and Multi-view Diffusion. The diffusion model iteratively denoises pure noise xT ∼ N (0, I)
over T steps to yield clean data x0, optimizing towards the gradient direction of the log probability
distribution of the data, ∇xt log p(xt). At step t, given the noisy input xt, a neural network ϵϕ with
parameters ϕ predicts the noise ϵ.

Ldiff (ϕ, x) = Et,ϵ[∥ ϵϕ(xt, t)− ϵ ∥22]. (2)

Multi-view diffusion generates images from specific objects based on current and desired view-
points. By providing current image I , extrinsic camera parameters E ∈ 4×4, alongside desired
parameters camera Eo, multi-view diffusion generates the image Io for the desired viewpoint. In
our pipeline, we utilize multi-view diffusion to generate the back image based on the front.

3.2 THE PIPELINE OF TAILOR3D

This section outlines Tailor3D’s pipeline, as shown in the lower part of Figure 1. It begins with a
front-facing image If of an object. Initially, image editing and style transfer are applied to create I ′

f .
Next, multi-view diffusion methods like Zero-1-to-3 Liu et al. (2024b) generate the corresponding
back image Ib, which is then edited to get I ′

b. Finally, both I ′
f and I ′

b are input into Dual-sided LRM
to obtain the final 3D object. Tailor3D offers various choices and potential variations. Original
images If and Ib can be directly input into Dual-sided LRM for rapid reconstruction of the 3D
object. Additionally, the back image Ib can be generated not only through Zero-1-to-3 but also
through photography or direct provision. We will further elaborate on downstream tasks in the
experimental section. The flexibility of Tailor3D arises from improved choices at each step and the
robustness of our model, Dual-sided LRM, in handling imperfect consistency between front and
back image inputs.

3.3 DUAL-SIDED LRM: HOW TO ACCEPT IMPERFECT CONSISTENT VIEWS

In Section 3.2, our focus is on acquiring the edited front image I ′
f and back image I ′

b for an object.
However, these images may exhibit imperfect consistency: They might not directly face the object,
and their relationship can vary. Therefore, we need a reconstruction model capable of handling
imperfectly consistent input images from both views to generate 3D objects. We select two views
instead of four to reduce inconsistency pressure on editing and reconstruction. We explicitly merge
two triplane features in the 3D domain, aiming to resolve the inconsistency issue intuitively.

LoRA Triplane Transformer. When employing pre-trained LRM parameters Hong et al. (2024),
our goal is to minimize memory usage. In LRM, the single view feature F ′

f is processed by a triplane
transformer serving as a decoder to generate triplane NeRF features Tf . This component facilitates
mapping from a single view to 3D, enabling the model to understand diverse object shapes and infer
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object information effectively. To minimize memory usage, we integrate the LoRA structure into the
triplane transformer, as depicted in Figure 3. For self-attention, where qkv is generated by shared
linear layers, we replace all input and output linear layers with LoRA structures Hu et al. (2022).
For cross-attention, where qkv is generated by different linear layers, we replace all qkv and output
linear layers with LoRA structures. Specific details are as follows:

hi = W i
0x+∆W i

tpx = W i
0x+Bi

tpA
i
tpx. (3)

Here, i denotes the i-th Transformer layer. For self-attention, tp represents the linear projection for
input and output. For cross-attention, tp denotes the linear projections for q, k, v, and output.

As shown in Figure 2, LRM generates the triplane feature Tf for the front view from features F ′
f

and camera parameters Ef . Similarly, for the back view features F ′
b , we use the camera parameters

Ef of the front view to obtain the triplane feature T f
b for the back view through the LoRA triplane

transformer, as expressed by the following equation:

Tf/T
f
b = TRI-FORMERLoRA(f

init , F ′
f/F

′
b , Ef ). (4)

Here T f
b , the triplane feature for the back view obtained using the front view’s camera parameters,

cannot be directly merged with Tf . We will address this and the inconsistency between the front
and back view angles in the next section.

Fuse Double Side Feature. To merge the two triplane features Tf and T f
b , we first horizontally flip

T f
b by 180 degrees around the z-axis to obtain Tb. Due to inconsistency between the front and back

views, direct alignment or addition of the triplane features isn’t feasible. Leveraging the triplane
representation, we apply Viewpoint Cross-Attention to each plane individually. We use Tf as the
query and Tb as the key and value to incorporate missing information from the backside. We adopt a
window-based attention structure, with a window size set to 7, significantly reducing memory con-
sumption. This yields the final Tfb, encapsulating information from both views. Data augmentation
further bolsters robustness to inconsistency, with back view images undergoing scaling, rotation,
and translation, each with a 10% probability.

Finally, the Triplane-NeRF formulation utilizes MLPnerf to derive NeRF color and density param-
eters for volume rendering. Supervision includes V views, comprising the front, back and (V − 2)
randomly chosen side views. For a specific view v, the loss function for synthesizing the prediction
x̂v and the ground truth xGT

v for new view composition is formulated as follows:

L(x) = 1

V

V∑
v=1

(
λ1LMSE(x̂v,x

GT
v ) + λ2LLPIPS(x̂v,x

GT
v ) + λ3LTV(x̂v,x

GT
v )

)
. (5)

LMSE denotes the normalized pixel-wise L2 loss, LLPIPS is perceptual image patch similarity. LTV

is the total variation loss to prevent noise in the image. Weight coefficients λ1, λ2, λ3 are applied.

4 EXPERIMENTS

This section explores the experimental aspects. In Section 4.1, we delve into various implementation
details, including dataset, model architecture parameters, camera adjustments, and training/testing
processes. In Section 4.2, we present experimental results. We showcase Tailor3D’s versatility
across different tasks and conduct ablation studies on key modules.

4.1 IMPLEMENTATION DETAILS

For the dataset, LRM pre-trained weights Hong et al. (2024); He & Wang (2023) are trained on
Objaverse Deitke et al. (2023), containing 730K objects rendered from 32 random viewpoints. Fine-
tuning uses 22K high-quality 3D objects from the Gobjaverse-LVIS Qiu et al. (2023); Gupta et al.
(2019) dataset. Training involves front and back views, plus random side views for new view syn-
thesis. More details about the dataset are shown in the Appendix C.2 of the appendix.

We use the network architecture from the pre-trained LRM model. The image encoder is based on
DINOv2’s ViT-B/16 model Oquab et al. (2023), operating at a resolution of 384×384. The image

6
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features have a dimensionality of 768. The triplane transformer decoder consists of 16 layers with
16 transformer heads, featuring positional embeddings of dimensionality 1024 and triplanes with
dimensionality 80. MLPnerf comprises 10 layers. We set the LoRA rank to 4 for the LoRA Triplane
Transformer. During neural rendering, we sample 128 points along each ray and produce images at
a resolution of 128×128. For camera normalization, we align with LRM standards, positioning the
camera at [0,−2, 0] relative to the object center. This ensures the object’s z-axis is upward, and the
front view corresponds to the negative y-axis. External rendering parameters are normalized relative
to the reference view. We train for 10 epochs on 8 A100 GPUs with a batch size of 16, taking about
6 hours. The loss function coefficients are λ1 = λ2 = λ3 = 1.0. We use the AdamW optimizer
with a learning rate of 3×10−4 and a cosine schedule. During inference, we query a resolution of
384×384×384 points from the reconstructed triplane-NeRF, completing it in less than 5 seconds.

4.2 EXPERIMENT RESULTS

In Section 4.2.1, we showcased Tailor3D’s capabilities in 3D generation, covering geometric object
fill, texture synthesis, and style transfer. In Section 4.2.2 and Section 4.2.3, we compared our ap-
proach with existing 3D Generation methods and multi-view editing methods. In Section 4.2.4, we
performed ablation experiments and finally we show some failure cases in Section 4.2.5.

4.2.1 TAILOR3D APPLICATIONS

We showcase its versatility in 3D Generative Geometry / Pattern Fill, encompassing local geometric
shape and texture pattern filling. We highlight its style transfer and fusion capabilities, allowing for
operations like style transfer and blending two styles onto one object. Tailor3D enables users to edit
both the front and back of objects, expanding editing possibilities for customized 3D objects.

3D Generative Geometry / Pattern Fill. Here, we showcase Tailor3D’s local 3D object filling
ability, as depicted in Figure 4. Demonstrating step-by-step object filling and editing through text
or image prompts. In Row 2, starting from armor, we generate a medieval general by adding the
head, hands, and cloak progressively. Row 3 illustrates additional object manipulation, including
the addition of a mailbox, balloons, a flower bush, and a basketball hoop.

3D Style Transfer and Fusion. Tailor3D also demonstrates its transfer and fusion capabilities for
various styles. Unlike previous approaches, Tailor3D ensures IP integrity while offering flexibility
in specifying styles through images or text guidance. Notably, it leverages Midjourney for 2D image
generation and editing. Additionally, Tailor3D enables the infusion of different styles onto both the
front and back of objects, showcasing the effectiveness of the Dual-sided LRM’s merging ability.

4.2.2 COMPARE TO EXISTING 3D IMAGE-TO-3D GENERATION METHODS

We compare our approach with Wonder3D Long et al. (2024), TriplaneGaussian Zou et al. (2023),
and LGM Tang et al. (2024a) on a test set of 100 images generated by stable diffusion Rombach
et al. (2022). Each model takes a single image as input and generates multiple views using multi-
view diffusion, while our method only generates an additional back view. Quantitative results are
provided in Table 1 alongside generation times, highlighting the practical value of our method.
Quantitative results are shown in the Figure 16 of the appendix.

4.2.3 COMPARED TO MULTI-VIEW EDITING METHODS.

Here, we compare Tailor3D with multi-view editing methods like MVEdit Chen et al. (2024b);
Haque et al. (2023). Existing multi-view approaches are optimization-based, requiring separate op-
timization for each object or scene and re-optimization for every edit. In contrast, Tailor3D uses a
feed-forward framework, completing reconstruction in under 5 seconds. Multi-view methods can
only be controlled via text and can edit only the front side of a 3D object, lacking precision for
local edits and maintaining object identity. Tailor3D, however, supports text or image-based instruc-
tions for both global and local edits, as shown in Figure 8. It can edit Mario’s overall style while
preserving identity, which MVEdit cannot, and it can also modify local parts.
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Front and Back 
Images or Text Style 1 Style 2 Style 3 Style 4

+ leg

+ hand + red cloak

+ 

+ balcony + baloon + flower 
bush

+basketball 
hoop 

+ head

+ mailbox

+ bow tie

+ blue 
diamond + bouquet

+ 

+love heart

Front and 
Back Images

Step 1 Step 2 Step 3 Step 4

Original ImageOriginal ImageOriginal Image Original Image

Original TextOriginal TextOriginal Text Original Text

LEGO 
Model + astronaut + old 

sorcerer
+ green 
clothes + red ninja

Original Text

+ 

Original Text

+ 

3D Style Transfer and Fusion

3D Generative Geometry / Pattern Fill

+ red and 
white

Original Text Original Text

+

Fusion

Figure 4: 3D Generative Fill and 3D Style Transfer. It includes both Geometry Fill and Pattern
Fill, allowing us to add or modify local geometric structures or texture patterns of 3D objects. Guid-
ance can be provided through text or images as prompts. Additionally, we offer style images or
textual guidance to transform 3D objects into desired styles. Ensuring the maintenance of IP in-
tegrity during disguise adds significant practical value to 3D tasks.

4.2.4 ABLATION STUDY

We perform an ablation study on the Dual-sided LRM, focusing on three aspects: the fusion of 3D
features from both sides, the rank of the LoRA Transformer, and the extrinsic camera parameters of
front and back images. Results are presented in Table 2, using the same test set as in Section 4.2.2.

The Way to Fuse Double Side Feature. We use Viewpoint Cross-Attention to fuse features from
two sides, and also experiment with 2D conv layers and direct addition. As shown in Table 2(a),
Viewpoint Cross-Attention achieves the best results. Figure 5 provides qualitative results on a bird
example, demonstrating its effectively stitches the front and back sides together.
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Table 1: Comparison with Existing 3D Generation Methods. We compare single image-to-3D
methods, including common metrics and user studies. Results indicate that ours outperforms others.

Compare with others. Common Metrics User Study ↑ (0 to 100 score)

Methods InF. Time. LPIPS ↓ SSIM ↑ PSNR ↑ Geometry Texture Overall

TriplaneGaussian 20s 0.2811 0.5635 14.89 56.3 54.5 62.3
Wonder3D 3min 0.2709 0.6485 16.23 73.3 76.3 79.2
LGM 5s 0.2473 0.8423 19.02 79.3 85.2 83.2
Tailor3D (Ours) 5s 0.2345 0.8525 19.34 82.3 84.2 86.3

Table 2: Abalation Study. We conducted ablation regarding the fusion method for both sides, the
rank of the LoRA Triplane Transformer, and the extrinsic camera parameters. †: VP-CA means
Viewpoint Cross-Attention. ∗: The first is the front-view extrinsic and the second is for the back.

(a) Way to Fuse Double Sides.
Fuse Way Score SSIM↑ LPIPS↓

Add 76.3 0.7377 0.2938
Conv2D 84.2 0.8239 0.2443
VP-CA† 86.3 0.8525 0.2345

(b) LoRA Transformer Rank.
Rank Score SSIM↑ LPIPS↓

2 79.2 0.7623 0.2877
4 86.3 0.8525 0.2345
8 82.2 0.7902 0.2535

(c) Two Camera Extrinsics.
Cam Ext. ∗ Score SSIM↑ LPIPS↓

Eb + Eb 60.5 0.6288 0.3944
Ef + Eb 33.4 0.3523 0.5653
Ef + Ef 86.3 0.8525 0.2345

Add FV & BV Triplane Use Conv to fuse

Cross-attention without side 
supervision

Cross-attention with
side supervision

Front-view

Back-view

Figure 5: Way to Fuse Double Sides. VP-CA
achieves the best results to fuse them together.

Back View

Front View

Within-Bounds 
Back Editing

Without-Bounds 
Back Editing

Change Geometry 
from Front View

Figure 6: Change the Geometry of the Back.
Currently difficult to change from the back.

Front view

Left 45°

Top 45°

Bottom 45°

Top-left 45°

Robustness/Tolerance to 
inconsistency.

Bottom-right 45°

Figure 7: Robustness to Handle Inconsistency. It does not require defining
front and back sides due to its robustness to inputs from various directions.

The Rank of LoRA Triplane Transformer. We conduct ablation experiments on the rank of the
LoRA Triplane Transformer, setting the rank to 2, 4, and 8, respectively. Our experimental results
indicate that a rank of 4 achieves the best performance.

Extrinsic Camera Parameters. We apply the same front camera parameters Ef to both front and
back images, rotating only the back triplane. We also experiment with separate camera parame-
ters, Ef and Eb, without rotation. Results show that using only front extrinsics provides accurate
outcomes, as the LRM structure accepts only front camera parameters.

Change the geometry of the back side. Our geometric editing is limited to the front view, while
for the back, we mainly edit patterns in a central area. In Figure 6, we show an example of adding
wings to a penguin’s back, which is possible within the back area, but adding objects like a volleyball
outside is not. Structural changes are usually made from the front, as seen in the third row where we
added a volleyball. We plan to support multi-view geometric changes in the future version.
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‘Turn the clothes blue.’

Image-guided 
Style Transfer

MVEdit
(Re-Texturing) 

Text-guided  
Pattern Fill

MVEdit
(Instruct 3D-to-3D) Tailor3D

Tailor3D Tailor3D

Front-View

+
Style 

Image:

Back-View

What MVEdit 
can not do.

Figure 8: Compared to Multi-View editing methods (MVEdit). Tailor3D can accept both text
and image guides, and the editing process can maintain the object’s identity and geometry.

Front Top-left Corner Back-right Side Side View

Thickness illness 

Low Resolution

Scene illness

Figure 9: Failure case (Two-view Reconsctruction). We provide front and back views for recon-
struction, showing its poor performance in micro-scenes, thickness estimation and low resolution.

Tailor3D’s robustness to handle inconsistency. We didn’t strictly define the front and back ori-
entation because Tailor3D handles inconsistencies well. As shown in Figure 7, tests with Mario
images from various non-strict front and back views demonstrate that Tailor3D tolerates inconsis-
tency, successfully reconstructing the 3D object despite detail variations from different angles.

4.2.5 FAILURE CASE (TWO-VIEW RECONSCTRUCTION)

We present additional failure cases. Without editing, we simply provide the front and back views for
reconstruction. Figure 9 highlights issues like poor performance in micro-scenes, inaccurate blanket
thickness estimation, and low-resolution bicycle meshes. We plan to fix them in the future.

5 CONCLUSION

We introduce Tailor3D, a tool for quickly creating customized 3D assets using editable dual-sided
images. By combining 2D editing and fast 3D reconstruction, users can iteratively refine objects.
Our Dual-sided LRM and LoRA Triplane Transformer act as ’tailors,’ stitching front and back views
to handle inconsistencies and enhance reconstruction. Experiments show Tailor3D’s effectiveness in
tasks like 3D generative fill and style customization, providing a user-friendly, cost-effective solution
for rapid 3D editing in animation, game development, and more.

Code of Ethics/Reproducibility and Ethics statement. There is no ethics about the paper and code
and all code can be reproduced. All code will be public soon.
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A APPENDIX OVERVIEW

We first introduce additional background information in the supplementary materials in Appendix B.
We first divided 3D Reconstruction into three categories and introduced the LRM Hong et al. (2024)
family. In Appendix C, we presented additional details regarding the methodology and implementa-
tion of experiments. We emphasize the differences between our training configuration and the orig-
inal LRM and provide further insights into the Gobjaverse Qiu et al. (2023) dataset. In Appendix D,
we mainly present the additional experimental results. We first present additional examples of Tailor,
followed by comparisons with more multi-view reconstruction methods.

B ADDITIONAL RELATED WORK

This section categorizes 3D reconstruction into single-view reconstruction, multi-view reconstruc-
tion, and the recently popular normal-view reconstruction. We then delve into the benefits of em-
ploying double-sided information for canonical-view reconstruction in appendix B.1. Following
that, we introduce articles from the LRM family Hong et al. (2024); Li et al. (2024); Wang et al.
(2024); Xu et al. (2024b) in appendix B.2, discussing various variants of this framework.

B.1 SINGLE, MULTI AND CANONICAL-VIEW RECONSTRUCTION

Firstly, we delineate several types of reconstruction. Single-view reconstruction involves generating
a 3D mesh of an object from a single-view image (typically the front view). On the other hand,
multi-view reconstruction typically involves multiple viewpoint images of an object along with cor-
responding camera extrinsic (often 20-100 views), aiming to reconstruct a 3D object. A landmark
method in this domain is NeRF, which utilizes MLPs for novel view synthesis or 3D reconstruction.
However, NeRF-based methods suffer from the need for individual optimization for each object,
resulting in long reconstruction times, sometimes reaching 1-2 hours. Early 3D generation methods
which use multi-view diffusion for generating multiple views of an object and subsequent recon-
struction Liu et al. (2024a); Long et al. (2024), also face long reconstruction times.

The development trajectory of NeRF involves the need for increasingly fewer viewpoints for recon-
struction, fewer camera parameters, and faster reconstruction speeds. However, these methods still
require individual optimization for each object. In contrast, LRM serves as a universal reconstruc-
tion model. As the model and dataset sizes reach a particular scale, reconstruction models become
universal, eliminating the need for individual optimization of objects to be reconstructed. Within
this universal framework emerges a reconstruction method known as canonical-view reconstruction,
which uses fixed faces for reconstruction, typically the front, back, left, and right faces, referred to as
4-canonical-view reconstruction. Instant3D Li et al. (2024), TriplaneGaussian Zou et al. (2023), and
LGM Tang et al. (2024a) all employ this reconstruction method. However, the challenge with using
the front, back, left, and right faces lies in effective editing, as it is difficult to edit all four faces
simultaneously. Tailor3D adopts Dual-Canonical-view Reconstruction, utilizing only the front
and back faces with fewer overlaps, facilitating user editing. Here, we emphasize that multi-view
reconstruction requires optimization for individual objects, whereas canonical-view reconstruction
is built upon a general reconstruction framework.

B.2 INTRODUCTION TO LRM FAMILY

As mentioned earlier, early 3D generation methods utilized multi-view diffusion to generate addi-
tional viewpoints from a single image and optimized the multi-view reconstruction of a 3D object
based on these views, which need a few minutes. The LRM family, serving as a series of Feed-
Forward Methods, directly generates 3D meshes without the need to synthesize multiple viewpoint
images or training and adapt to models such as NeRF within only several seconds. It represents
a universal reconstruction framework. As illustrated in Figure 10, LRM is a universal framework
for single-view reconstruction. That is, a single image can directly generate a 3D mesh. The funda-
mental concept involves predefining the feature map of Triplane NeRF and then performing cross-
attention with 2D images and their corresponding camera parameters. The resulting feature map can
directly provide novel views of images or even the entire 3D mesh in the Triplane NeRF format.
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Figure 10: Model architectures of LRM, Instant3D and Tailor3D.

Building upon this foundation, Instant3D Li et al. (2024) addresses normal 4-canonical-view recon-
struction. It involves two stages: first, utilizing a 2D diffusion model to obtain front, back, left,
and right images of an object from text prompts; second, reconstructing the 3D object from these
four viewpoints. PF-LRM Wang et al. (2024) focuses on pose-free sparse multi-view reconstruction,
enabling the generation of a 3D object from three images taken from arbitrary viewpoints without
corresponding camera extrinsics. However, its framework complexity arises from the supervision
involving PnP and various geometric theories. DMV3D Xu et al. (2024b), an extension of Instant3D,
introduces a denoising process, resulting in a denoised multi-view diffusion framework. Unfortu-
nately, these methods have not been open-sourced yet, with only the OpenLRM He & Wang (2023)
codebase providing the inference code for LRM.

LRM and Instant3D can be regarded as methods corresponding to single-view and 4-canonical-view
reconstruction, respectively. However, their handling of camera parameters differs. As shown in
fig. 10, LRM adjusts camera parameters with triplane features in the triplane transformer decoder. In
practice, the external camera parameters are fixed, meaning the camera is positioned at [0,−2m, 0]
and oriented to look directly at the object along the positive y-axis. Hence, LRM can only accept the
camera parameters of the front view, as demonstrated in Table 2c. In contrast, Instant3D places the
modulation of the camera within the image encoder. After obtaining image features from four views,
these features are concatenated and passed through the triplane transformer decoder. This approach
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(a) Objaverse (a) Gobjaverse
Figure 11: Rendering perspectives in Objaverse and Gobjaverse.

involves merging the features from multiple viewpoints at the 2D image feature level. However, this
approach is not a natural transition from single-view to canonical-view reconstruction. We choose
to utilize Viewpoint Cross-Attention to fuse the 3D triplane features of the front and back views.
This allows us to easily extend single-view reconstruction to dual(4)-canonical-view reconstruction
using only the pre-trained weights from the single-view reconstruction. Furthermore, only training
the Viewpoint Cross-Attention is necessary to minimize costs.

C ADDITIONAL METHODOLOGY

In this section, we discuss the training and experimental aspects. In appendix C.1, we describe
our training setup, using the LRM model from the OpenLRM codebase He & Wang (2023), and
delineate the variations in the parameter quantities compared to the original LRM. In appendix C.2,
we offer a detailed overview of viewpoint rendering in the Gobjaverse dataset Qiu et al. (2023). We
achieved satisfactory results with a relatively small dataset size by utilizing meticulously crafted
artificial rendering data that boast high-quality textures and excellent consistency (22K).

C.1 TRAINING SETTINGS

Here, we focus on describing our training details. First, we utilized the OpenLRM codebase as
the basis for our LRM implementation. The original resolution is 512, but we used 256. The
dimensionality of the triplane feature map, which was initially 80, was reduced to 40. Other model
parameters remain unchanged, such as the dimensionality of camera embeddings (1024) and triplane
transformer (1024). We used 96 rendering sample rays. For training parameters, the learning rate
was set to 3e − 4, with a weight decay of 0.05. We employed a cosine scheduler. The total batch
size was set to 16 (across 8 A100 GPUs), and we trained for a total of 20 epochs.

C.2 DATASET: GOBJAVERSE

We utilized the Gobjaverse dataset Qiu et al. (2023), an enhanced version of the Objaverse dataset
with higher-quality rendering. Unlike Objaverse, which renders a single object with randomly po-
sitioned cameras spherically, Gobjaverse performs orbit rendering around an object, capturing two
orbits shown in Figure 11. In the higher-elevation orbit, 24 views at equal intervals are represented
in cyan. In the lower-elevation orbit, 12 views at equal intervals are represented in red. Additionally,
two views captured from the top and bottom are represented in purple.

We excluded the two views captured from the top and bottom during our training process. This al-
lowed our training data to provide input from both the front and back sides of the objects. It is worth
noting that the opposite directions are only along the x-axis and y-axis. In the z-axis direction, they
have the same elevation angle rather than being utterly symmetric across the center. This approach
differs from methods like Instant3D and LGM Tang et al. (2024a), which use techniques similar to
MVDream Shi et al. (2023b) to generate 4 views of an object using 2D diffusion. Gobjaverse offers
higher consistency, resulting in higher data quality, which facilitates the fusion of features from the
front and back directions.
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Figure 12: Testset: 100 3D Assets from Stable Diffusion (1).

C.3 TESTSET: 100 IMAGES FROM STABLE DIFFUSION

Our quantitative test set and a portion of the qualitative test set consist of 100 objects generated
by Stable Diffusion, with the background removed. Here, we present partial examples using two
images, while the remaining qualitative examples may come from the use of Midjourney for gen-
eration. Our test set covers various objects and micro-scenes such as animals, humans, plants, and
landscapes, enabling a comprehensive assessment of the quality of the generation models. Addi-
tionally, all our models comply with copyright and related regulations.
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Figure 13: Testset: 100 3D Assets from Stable Diffusion (2).
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Figure 14: Compare with Dreamcomposer. Here, we present a comparison with the multi-view
DreamComposer Yang et al. (2024). In this comparison, we provide Tailor3D with ground-truth
RGB images for the back side. It can be observed that Tailor3D exhibits more detailed texture
features and avoids defects such as holes.
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Figure 15: Compare withh multi-view input model EscherNet Kong et al. (2024). Our created
mesh excels beyond other methods, delivering superior speed and quality.

D ADDITIONAL EXPERIMENTS
In this section, we show more experiments. In appendix D.1, we compare our method’s effectiveness
with more recent multi-view reconstruction techniques. In appendix D.2, similar to Figure 4, We
present additional examples of Tailor3D, showcasing our ability to customize and edit objects.

D.1 COMPARISON WITH MORE MULTI-VIEW RECONSTRUCTIONS

In the main paper, we compared earlier 3D generation methods like Wonder3D Long et al. (2024),
TriplaneGaussian Zou et al. (2023), and LGM Tang et al. (2024a), most of which were focused on
image-to-3D generation. In the main text, we provided only quantitative results, as shown in Table 1.
Here, we present the qualitative results. Qualitative results. Figure 16 demonstrates Tailor3D’s ca-
pability to enhance backside information with Dual-sided LRM. Wonder3D and TriplaneGaussian
struggle with complex objects, exhibiting lower overall quality. LGM, using Gaussian representa-
tion, suffers from ghosting effects and lacks detail in features like tree leaves.

Conversely, approaches like Dreamcomposer Yang et al. (2024) and EscherNet Kong et al. (2024)
aimed to complement additional viewpoints in the Table 1. It’s worth noting here the test set is
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 Images Input Wonder3D TriplaneGaussian LGM Tailor3D (Ours)

Figure 16: Qualitative Results: Compare to Existing 3D Generation. We compare single image-
to-3D methods. Wonder3D and TriplaneGaussian have lower resolutions, while LGM often shows
ghosting effects with complex textures. Our method, however, achieves superior results.

from GSO30 Downs et al. (2022) and Objaverse Deitke et al. (2023) datasets instead of the 100 SD
test set used in the main paper. Dreamcomposer and EscherNet are optimization-based methods,
thus requiring several minutes to generate 3D results. In contrast, Tailor3D only needs 5 seconds to
produce superior 3D reconstruction results.

Comparison with Dreamcomposer. DreamComposer is built on SyncDreamer Liu et al. (2024c),
allowing it to accept inputs from multiple viewpoints and fill in missing information for all sides
except the back. In our experimental results (see fig. 14), we adjusted the back input to be the
RGB image of the ground-truth back side for comparison purposes. That is, we provided Tailor3D
and Dreamcomposer with pictures of the front and back of the object, which could have been more
perfectly consistent. We found that Tailor can generate superior mesh results compared to Dream-
Composer. DreamComposer tends to exhibit more defects in its reconstructions.

Comparison with EscherNet. EscherNet is a multi-view conditional diffusion model for viewpoint
synthesis. It learns implicit and generative 3D representations combined with Camera Position
Encoding (CaPE). EscherNet can generate more consistent images and has higher reconstruction
quality. In this experiment, we provided EscherNet with 16 viewpoints, while our Tailor3D had only
the front and back viewpoints. Even in this scenario, our approach still has a significant advantage
and obtains better mesh results. This further demonstrates that our method using only two views for
reconstruction can achieve better results.

D.2 MORE EXAMPLES

Here, we showcase more qualitative examples, including 3D style transfer, style fusion, and 3D
generative fill. We demonstrate the model’s ability to transform overall styles as well as perform
localized editing. These examples show the potential for industrial applications.

E LIMITATIONS

Despite the strong performance of Tailor3D. However, relying solely on front and back views for
object reconstruction may encounter challenges with objects of certain thicknesses. Additionally,
the generated 3D object meshes may have lower resolutions, and the addition of geometric features
may not significantly alter the mesh. We will further investigate methods to address the generation
and reconstruction of objects with thicker side profiles in future work, aiming to enhance the quality
and resolution of the meshes.
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Figure 17: More Examples about Tailor3D.
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