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ABSTRACT

We present a novel multi-task training approach to learning multilingual dis-
tributed representations of text. Our system learns word and sentence embeddings
jointly by training a multilingual skip-gram model together with a cross-lingual
sentence similarity model. We construct sentence embeddings by processing word
embeddings with an LSTM and by taking an average of the outputs. Our architec-
ture can transparently use both monolingual and sentence aligned bilingual cor-
pora to learn multilingual embeddings, thus covering a vocabulary significantly
larger than the vocabulary of the bilingual corpora alone. Our model shows com-
petitive performance in a standard cross-lingual document classification task. We
also show the effectiveness of our method in a low-resource scenario.

1 INTRODUCTION

Learning distributed representations of text, whether it be at the level of words|Mikolov et al.[(2013));
Pennington et al.| (2014), phrases [Socher et al.| (2010); [Pham et al.| (2015b), sentences Kiros et al.
(2015)) or documents |Le & Mikolov| (2014)), has been one of the most widely researched subjects in
natural language processing in recent years. Word/sentence/document embeddings, as they are now
commonly referred to, have quickly become essential ingredients of larger and more complex NLP
systems |Bengio et al.| (2003); [Maas et al.| (2011)); |Collobert et al.| (2011); [Bahdanau et al.| (2014);
Chen & Manning| (2014) looking to leverage the rich semantic and linguistic information present in
distributed representations.

One of the exciting avenues of research that has been taking place in the context of distributed text
representations, which is also the subject of this paper, is learning multilingual text representations
shared across languages [Faruqui & Dyer (2014); [Bengio & Corrado| (2015); [Luong et al.| (2015).
Multilingual embeddings open up the possibility of transferring knowledge across languages and
building complex NLP systems even for languages with limited amount of supervised resources
Ammar et al.| (2016); Johnson et al.| (2016). By far the most popular approach to learning mul-
tilingual embeddings is to train a multilingual word embedding model that is then used to derive
representations for sentences and documents by composition [Hermann & Blunsom| (2014). These
models are typically trained solely on word or sentence aligned corpora and the composition mod-
els are usually simple predefined functions like averages over word embeddings |Lauly et al.|(2014);
Hermann & Blunsom|(2014); Mogadala & Rettinger (2016)) or parametric coposition models learned
along with the word embeddings.

In this work we learn word and sentence embeddings jointly by training a multilingual skip-gram
model Luong et al|(2015) together with a cross-lingual sentence similarity model. The multilingual
skip-gram model transparently consumes (word, context word) pairs constructed from monolingual
as well as sentence aligned bilingual corpora. We use a parametric composition model to construct
sentence embeddings from word embeddings. We process word embeddings with a Bi-directional
LSTM and then take an average of the LSTM outputs, which can be viewed as context dependent
word embeddings. Since our multilingual skip-gram and cross-lingual sentence similarity models
are trained jointly, they can inform each other through the shared word embedding layer and promote
the compositionality of learned word embeddings at training time. Further, the gradients flowing
back from the sentence similarity model can affect the embeddings learned for words outside the
vocabulary of the parallel corpora. We hypothesize these two aspects of our model lead to more
robust sentence embeddings.
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Our contributions are as follows :

e Scalable approach: We show that our approach performs better as more languages are
added, since represent the extended lexicon in a suitable manner.

o Ability to perform well in low-resource scenario: Our approach produces representations
comparable with the state-of-art multilingual sentence embeddings using a limited amount
of parallel data. Our sentence embedding model is trained end-to-end on a vocabulary
significantly larger than the vocabulary of the parallel corpora used for learning cross-
lingual sentence similarity.

o Amenable to Multi-task modeling: Our model can be trained jointly with proxy tasks,
such as sentiment classification, to produce more robust embeddings for downstream tasks.

2 RELATED WORK

This section gives a brief survey of relevant literature. For a through survey of cross-lingual text
embedding models, please refer to Ruder] (2017)).

Cross-lingual Word Embeddings : Most approaches fall into one of these four categories: 1.
monolingual mapping: learning transformations from other langauges to English [Faruqui & Dyer
(2014); | Xing et al.| (2015); [Barone| (2016)), 2. pseudo cross-lingual: making a pseudo cross-lingual
model and training off-the-shelf word embedding models Xiao & Guo (2014); Duong et al.|(2016);
Vuli¢ & Moens|(2016), 3. cross-lingual: learning embeddings using parallel corpora [Hermann &
Blunsom| (2013); (Chandar et al.| (2014); |Sggaard et al.| (2015) and 4. joint optimization: using both
parallel and monolingual corpora [Klementiev et al.| (2012); [Luong et al.| (2015); |[Vyas & Carpuat
(2016); |[Coulmance et al| (2016). We adopt the skip-gram architecture of [Luong et al.| (2015)) and
train a single multilingual model using monolingual data from each language as well as any sentence
aligned bilingual data available for any language pair.

Cross-lingual Sentence Embeddings: Some works dealing with cross-lingual word embeddings
have considered the problem of constructing sentence embeddings including |Vulic & Moens|(2015);
Pham et al| (2015a); [Hermann & Blunsom!| (2014)). In general, it is not trivial to construct cross-
lingual sentence embeddings by composing word embeddings as the semantics of a sentence is a
complex language-dependent function of its component words as well as their ordering. |Pham et al.
(2015a) addresses this difficulty by extending the paragraph vector model of Le & Mikolov|(2014)
to the bilingual context which models the sentence embedding as a separate context vector used
for predicting the n-grams from both sides of the parallel sentence pair. At test time, the sentence
vector is randomly initialized and trained as part of an otherwise fixed model to predict the n-grams
of the given sentence. Our sentence embedding model is closer to the approach taken in |[Hermann
& Blunsom| (2014). They construct sentence embeddings by taking average of word or bi-gram
embeddings and use a noise-contrastive loss based on euclidean distance between parallel sentence
embeddings to learn these embeddings.

Multi-task Learning: Multi-task learning has been employed in various NLP applications where
the parameters are shared among tasks |Collobert & Weston| (2008)); [Liu et al.|(2016); Hashimoto
et al.[ (2016). |Liu et al.|(2016) show the effectiveness of multi-task learning in multiple sentiment
classification tasks by sharing an RNN layer across tasks while learning separate prediction layers
for each task. [Wu et al.|(2017) recently showed benefits of learning a common semantic space for
multiple tasks which share a low level feature dictionary. Our multi-task architecture treats training
multilingual word embeddings as a separate task with a separate objective as opposed to training
them beforehand or training them only as part of a larger model.

3 MODEL

Our model is trained to optimize two separate objectives: multilingual skip-gram|Luong et al.|(2015)
and cross-lingual sentence similarity. These two tasks are trained jointly with a shared word embed-
ding layer in an end-to-end fashion.
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Figure 1: Example context attachments for a bilingual (en-de) skip-gram model.
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Figure 2: Overview of the architecture that we use for computing sentence representations Rs and
Ry for input word sequences S and 7.

3.1 MULTILINGUAL SKIP-GRAM

Multilingual skip-gram model [Luong et al.|(2015) extends the traditional skip-gram model by pre-
dicting words from both the monolingual and the cross-lingual context. The monolingual context
consists of words neighboring a given word as in the case of the traditional skip-gram model. The
cross-lingual context, on the other hand, consists of words neighboring the target word aligned with
a given source word in a parallel sentence pair. Figure 1, shows an example alignment, where an
aligned pair of words are attached to both their monolingual and bilingual contexts. For a pair of
languages L1 and L2, the word embeddings are learned by optimizing the traditional skip-gram
objective with (word, context word) pairs sampled from monolingual neighbors in L1 — L1 and
L2 — L2 directions as well as cross-lingual neighbors in L1 — L2 and L2 — L1 directions. In our
setup, cross-lingual pairs are sampled from parallel corpora while monolingual pairs are sampled
from both parallel and monolingual corpora.

3.2 CROSS-LINGUAL SENTENCE ENCODER

We use a parametric composition model to construct sentence embeddings from word embeddings.
We process word embeddings with a bi-directional LSTM Hochreiter et al.| (2001)); [Hochreiter &
Schmidhuber| (1997)) and then take an average of the LSTM outputs. There are various implementa-
tions of LSTMs available; in this work we use an implementation based on Zaremba et al.| (2014).
The LSTM outputs (hidden states) contextualize input word embeddings by encoding the history
of each word into its representation. We hypothesize that this is better than averaging word em-
beddings as sentences generally have complex semantic structure and two sentences with different
meanings can have exactly the same words. In Figure 2, the word embeddings z; are processed with
a bi-directional LSTM layer to produce h;. Bi-directional LSTM outputs are then averaged to get a
sentence representation.
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Learning Method: Let R : S — R; denote our sentence encoder mapping a given sequence of
words S to a continuous vector in R4. Given a pair of parallel sentences (S, T), we define the loss
L of our cross-lingual sentence encoder model as:

Lst = ||Rs — Re||” (1)

Therefore, for similar sentences (S = T'), we minimize the loss L g7 between their embeddings. We
also use a noise-constrastive large-margin update to ensure that the representations of non-aligned
sentences observe a certain margin from each other. For every parallel sentence pair (S,T") we
randomly sample k negative sentences N;,7 = 1... k. With high probability IV, is not semantically
equivalent to S or 7.

We define our loss for a parallel sentence pair as follows:

k
> max(0,m + Lsr — Lsn,) )

i=1

Without the LSTM layer, this sentence encoder is similar to the BICVM |Hermann & Blunsom
(2014)) except that we use also the reversed sample (7', S) to train the model, therefore showing each
pair of sentences to the model two times per epoch.

4 CORPORA

Following the literature, we use The Europarl corpus v71 |Koehn! (2005) for initial development
and testing of our approach. We use the first S00K parallel sentences for each of the English-
German (en-de), English-Spanish (en-es) and English-French (en-fr) language pairs. We keep the
first 90% for training and the remaining 10% for development purposes. We also use additional
500K monolingual sentences from the Europarl corpus for each language. These sentences do not
overlap with the sentences in parallel data.

Words which have a frequency less than 5 for a language are replaced with the <unk> symbol. In
the joint multi-task setting, the word frequencies are counted using the combined monolingual and
parallel corpora. When using just the parallel data for the en-de pair, the vocabulary sizes are 39K
for German (de) and 21K for English (en). Vocabulary sizes are 120K for German and 68K for
English when both the parallel and the monolingual data are used.

We evaluate our model on the RCV1/RCV?2 cross-lingual document classification task where for
each language we use 1K documents for training and 5K documents for testing.

5 TRAINING

5.1 TRAINING PARAMETERS

A. Multilingual Skip-gram: We use stochastic gradient descent with a learning rate of 0.01 and
exponential decay of 0.98 after 10k steps ( 1 step = 256 word pairs), negative sampling with 128
samples, skip-gram context window of size 5. Reducing the learning rate of the skip-gram model
helps in the multi-task scenario by allowing skip-gram objective to converge in parallel with the
sentence similarity objective. We do this modification to make sure that shared word embeddings
receive enough supervision from the multilingual sentence similarity objective. At every step, we
sample equal number of monolingual and cross-lingual word pairs to make a mini-batch.

B. Sentence Encoder: We keep the batch size to be 50 sentence pairs. LSTM hidden dimension P
is one of 100, 128, 512 depending on the model. We use dropout at the embedding layer with drop
probability 0.3. Hinge-loss margin m is always kept to be sentence embedding size. We sample 5
negative samples for the noise-contrastive loss. The model is trained using the Adam optimizer with
a learning rate of 0.001 and an exponential decay of 0.98 after 10k steps ( 1 step = 50 sentence pairs
= 1 mini-batch ).

The system is optimized by alternating between mini-batches of these two tasks.
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5.2 TRAINING ROUTINES

All of our models project words from all input languages to a shared vector space. We train four
types of models.

o Sent-Avg: This model simply averages word embeddings to get a sentence embedding. Itis
similar to BICVM-add model from Hermann & Blunsom!(2014)), but we also add sentence
pairs in the opposite direction, so that the model performs well in both directions.

e Sent-LSTM: Represents words in context using the bidirectional LSTM layer, which are
then averaged to get sentence embeddings.

o JMT-Sent-Avg: Multilingual skip-gram jointly trained with Sent-add. In this setting, the
model is optimized by alternating between mini-batches for the two models. JMT refers to
Joint Multi-task.

o JMT-Sent-LSTM: Multilingual skip-gram jointly trained with Sent-LSTM.

6 EXPERIMENTS

We report results on the Reuters RCV1/RCV2 cross-lingual document classification (CLDC) task
Klementiev et al.|(2012) using the same experimental setup. We learn the distributed representations
on the Europarl corpus.

We construct document embeddings by averaging sentence embeddings. Sentence representations
are fixed vectors determined by a sentence encoder trained on parallel and monolingual Europarl
corpora. For a language pair L1-L2, a document classifier (single layer average perceptron) is
trained using the document representations from L1, and tested on documents from L2. Due to
lack of supervision on the test side, CLDC setup relies on documents with similar meaning having
similar representations.

Table 1, shows the results for our systems and compares it to some state-of-the-art approaches. When
the sentence embedding dimension is 128, we outperform most of the systems compared. When the
sentence embedding dimension is increased to 512, our results are close to the best results obtained
for this task. Our models with an LSTM layer (Sent-LSTM and JMT-Sent-LSTM) are significantly
better than those without one. There are also significant gains when the document embeddings are
obtained from sentence encoders trained in the multi-task setting. The ablation experiments where
we just use parallel corpora suggest that these gains are mostly due to additional monolingual data
that we can exploit in the multi-task setting.

Model en —de de—en

dim=128

BiCVM-ADD 86.4 74.7
BiCVM-BI 86.1 79.0
BiSkip-UnsupAlign 88.9 77.4
Sent-Avg 88.2 80.0
JMT-Sent-Avg 88.5 80.5
Sent-LSTM 89.5 80.4
JMT-Sent-LSTM 89.0 82.2
JMT-Sent-Avg*no-mono 88.8 80.3
JMT-Sent-LSTM*no-mono ~ 89.0 81.5
dim=500

para_doc 92.7 91.5
BiSkip-UnsupAlign 90.7 80.0
Sent-Avg 91.6 84.8
JMT-Sent-Avg 90.8 83.1
Sent-LSTM 92.0 87.3
JMT-Sent-LSTM 92.3 86.2

Table 1: Results for models trained on en-de language pair. *no-mono means no monolingual data
was used in training. Dim column gives the dimension of the sentence embeddings. We compare our
model to: BiCVM-add+ |Hermann & Blunsom| (2014), BiCVM-bi+ Hermann & Blunsom| (2014),
BiSkip-UnsupAlign|Luong et al.| (2015)) and para_doc [Pham et al.|(2015a).
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Model en-es en-de de-en es-en es-de
Sent-Avg-(en,es,de,fT) 49.8 86.8 78.4 63.5 69.4
Sent-LSTM-(en,es,de.fr) 53.1 89.9 77.0 67.8 65.3

JMT-Sent-Avg-(en,es,de,fr) 51.5 87.2 75.7 60.3 72.6
IMT-Sent-LSTM-(en,es,de,fr) 56.4  89.7 75.1 63.3 68.1
JMT-Sent-LSTM 531 89.0 822 684 -

Table 2: We compare our JMT-Sent-LSTM model trained on three languages to one trained on two
languages.

6.1 SINGLE MODEL FOR MULTIPLE LANGUAGES

Table 2 compares models trained on data from four languages (en, es, de, fr) to models trained
on data from two languages. The results suggest that models trained on multiple languages perform
better when English is the source language used to train the CLDC system. The multilingual systems
also show promising results for es-de pair, for which there was no direct parallel data available.

6.2 LOW-RESOURCE SCENARIO

Model Dim en-de de-en
Sent-add 128 81.6 75.2
JMT-Sent-add 128 85.3 79.1
Sent-LSTM 128  82.1 76.0
IMT-Sent-LSTM 128 874 80.7

Table 3: JMT models show big gains when comparing Sent-add and Sent-LSTM trained on just
100k parallel sentences.
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Figure 3: Validation loss for JMT-sent-add model shows more stability and achieves a lower value
than the one for Sent-add model in the low-resource scenario. At every training step, the validation
set is created by randomly choosing 50 sentences from the development set.

The main motivation behind the multi-task architecture is to create high quality multilingual embed-
dings for languages which have limited amount of parallel data available. Therefore, we compare the
effectiveness of our Joint multi-task models in the low resource scenario, where for each language
pair we use 100k parallel sentences and 1 million monolingual sentences for training the sentence
encoder. We evaluate on the RCV1/RCV2 document classification task. Like before, we keep the
first 90% (90k parallel sentences) of parallel data for training and 10% (10k parallel sentences) for
development purposes.
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Table 3 shows that JMT training for 128 dimensional sentence embeddings gives big gains in terms
of RCV1/RCV2 document classification accuracy when we use only 100k parallel sentences. JMT-
Sent-LSTM model results are similar to (en-de) or better than (de-en) the results reported for the
BICVM model, which uses 500k parallel sentences for training. These results suggest that JMT
model can produce high quality multilingual embeddings without large amounts of parallel data.
We believe that this gain is due to the extra monolingual data, hence larger vocabulary, that the IMT
model can use transparently.

Figure 3 shows the loss curves for sent-add and JMT-Sent-add models. On the validation set, JMT-
Sent-add model gives a smoother and lower loss curve.

7 DISCUSSION AND FUTURE WORK

Our results suggest that using a parametric composition model to derive sentence embeddings from
word embeddings and joint multi-task learning of multilingual word and sentence embeddings are
promising directions. This paper is a snapshot of our current efforts and w e believe that our sen-
tence embedding models can be improved further with straightforward modifications to the model
architecture, for instance by using stacked LSTMs, and we plan to explore these directions in future
work.

In our exploration of architectures for the sentence encoding model, we also tried using a self-
attention layer following the intuition that not all words are equally important for the meaning of
a sentence. However, we later realized that the cross lingual sentence similarity objective is at
odds with what we want the attention layer to learn. When we used self attention instead of simple
averaging of word embeddings, the attention layer learns to give the entire weight to a single word in
both the source and the target language since that makes optimizing cross lingual sentence similarity
objective easier.

Even though they are related tasks, multilingual skip-gram and cross-lingual sentence similarity
models are always in a conflict to modify the shared word embeddings according to their objectives.
This conflict, to some extent, can be eased by careful choice of hyper-parameters. This dependency
on hyper-parameters suggests that better hyper-parameters can lead to better results in the multi-task
learning scenario. We have not yet tried a full sweep of the hyperparameters of our current models
but we believe there may be easy gains to be had from such a sweep especially in the multi-task
learning scenario.
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