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Abstract
Building accurate occupancy maps is crucial
for autonomous vehicles to make path planning
safer. Hilbert maps (HMs) are used for building
such occupancy maps in a continuous fashion
from depth sensors such as LiDAR in static
environments. However, HMs are highly depen-
dent on coefficients of the regularization term of
the objective function which needs to be tuned
heuristically. In this paper, we take a Bayesian
approach, thus getting rid of the regularization
term. Further, we extend the proposed model,
Bayesian Hilbert maps (BHMs), to learn long-
term occupancy maps in dynamic environments.
Comparing with the state-of-the art techniques,
experiments are conducted in environments with
moving vehicles to demonstrate the robustness
against occlusions as well as various aspects of
building long-term occupancy maps.

Video and code: https://goo.gl/5yvHT4

1. Introduction
Distinguishing occupied areas from unoccupied areas in
previously unseen and unstructured environments is impor-
tant for path planning in autonomous vehicles. The task be-
comes even more challenging in the presence of dynamic
objects such as moving vehicles. Since almost all fully
autonomous vehicles—commercial driverless cars such as
Uber, Google, etc. and trucks used in the mining indus-
try etc. (Scheding et al., 1999)—are equipped with depth
sensors such as LiDAR, the objective is to build occupancy
maps from such sparse laser or sound reflections.

Conventionally, occupancy grid maps have been used for
modeling the occupancy state of the environment by divid-
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ing the world into a fixed-sized grid and then applying a
Bayes filter for cells individually (Elfes, 1989). In order to
alleviate its limitations such as, 1) the requirement of pre-
defining a cell size, 2) completely ignoring the dependence
between cells, Gaussian process occupancy maps (GPOM)
(O’Callaghan & Ramos, 2012; Wang & Englot, 2016) were
developed. The covariance function of the Gaussian pro-
cess naturally considers neighborhood information making
GPOMs robust against occlusions.

As opposed to occupancy grid maps, GPOMs model the
occupancy as a function which can be easily queried to
evaluate the occupancy probability of any point in the en-
vironment. Such probabilistic frameworks can be effec-
tively used for path planning with safety in mind (Norouzii
et al., 2016; Marinho et al., 2016), and perform simulta-
neous mapping and planing (Francis et al., 2017) under
one framework thanks to kernelization. Nevertheless, be-
ing a Bayesian non-parametric model, the computational
complexity of GPOM—O(N3) for N data points—and
its faster implementations (Senanayake et al., 2017) grows
with the number of data points.

Bringing all advantages of GPOMs, (Ramos & Ott, 2015)
proposed a parametric model based on another kernel
method, and named it as Hilbert maps (HMs). It takes the
form of a kernelized logistic regression classifier which at-
tempts to minimize the regularized negative log-likelihood
using stochastic gradient descent to estimate its parame-
ters. Although HMs have been extended to predict short-
term dynamics (Senanayake et al., 2016), they cannot be di-
rectly used for mapping long-term dynamics—areas which
are occupied in general when observed over a period of
time, as in the proposed model illustrated by the example
in Figure 1. The reason is that it internally uses a Gaus-
sian process regression model with a squared-exponential
kernel in the time domain.

As another limitation of Hilbert maps, its objective func-
tion contains a regularization term which needs to be pre-
fixed. The regularization parameters are used to prevent
over-fitting and maintain a consistent sparsity in the map,
especially in areas where no data are available. This effect
the regularization term will be further discussed in Sec-
tion 2.3. In order to alleviate the issues in static Hilbert

https://goo.gl/5yvHT4
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(a) Motion field (b) Bayesian Hilbert Map (c) Tristate BHM

Figure 1. The long-term occupancy map produced using the proposed algorithm—Bayesian Hilbert maps (BHM)—after observing the
field for several minutes The robot, indicated by the black arrow head, resides at the middle of the two roads. Its field of view is
shown in blue laser beams with red laser hit points, when there are no moving vehicles. Static objects such as buildings and parked
vehicles are shown in yellow and the traffic flow in green arrows. Vehicles moving in the upward direction are more frequent than that of
downward. Therefore, after several laser observations, the occupancy probability of the left road shown in (b) is higher than that of the
right road. More occupied areas are indicated by +1 while less occupied areas are indicated by −1. The occupancy level of the unseen
outlying areas is almost 0, i.e. uncertain. (c) is the tristate BHM map showing occupied, unoccupied, and undecidable was obtained by
rounding the occupancy levels to the nearest integers∈ {−1, 0,+1}. Since the model captures neighborhood relationships, areas around
(−50, 15), (−50, 35) and (60, 20) are correctly mapped, regardless of occlusions due to the three parked vehicles.

maps we propose techniques to,

1. eliminate crucial parameter tuning in Hilbert maps

2. analyze long-term dynamics.

For the best of our knowledge, the other methods that con-
cern about dynamics in the environment when building oc-
cupancy maps are either for extracting patterns (Saarinen
et al., 2012; Meyer-Delius et al., 2012; Wang et al., 2015;
Mitsou & Tzafestas, 2007; Krajnık et al., 2014) or eliminat-
ing dynamic objects from the environment in order to build
robust static maps (Hahnel et al., 2003; Walcott, 2011). In
contrast, as in (Senanayake et al., 2017), our method fo-
cused on developing long-term dynamic maps which can
later be used for path planning. On the other hand, the
other methods are prone to limitations of grid maps.

2. Hilbert Maps
The Hilbert maps framework (Ramos & Ott, 2015) is devel-
oped for building continuous occupancy maps in static en-
vironments. It makes use of regularized logistic regression
to model occupied and unoccupied states, and optimizes its
model parameters using stochastic gradient descent (SGD).

2.1. Data

It is assumed that data points are collected from a line-
of-sight depth sensor such as LiDAR or sonar. The end
point of each beam, when it hits an obstacle, is labeled as
an occupied point y = 1, and samples drawn from a uni-
form distribution with a support between the sensor and
the end point are labeled as unoccupied points y = −1.

The spatial locations, latitude and longitude, correspond to
each y are denoted by x ∈ R2. N such input-output pairs
{xn, yn}Nn=1 will be used for supervised learning.

2.2. The Hilbert maps model

Hilbert maps are based on an approximate kernel defined
by the inner product kern(x, x̃) ≈ Φ(x)>Φ(x̃) with fea-
tures Φ(·). Although three different features are suggested
in (Ramos & Ott, 2015), our discussion will be based on
hinged features defined by,

k(x, x̃) = exp
(
− ‖x− x̃‖2

l

)
, (1)

as they have a physical meaning and, as also concluded
by authors, they experimentally outperform other features.
Here, l is the length scale which controls the width of the
Gaussian-shaped curve, and x̃ is a spatially fixed point in
the environment. Having M such points hinged in differ-
ent locations of the environment, the feature vector can be
computed by,

Φ(x) =
(
k(x, x̃1), k(x, x̃2), ..., k(x, x̃M )

)
, (2)

The probability that a point in the environment is not-
occupied is defined by the sigmoid function,

p(y = −1|x,w) =
1

1 + exp
(
w>Φ(x)

) =: σ(−w>Φ(x)).

(3)

The parameters w are learned by minimizing the regular-
ized negative log-likelihood,

N∑
i=1

log
(

1 + exp
(
− yiw>Φ(x)

))
+ Reg(w), (4)
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where,
Reg(w) = α1‖w‖1︸ ︷︷ ︸

Lasso

+α2‖w‖22︸ ︷︷ ︸
Ridge

, (5)

with α1 and α2 regularization parameters.

2.3. Importance of regularization

The regularization term in (5) is commonly known as the
elastic-net regularizer which can be set as a convex com-
bination of Lasso and Ridge regularization. The L1 norm
controls the sparsity while the L2 norm controls the con-
vexity. As illustrated in Figure 2, the Hilbert map model
heavily depends on the regularization and requires careful
tuning.

Figure 2. The white arrows show the position of the robot while
the white arcs show the range the robot can see. (a) Hilbert maps
“without regularization” consider areas where there are no data
as unoccupied—majority dark blue, (b) Bayesian Hilbert maps
which does not explicitly require a regularization term intrinsi-
cally identify such areas as unknown—green.

3. Bayesian Hilbert Maps
3.1. The model

As with HMs, data are collected as discussed in Section 2.1
and features Φ(x) are computed using (2). However, unlike
HMs, we will take a Bayesian approach, effectively elimi-
nating the requirement of regularization terms, rather than
minimizing the regularized negative log-likelihood. It is
not possible to obtain an analytical solution for the poste-
rior because of the sigmoid likelihood, and hence, as indi-
cated by (6), the posterior is approximated by another dis-
tribution Q.

P(w, α|x,y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(y|x,w)×

prior︷ ︸︸ ︷
P(w|α)×

hyper-prior︷ ︸︸ ︷
P(α)

P(y)︸ ︷︷ ︸
marginal likelihood

≈ Q(w, α)︸ ︷︷ ︸
approx.

posterior

= Q(w)Q(α)︸ ︷︷ ︸
factorized approx.

posterior

(6)

Each term of (6) will be elaborated in the following sec-
tions.

3.1.1. THE LIKELIHOOD

As discussed in Section 2.1, LiDAR data points are inde-
pendent from each other and hence the data likelihood can
be written as,

P(y|x,w) =

N∏
n=1

P(yn|xn,w) =

N∏
n=1

σ(ynw>xn). (7)

This sigmoid likelihood does not have a conjugate prior.
Therefore, it will be locally approximated by the exponen-
tial of a quadratic form in such a way a standard prior dis-
tribution can be used to make the posterior evaluable using
variational inference (Bishop, 2006).

Theorem 1 (Jaakkola & Jordan, 1997) A sigmoid likeli-
hood σ(yr) := P(t|r) can be lower bounded by,

σ(yr) ≥ σ(ξ) exp
(ξ − r

2
− λ(ξ)

(
r2 − ξ2

))
, (8)

where,

λ(ξ) =
1

2ξ

(
σ(ξ)− 1

2

)
, (9)

with ξ as a local parameter used to linearize the function
using the Taylor expansion.

Letting r = w>Φ in Theorem 1 provides a lower bound for
the data likelihood defined in (7). ξ parameters that needs
to be learned from data.

3.1.2. THE PRIOR DISTRIBUTION

Rather than having a pre-defined hyperparameter α in
P(w|α), the objective is to learn α from the data itself.
Hence, a Gaussian prior P(w|α) = N (w|0, α−1I) will
be used with a Gamma hyper-prior P(α) = Γ(α|a0, b0),
where constants a0 and b0 are shape parameter and scale
parameter, respectively. For automatic relevance determi-
nation, each weight can have separate α values.

3.1.3. THE POSTERIOR DISTRIBUTION

Considering the mean-field approximation (Bishop, 2006),
the posterior distribution is factorized as Q(w, α) =
Q(w)Q(α), where Q(w) = N (w|µ,Σ) and Q(α) =
Γ(a, b). In the learning phase, it is required to learn param-
eters µ,Σ, a, and b to accurately model occupancy states.

3.2. Learning parameters

The marginal likelihood,

P(y|x) =

∫ ∫
P(y|x,w)P(w|α)P(α)dwdα, (10)
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is intractable. Therefore, in variational inference, the log-
marginal likelihood is decomposed as,

ln P(y|x)︸ ︷︷ ︸
marginal

likelihood

= L
(

Q(w, α)︸ ︷︷ ︸
approx.

posterior

)
+KL(Q(w, α)︸ ︷︷ ︸

approx.
posterior

‖P(w, α|x,y)︸ ︷︷ ︸
posterior

)
,

(11)

where,

L =

∫ ∫
Q(w, α)ln

(
P(w, α,y)

Q(w, α)

)
dwdα, (12)

is a lower bound, and,

KL = −
∫ ∫

Q(w, α)ln

(
P(w, α|y)

Q(w, α)

)
dwdα, (13)

is the Kullback-Leibler divergence. Typically, the objective
is to find w and α that minimize the distance, i.e. KL-
divergence, between the approximate posterior and true
posterior. However, since computing KL-divergence re-
quires access to the true posterior which we do not have,
instead of minimizing the KL term, the lower bound L is
maximized, considering the fact that marginal likelihood
does not depend on parameters.

Unlike in the generic setting, L is also not explicitly com-
putable here because of the sigmoid likelihood. Therefore,
combining the bound (8) with the decomposition (11), a
new lower bound L̃(Q, ξ) ≤ L(Q) is obtained.

L̃(Q, ξ) =
1

2
log |Σn|+

1

2
µnΣ−1n µn

>

+

n∑
t=0

(
log σ(ξt) + ξ2t λ(ξt)−

ξt
2

)
+ log

Γ(an)

Γ(a0)
+ log

b0
a0

bn
an

+ an

(
1− b0

bn

)
(14)

Algorithmically, although it is not required to compute (14)
to learn parameters, it is useful to evaluate it once every
few steps to guarantee the convergence. The variational
parameters can be learned using the following iteratively
as an Expectation-Maximization (EM) procedure.

E-step : In the expectation step, ξ values are fixed and
µ,Σ, a, and b are updated.

M-step: In the maximization step, µ,Σ, a, and b are fixed
and ξ values are updated.

3.3. Online learning

For each data point in each sequential scan x∗, except for
the very first scan, f(x∗) is calculated and if each data point

satisfies the criterion |f(x∗) − ytrue| ≥ η such data points
are used for learning the map. Here, f(·) is the function
that is used to query from the map that has been learned
before incorporating the data from the new scan, and ytrue
are the actual occupancy state ∈ {+1,−1} of each point
in the current scan. As illustrated in Figure 3, this filters
points that can provide new information and η is the thresh-
old for the filter. For instance, if a vehicle is moving into a
new area, new information around that area will be higher
than stationary areas. Although we attempted to use cross
entropy, the aforementioned criterion experimentally gave
better results.

Figure 3. Having learned the map for t − 1 time steps, the in-
formation gain is calculated for each point in the tth scan. The
higher values, i.e. red, indicates new information such as an area
a vehicle has entered. Therefore, adding data points with smaller
values, say values < 0.3, does hardly improve the accuracy.

3.4. Querying

Simply, in order to evaluate the occupancy level of any
point in the environment x∗, it is required to evaluate
the map function. Therefore, the predictive distribution is
obtained by marginalizing over the posterior distribution.
Therefore, the log-probability that a given point is occu-
pied log P(y = 1|x∗,x,y) can be approximated as,

1

2

(
µ∗Σ

−1
∗ µ∗

> − µnΣ−1n µn
>
)

+
1

2
log
|Σ∗|
|Σn|

+ log σ(ξ∗) + ξ2∗λ(ξ∗)−
ξ∗
2
, (15)

where,
Σ−1∗ = Σ−1n + 2λ(ξ∗)x∗x

>
∗ , (16)

µ∗ = Σ∗

(
Σ−1n µn +

1

2
x∗

)
, (17)
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and
ξ∗ = x>∗ (Σ∗ + µ>µ)x∗ (18)

Note that ξ∗ depends on µ∗,Σ∗ and vice versa. Hence,
(16)-(17) and (18) have to be estimated iteratively to find
the best values. Note that these computations are straight-
forward and inexpensive. There are alternative approaches
as well.

4. Experiments
4.1. Experimental setup and evaluation

Two datasets taken from (Senanayake et al., 2017) will be
used for experiments. Dataset 1 is obtained from a simu-
lator which resembles a 80 m LiDAR covering 1800. As
shown in Figure 1, this dataset has been designed in such
a way that vehicles travel more often in the left lane than
in the right lane. The walls in the sides of the roads are
partially occluded by the parked vehicles. Datasets 2 is
taken from a real world four way intersection with vehicles
turning in different directions following traffic lights. Its
LiDAR covers 1800 in a 30 m radius.

The proposed model, BHM, will be compared against,
1) variational sparse dynamic against Gaussian process
occupancy maps (VSDGPOM) (Senanayake et al., 2017)
which is capable of building similar maps to BHM, 2)
dynamic Gaussian process occupancy maps (DGPOM)
(O’Callaghan & Ramos, 2014), and 3) dynamic Grid maps
(DGrid), an extension of occupancy grid maps to dynamic
environments by keeping memory in each cell individually
(Arbuckle et al., 2002).

All experiments were run on a laptop with a 8 GB RAM. It
is assumed that the robot is stationary and the localization is
given. As in (Senanayake et al., 2017), the area under the
receiver operating characteristic (ROC) curve (AUC) will
be used as the fundamental measure for comparisons. As
an additional metric, negative log-likelihood loss (NLL),
also known as cross entropy, defined by − log p(y|y∗) =
−y log

(
y∗
)
+(1−y) log(1−y∗) will be used for evaluating

accuracy in the spatio-temporal setting.

Unless otherwise mentioned, the following parameter val-
ues were used for all experiments: a0 = 10−3, b0 = 10−4,
η = 0.3, and l = 1/0.15. As discussed in Section 3.1.2, the
method is less sensitive to a0 and b0 because they are initial
values of the hyper-prior which is used to learn the parame-
ters of the prior. The filtering threshold η can be thought as
a parameter which controls the tread off between the speed
and accuracy. The effect of l which is the only crucial pa-
rameter will be discussed in Section 4.2. The accuracy of
predicting the occupancy level of a given location is dis-
cussed in Section 4.3. The experiments section concludes
by analyzing spatio-temporal effects in Section 4.4.

4.2. Effect of the length scale

In this section, we demonstrate the effect of the length
scale. As shown in Figure 4, intuitively, the length scale
controls the smoothness of the map. For instance, small
length scales tend to produce less smooth maps while cap-
turing sharp edges. In contrast, large length scales produce
smoother maps because each point has a very high influ-
ence on even farther neighbors making an average over a
large local realm.

Figure 4. The effect of length scale for the LiDAR scan at t = 0
in dataset 1. Reading from left to write, θ values from top left
to bottom right are 0.1, 0.5, 0.8, 1, 2, and 10, where length
scale is l = 1/(0.75 × θ) for a squared-exponential kernel
exp

(
− ‖x−x̃‖2

l

)
.

4.3. Spatial accuracy

In order to determine how well the occupancy probabil-
ity of a given location can be predicted accurately, always
occupied areas such as walls, parked vehicles, and always
unoccupied areas were labeled manually. Note that this test
dataset contains both occluded and non-occluded areas of
the environment. The AUC is calculated over a period of
time as the map is built sequentially. The first two nu-
merical columns of Table 1 indicate that spatial accuracy
of BHMs is comparable to Gaussian process based tech-
niques, while higher than grid maps.
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The last column of Table 1 reports the accuracy of pre-
dicting occupancy state in occluded areas such as behind
parked vehicles. As expected, the grid based method is
not robust against occlusions as it does not consider neigh-
borhood information unlike the other three kernel methods.
However, on a different note, if the occlusions are large and
the area is not visible at all, obviously, even kernel based
methods are also not robust against occlusions, and the ac-
curacy will not be close to one. Nevertheless, in compari-
son with DGrid, we demonstrate the advantage of consid-
ering neighborhood information.

Table 1. Average AUC (µ± 2σ) for labeled spatial data. The first
two columns show accuracy based on randomly selected points
from the environment and the last column indicates accuracy of
predicting occluded areas.

Method Dataset 1 Dataset 2 Dataset 1 Occ
BHM 1.00 ± 0.01 1.00 ± 0.02 1.00 ± 0.00
VSDGPOM 0.99 ± 0.04 1.00 ± 0.00 1.00 ±0.00
DGPOM 0.99 ± 0.02 0.98 ± 0.08 0.99 ± 0.02
DGrid 0.78 ± 0.04 0.84 ± 0.17 0.50 ± 0.00

4.4. Learning long-term maps

In this experiment, we demonstrate building spatio-
temporal maps. Figures 1 and 5 illustrate such long-term
occupancy maps—which areas of the environment are oc-
cupied in general.

Figure 5. The satellite map of dataset 2 on left and its BHM or
right. The arrows indicate the traffic flow of the busy four-way
intersection.

In Figure 6, BHM is compared against other methods. In
both datasets, the AUC of BHM is comparable to VSDG-
POM at the beginning and AUC becomes slightly higher as
it receives more data. The NLL measure of BHM is almost
always slightly lower than that of VSDGPOM (the lower
the NLL, the better the model is) while significantly lower
than DGrid. Although DGPOM and DGPOM50% (GPOM
with half of data removed randomly for speeding up) seems
to have a better NLL, they cannot be run for more than ap-
proximately 50 time steps because of the unwieldy growing
computational time which is also clear from the bottom row

Figure 6. Left column: Dataset 1, Right column: Dataset 2. The
first two rows show accuracy metrics while the bottom row shows
the time performance. In general, BHMs have a significantly
higher accuracy over grid based methods and have a slightly better
accuracy over Gaussian process based methods.

of Figure 6. In summary, BHMs are faster, yet have a sim-
ilar accuracy to that of Gaussian process based methods.

5. Future Work
The current python implementation of the algorithm is a
crude version programmed merely for pilot experiments
and for demonstrating the feasibility of the method. Taking
a different approach, sequential learning can be done by
feedbacking the posterior in the current step into the prior
in the next step. Additionally, we intend to learn the length
scale of the kernel to satisfy a given accuracy criterion in
a more theoretically sound manner. For instance, recall
that we observed in Section 4.2 that smaller length scales
are desirable close to edges. Therefore, learning these lo-
cal length-scale in a more principled approach is certainly
valuable.

6. Conclusions
We extended the Hilbert maps algorithm for mapping long-
term dynamics. Furthermore, we eliminated some vital pa-
rameter tuning in conventional Hilbert maps, making it fur-
ther easier to use. Additionally, we demonstrated that the
maps are less susceptible to occlusions as they consider
neighborhood information. These inherent properties in
Bayesian Hilbert maps as well as the main workhorse of
the algorithm—kernels—can be use for probabilistic path
planing in autonomous vehicles.
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