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ABSTRACT

The ability to generalize from past experience to solve previously unseen tasks is a
key research challenge in reinforcement learning (RL). In this paper, we consider
RL tasks defined as a sequence of high-level instructions described by natural lan-
guage and study two types of generalization: to unseen and longer sequences of
previously seen instructions, and to sequences where the instructions themselves
were previously not seen. We present a novel hierarchical deep RL architecture
that consists of two interacting neural controllers: a meta controller that reads in-
structions and repeatedly communicates subtasks to a subtask controller that in
turn learns to perform such subtasks. To generalize better to unseen instructions,
we propose a regularizer that encourages to learn subtask embeddings that capture
correspondences between similar subtasks. We also propose a new differentiable
neural network architecture in the meta controller that learns temporal abstrac-
tions which makes learning more stable under delayed reward. Our architecture
is evaluated on a stochastic 2D grid world and a 3D visual environment where
the agent should execute a list of instructions. We demonstrate that the proposed
architecture is able to generalize well over unseen instructions as well as longer
lists of instructions.

1 INTRODUCTION

Humans can often generalize to novel tasks even without any additional learning by leveraging past
learning experience. We would like our artificial agents to have similar “zero-shot” generalization
capabilities. For example, after learning to solve tasks with instructions such as ‘Go to X (or Y)’ and
‘Pick up Y (or Z)’, our agent should be able to infer the underlying goal of new tasks with instruc-
tions like ‘Go to Z’, which requires disentangling the verbs (‘Go to/Pick up’) and the nouns/objects
(‘X, Y, Z’). Furthermore, we would like our agents to learn to compose policies to solve novel tasks
composed of sequences of seen and unseen instructions. Developing the ability to achieve such
generalizations is a key challenge in artificial intelligence and the subfield of reinforcement learning
(RL).

Figure 1: Example of grid-world and in-
structions. The agent is tasked to exe-
cute longer sequences of instructions after
trained on short sequences of instructions; in
addition previously unseen instructions can
be given during evaluation (blue text). The
agent can get more rewards if it deals with
randomly appearing enemies (red outlined
box) regardless of current instructions.

In this paper, we study the problem of zero-shot task gen-
eralization in RL by introducing the “instruction execu-
tion” problem where the agent is required to learn through
interaction with its environment how to achieve an overall
task specified by a list of high-level instructions (see Fig-
ure 1). As motivation for this problem consider a human
owner training its new household robot to execute com-
plex tasks specified by natural language text that decom-
pose the task into a sequence of instructions. Given that
it is infeasible to explicitly train the robot on all possible
instruction-sequences, this problem involves two types of
generalizations: to unseen and longer sequences of previ-
ously seen instructions, and sequences where the some of
the instructions themselves were previously not seen. Of
course, the usual RL problem of learning policies through
interaction to accomplish the goals of an instruction re-
mains part of the problem as well. We assume that the
agent does not receive any signal on completing or fail-
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ing to complete individual instructions from the environment/owner and so the informative reward
signal is delayed until the end. Furthermore, there can be random events in the environment that
require the agent to interrupt whatever it is doing and deviate from the instructions to maintain some
background task as described in Figure 1. Altogether this makes for a challenging zero-shot task
generalization RL problem.

Brief Background: RL tasks composed of sequences of subtasks have been studied before and a
number of hierearchical RL approaches designed for them. Typically these have the form of a meta
controller and a set of lower-level controllers for subtasks (Sutton et al., 1999; Dietterich, 2000;
Parr and Russell, 1997). The meta controller is limited to selecting one from a set of lower-level
controllers to employ at any time. This makes it impossible for the low-level controller to generalize
to new subtasks without training a new low-level controller separately. Much of the previous work
also assumes that the overall task is fixed (e.g., Taxi domain (Dietterich, 2000; Ghavamzadeh and
Mahadevan, 2003)). Transfer learning across multiple compositional tasks has typically been studied
in RL formulations in which new tasks are only presented via a new reward function from the
environment (Singh, 1991; 1992) and so there is no opportunity for fast model-free generalization.
To the best of our knowledge, zero-shot model-free generalization to new or longer tasks as well as
unseen tasks has not been well-studied in the RL setting.

Our Architecture: This paper presents a hierarchical deep RL architecture (see Figure 2) that con-
sists of two interacting neural controllers: a meta controller that repeatedly chooses an instruction
and conditioned on the current state of the environment translates it into subtask-arguments (details
on this in later sections) and communicates those to the subtask controller that in turn chooses prim-
itive actions given the subtask. This makes the subtask controller a parameterized option (Sutton
et al., 1999) module in which the parameters are the subtask-arguments mentioned above. On top of
the subtask controller, the meta controller is trained to select proper subtask-arguments depending
on observations from the environment, feedback from the subtask controller about termination, and
the task instructions. In order to generalize over unseen instructions, we propose analogy-making
regularization (discussed in Section 4.1) which encourages to learn subtask embeddings that capture
correspondences between similar subtasks. In addition, we propose a new differentiable neural ar-
chitecture in the meta controller that implicitly learns temporal abstractions so that it can operate at
a larger time-scale and update the subtask-arguments to the subtask controller only when needed.

Our Results: We developed a 2D grid world environment where the agent can interact with many
objects as illustrated in Figure 1 based on MazeBase (Sukhbaatar et al., 2015) (see Section 6.1 for
details). The empirical results show that the meta-controller’s ability to learn temporal abstractions
and a form of analogy-making regularization were all key in allowing our hierarchical architecture
to generalize in a zero-shot fashion to unseen tasks. We also demonstrated that the same architecture
can also generalize to unseen and longer instructions in a 3D visual environment.

2 RELATED WORK

Hierarchical Reinforcement Learning. In addition to hierarchical RL described in Section 1,
there is a line of work on portable options for solving sequential tasks (Konidaris et al., 2012;
Konidaris and Barto, 2007). They proposed agent-space options that can be re-used to deal with
new problems. However, the optimal sequence of options (e.g., picking up a key followed by open-
ing a door) is fixed throughout training and evaluation in their problem. On the other hand, the agent
is required to perform new sequences of tasks depending on given instructions in our work. Our
work is also closely related to Programmable HAM (PHAM) (Andre and Russell, 2000; 2002) in
that PHAM is designed to execute a given program. However, the program explicitly specifies the
policy in PHAM which effectively reduces state-action space. In contrast, a list of instructions is a
partial description of the task in our work, which means that the policy is not forced to follow the
instructions but to use them as a guide to maximize its reward. For example, interrupt conditions
need be manually specified by the program in PHAM, while they are not specified in the instructions
but should be learned by the agent in our framework.

Hierarhical RL has been recently combined with deep learning. Kulkarni et al. (2016) proposed
hierarchical Deep Q-Learning and demonstrated improved exploration in a challenging Atari game.
Tessler et al. (2016) proposed a similar architecture that allows the high-level controller to choose
primitive actions directly. Bacon and Precup (2015) proposed option-critic architecture which learns
options without any domain knowledge and demonstrated that it can learn distinct options in Atari
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games. Vezhnevets et al. (2016) proposed a deep architecture that automatically learns macro-
actions. Unlike these recent works that aim to solve a single task, the goal of our work is to build a
multi-task policy that can generalize over many different sequences of tasks.

Zero-shot Task Generalization and Parameterized Option. There has been only a few stud-
ies that aim to generalize over new tasks in a zero-shot fashion (i.e., without additional learning).
da Silva et al. (2012) proposed the concept of parameterized skill which maps a set of task descrip-
tions to policies. Similarly, Isele et al. (2016) proposed a method for zero-shot task generalization
which uses task descriptors to predict the parameter of the policy and proposed a coupled dictionary
learning with sparsity constraints to enable zero-shot learning. Schaul et al. (2015) proposed univer-
sal value function approximators (UVFA) that learn a value function given a state and goal pair and
showed that their framework can generalize over unseen goals. Borsa et al. (2016) proposed to learn
a representation of state and action shared across different tasks. However, the proposed approach
lacks the ability to solve new tasks in a zero-shot way. Our subtask controller implements the idea of
parameterized skill or universal option. Unlike the previous works, however, we propose to build a
high-level controller (meta controller) on top of the subtask controller to deal with sequential tasks.

Instruction Execution. There has been a line of work for building agents that can execute natural
language instructions: Tellex et al. (2011; 2014) for robotics and MacMahon et al. (2006); Chen and
Mooney (2011); Mei et al. (2015) for a simulated environment. However, these approaches focus
on natural language understanding to map instructions to a sequence of actions or groundings in
a supervised setting. In contrast, we focus on generalization to different sequences of instructions
without any supervision for language understanding or for actions. Branavan et al. (2009) also tackle
a similar problem of mapping from natural language instructions to a sequence of actions through
RL. However, the agent is given a single sentence at a time from the environment, while the agent
has to deal with a full list of instructions in our problem. In addition, they do not discuss how to deal
with unseen instructions which is the main focus of our paper.

3 OVERVIEW

Figure 2: Overview of our architecture

Goal. We aim to learn a multi-task policy which is a map-
ping π : S ×M → A where S is a set of states (or obser-
vations), M is a set of lists of instructions, and A is a set
of primitive actions. More importantly, sinceM can be ar-
bitrary large, our goal is to find an optimal policy π∗ on a
very small set of lists of instructionsM′ ⊂M such that π∗
is also optimal in the entire set of lists of instructionsM.

Hierarchical Structure and Communication Protocol.
As illustrated in Figure 2, the proposed architecture consists
of a meta controller which selects a subtask and a subtask
controller which executes the given subtask. The subtask is
further decomposed into several arguments. More specif-
ically, a space of subtasks G is defined using the Carte-
sian product of their arguments G(1) × · · · × G(n), where G(i) is a set of the i-th arguments (e.g.,
G = {Visit,Pick up} × {A,B}). In addition, the subtask controller provides a useful information
to meta controller by giving a terminal signal for the given subtask. This communication protocol
allows each controller to not only focus on their own independent roles but also communicate with
each other to learn a complex closed-loop policy.

Subtask Controller. The subtask controller is a mapping S×G → A×B which maps a state and a
subtask to an action and a termination signal (B = {0, 1}) indicating whether the subtask is finished
or not. The subtask controller is trained prior to training the meta controller. The main challenge for
the subtask controller is that only a subset of subtasks (U ⊂ G) is observed during training, and it
should be able to generalize over unseen subtasks without experiencing them. Section 4 describes
how to construct the subtask architecture parameterized by a neural network and discusses how to
generalize over unseen subtasks.

Meta Controller. The meta controller is a mapping S×M×G×B → G which decides a subtask
from a state, a list of instructions, a subtask that is currently being executed, and whether the subtask
is finished as input. Thus, the meta controller should understand natural language instructions and
pass proper subtask arguments to the subtask controller.

3



Under review as a conference paper at ICLR 2017

Observation

Subtask
arguments

Action

Termination?
Subtask
embedding

Input

Output

Recurrent

(a) Subtask controller

Observation Context

Subtask
arguments

Subtask
arguments

Retrieved 
instruction

Subtask
termination?

Instruction
memory

Subtask
Updater

Update
Yes

No

Instructions

(b) Meta controller
Figure 3: Proposed neural network architectures. See text for details.

It is important to note that natural language instructions are not directly subtasks; indeed there is not
a one-to-one correspondence between instructions and subtask-arguments. This is due to a number
of important reasons. First, instructions such as ’Pick up all X’ are executed by repeatedly solving a
subtask [Pick up, X]. Second, the meta controller sometimes needs to interrupt ongoing subtasks and
replace them with other subtasks that are not relevant to the instruction because of the background
task based on the stochastic events as described in Figure 1.

Another challenge for the meta controller is that it should deal with partial observability induced by
the list of instructions. This is because the agent is not given which instruction to execute at each
time-step from the environment but given just a full list of instructions. Thus, the meta controller
should remember how many instructions it has executed and decide when to move to the next in-
struction. Section 5.1 describes how to construct a memory-based neural network to deal with this
challenge.

Finally, it is desirable for the meta controller to operate in a larger time-scale due to the fact that a
subtask does not change frequently once it is chosen. We describe a novel way to implicitly learn
such a temporal scale of the meta controller through neural networks in Section 5.2.

4 SUBTASK CONTROLLER

Given an observation st ∈ S and subtask arguments g =
[
g(1), ..., g(n)

]
∈ G, the subtask controller

is defined as the following functions:

Policy: πφ(at|st, g) Termination: βφ(bt|st, g) = Pφ(st ∈ Tg)

where πφ is the policy optimized for the subtask. βφ is a termination function which is a probability
that the state is terminal or not for given a subtask. Tg is the set of terminal states. The subtask
controller is parameterized by φ which is represented by a neural network as illustrated in Figure 3a.
The network learns a representation of the subtask ϕ(g), and it is used to condition the entire network
through multiplicative interactions as suggested by Memisevic and Hinton (2010); Lei Ba et al.
(2015); Bertinetto et al. (2016). Further details are described in Appendix F.

4.1 LEARNING TO GENERALIZE BY ANALOGY-MAKING

When learning a non-linear subtask embedding from arguments, ϕ (g), it is desirable for the network
to learn prior knowledge about the relationship between different subtask arguments in order to infer
the goal of unseen configurations of arguments. To this end, we propose a novel analogy-making
regularizer inspired by Reed et al. (2015); Hadsell et al. (2006); Reed et al. (2014). The main idea is
to learn correspondences between subtasks. For example, if target objects and ‘Visit/Pick up’ tasks
are independent, we can enforce [Visit, X] : [Visit, Y] :: [Pick up, X] : [Pick up, Y] for any X and Y
in the embedding space so that the agent learns to perform [Pick up, Y] as it performs [Pick up, X]
and vice versa.

More specifically, we define several constraints as follows:

‖ϕ (gA)− ϕ (gB)− ϕ (gC) + ϕ (gD)‖ ≈ 0 if gA : gB :: gC : gD (1)
‖ϕ (gA)− ϕ (gB)− (gC) + ϕ (gD)‖ ≥ τdis if gA : gB 6= gC : gD (2)

‖ϕ (gA)− ϕ (gB)‖ ≥ τdiff if gA 6= gB (3)
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where gk =
[
g
(1)
k , g

(2)
k , ..., g

(n)
k

]
∈ G are subtask arguments. Eq. (1) represents the analogy-making

relationship, while Eq. (2) and and Eq. (3) prevent trivial solutions. To satisfy the above constraints,
we propose the following objective functions based on contrastive loss (Hadsell et al., 2006):

Lsim = E(gA,gB ,gC ,gD)∼Gsim
[
‖ϕ (gA)− ϕ (gB)− (gC) + ϕ (gD) ‖2

]
(4)

Ldis = E(gA,gB ,gC ,gD)∼Gdis

[
max (0, τdis − ‖ϕ (gA)− ϕ (gB)− (gC) + ϕ (gD) ‖)2

]
(5)

Ldiff = E(gA,gB)∼Gdiff

[
max (0, τdiff − ‖ϕ (gA)− ϕ (gB) ‖)2

]
(6)

where Gsim,Gdis,Gdiff consist of subtask arguments satisfying conditions in Eq. (1), Eq. (2) and
Eq. (3) respectively. τdis, τdiff are threshold distances (hyperparameters). The final analogy-
making regularizer is the weighted sum of the above three objectives.

Analogies Under Non-independence. Although we use analogy-making regularizer so that all
configurations of subtasks arguments are valid and independent from each other throughout the
main experiment, our analogy-making regularizer can also be used to inject prior knowledge so that
the agent generalizes to unseen subtasks in a specific way. For example, if some objects should be
handled in a different way given the same subtask, we can apply analogy-making regularizer so that
Eq. 1 is satisfied only between the same type of objects. This is further discussed in Appendix B.

4.2 TRAINING

The subtask controller is trained on a subset of subtasks (U ⊂ G) by directly providing subtask
arguments. The policy of the subtask controller is trained through the actor-critic method (Konda
and Tsitsiklis, 1999) with generalized advantage estimation (GAE) (Schulman et al., 2015). We also
found that pre-training the subtask controller through policy distillation (Rusu et al., 2015; Parisotto
et al., 2015) gives slightly better results. The idea of policy distillation is to train separate policies
for each subtask and use them to provide action labels to train the subtask controller. Throughout
training, the subtask controller is also made to predict whether the current state is terminal or not
through a binary classification objective, and analogy-making regularizer is applied to the subtask
embedding separately. The full details of the learning objectives are described in Appendix E.1.

5 META CONTROLLER

The role of the meta controller is to decide subtask arguments gt ∈ G from an observation st ∈ S, a
list of instructionsM ∈M, the previously selected subtask gt−1, and its termination signal (b ∼ βφ)
from the subtask controller. Section 5.1 describes the overall architecture of the meta controller for
dealing with the partial observability induced by the list of instructions as discussed in Section 3. We
describe a novel way to learn the time-scale of the meta controller so that it can implicitly operate in
a large time-scale in Section 5.2.

5.1 ARCHITECTURE

In order to keep track of its progress on instruction execution, the meta controller maintains its
internal state by computing a context vector (described in Section 5.1.1) and by focusing on one in-
struction at a time from the list of instructionsM (described in Section 5.1.2). The entire architecture
is illustrated in Figure 3b and further details are described in Appendix F.

5.1.1 CONTEXT

Given the sentence embedding rt−1 retrieved at the previous time-step from the instructions (de-
scribed in Section 5.1.2), the previously selected subtask gt−1, and the subtask termination bt ∼
βφ
(
bt|st, gt−1

)
, the meta controller computes the context vector (ht) through a neural network:

ht = fθ
(
st, rt−1, gt−1, bt

)
where fθ is a neural network parameterized by θ. Intuitively, gt−1 and bt provide information about
which subtask was being solved by the subtask controller and whether it has been finished or not.
Note that the subtask does not necessarily match with the retrieved instruction (rt−1), e.g., when
the agent is dealing with the background task. By combining all the information, ht encodes the
spatio-temporal context which is used to determine which instruction to solve and the next subtask.
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5.1.2 SUBTASK UPDATER

The meta controller has a subtask updater that constructs a memory structure from the list of instruc-
tions, retrieves an instruction by maintaining a pointer into the memory structure, and computes the
subtask arguments.

Instruction Memory. Given instructions as a list of sentences M = (m1,m2, ...,mK), where
each sentence consists of a list of words, mi =

(
w1, ..., w|mi|

)
, the ‘subtask updater constructs

memory blocks M ∈ RE×K , where each column is E-dimensional embedding of a sentence. The
subtask module maintains a memory pointer defined over memory locations, pt ∈ RK , which is
used for instruction retrieval. Memory construction and retrieval is formally described as:

Memory: M = [ϕw (m1) , ϕw (m2) , ..., ϕw (mK)] Retrieval: rt = Mpt.

Here ϕw (mi) ∈ RE is the embedding of the i-th sentence (e.g., Bag-of-words). The memory
pointer pt is a non-negative vector which sums up to 1. rt ∈ RE is the retrieved sentence embedding
which is used for computing the subtask-arguments. Intuitively, if the memory pointer is a one-hot
vector, rt indicates a single instruction from the whole list of instructions. The meta controller
should learn to manage pt so that it can focus on the correct instruction at each time-step, which is
further described below.

Location-based Memory Addressing. Since instructions should be executed sequentially, we use
a location-based memory addressing mechanism (Zaremba and Sutskever, 2015; Graves et al., 2014)
to manage the memory pointer. Specifically, the subtask updater shifts the memory pointer by [−1, 1]
as:

pt = lt ∗ pt−1 where lt ∼ Softmax
(
ϕshift(ht)

)
(7)

where ∗ is a convolution operator, and ϕshift is a multi-layer perceptron (MLP). lt ∈ R3 is an
internal action that shifts the memory pointer (pt) by either -1, 0, or +1. This mechanism is illustrated
in Figure 9b.

Subtask Arguments. The subtask updater takes the context (ht), updates the memory pointer (pt),
retrieves a sentence embedding (rt), and finally computes subtask-arguments as follows:

πθ (gt|ht, rt) =
∏
i

πθ

(
g
(i)
t |ht, rt

)
where πθ

(
g
(i)
t |ht, rt

)
∝ exp

(
ϕgoali (ht, rt)

)
where ϕgoali is an MLP for the i-th subtask argument.

5.2 DIFFERENTIABLE TEMPORAL ABSTRACTIONS

Algorithm 1 Subtask update (Hard)
Input: ht, pt−1, rt−1, gt−1

Output: pt, rt, gt
ct ∼ σ

(
ϕupdate (ht)

)
if ct = 1 then . Update

lt ∼ Softmax
(
ϕshift (ht)

)
pt ← lt ∗ pt−1 . Shift
rt ← M>pt . Retrieve
gt ∼ πθ (gt|ht, rt) . Subtask

else
pt ← pt−1, rt ← rt−1, gt ← gt−1

end if

Although the subtask updater can update the memory
pointer and compute correct subtask-arguments in prin-
ciple, making a decision at every time-step can be ineffi-
cient because subtasks do not change very frequently. In-
stead, having temporally-extended actions can be useful
for dealing with delayed reward by operating at a larger
time-scale (Sutton et al., 1999). Although one could use
the termination signal of the subtask controller to define
the temporal scale of the meta controller, this approach
would result in an open-loop policy that is not able to in-
terrupt ongoing subtasks, which is necessary to deal with
stochastic events.

To address this challenge, we introduce an internal binary action ct which decides whether to update
the subtask updater or not. This action is defined as: ct ∼ σ

(
ϕupdate (ht)

)
. If ct = 1, the subtask

updater updates the memory pointer, retrieves an instruction, and updates the subtask arguments.
Otherwise, the meta controller continues communicating the current subtask arguments without
involving the subtask updater. During training of the update decision, we use L1 regularization on
the probability of update to penalize frequent updates as in Vezhnevets et al. (2016). The entire
scheme is described in Algorithm 1.
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Algorithm 2 Subtask update (Soft)
Input: ht, pt−1, rt−1, gt−1

Output: pt, rt, gt
ct ← σ

(
ϕupdate (ht)

)
lt ← Softmax

(
ϕshift (ht)

)
p̃t ← lt ∗ pt−1

r̃t ← M>p̃t
pt ← ctp̃t + (1− ct) pt−1

rt ← ctr̃t + (1− ct) rt−1

g
(i)
t ∼ ctπθ

(
g
(i)
t |ht, r̃t

)
+ (1− ct) g(i)t−1∀i

However, the update decision introduces a non-differentiable
variable which is known to be difficult to optimize in prac-
tice. Thus, we propose a differentiable relaxation of the update
decision. The key idea is to take the weighted sum of both
‘update’ and ‘no update’ scenarios. This idea is described in
Algorithm 2. We found that training the meta controller us-
ing Algorithm 2 followed by fine-tuning using Algorithm 1 is
crucial for training the meta controller. Note that Algorithm 2
reduces to Algorithm 1 if we sample ct and lt instead of taking
the weighted sum, which justifies our initialization trick.

5.3 TRAINING

The meta controller is trained on a training set of lists of instructions. Actor-critic method is used
to update the parameters of the meta controller, while a pre-trained subtask controller is given and
fixed. Since the meta controller also learns a subtask embedding ϕ(gt−1) and has to deal with
unseen subtasks during evaluation, we applied analogy-making regularization to its embedding.
More details of the objective functions are provided in Appendix E.

6 EXPERIMENTS AND RESULTS

Our experiments were designed to explore the following hypotheses: our proposed hierarchical
architecture will generalize better than a non-hierarchical controller, that analogy-making regu-
larization and learning temporal abstractions in the meta controller will both separately be ben-
eficial for task generalization. We are also interested in understanding the qualitative proper-
ties of our agent’s behavior. The demo videos are available at the following website: https:
//sites.google.com/a/umich.edu/junhyuk-oh/task-generalization.

6.1 EXPERIMENTAL SETTING

Environment. We developed a 2D grid world based on MazeBase (Sukhbaatar et al., 2015) where
the agent can interact with many objects as illustrated in Figure 1. Unlike the original MazeBase,
an observation is represented as a binary 3D tensor: xt ∈ R18×10×10 where 18 is the number of
object types and 10× 10 is the size of the grid world. Each channel is a binary mask indicating the
presence of each object type. There are agent, blocks, water, and 15 types of objects with which the
agent can interact (see Appendix D), and all of them are randomly placed for each episode.

The agent has 13 primitive actions: No-operation, Move (North/South/West/East, referred to as
“NSWE”), Pick up (NSWE), and Transform (NSWE). Move actions move the agent by one cell in
the specified direction. Pick up actions remove the adjacent object in the corresponding relative
position, and depending on the object type Transform actions either remove it or transform it to
another object.

The agent receives a time penalty (−0.1) for each time-step. Water cells act as obstacles which give
−0.3 when the agent visits them. The agent receives +1 reward when it finishes all instructions in
the correct order. Throughout the episode, an enemy randomly appears, moves, and disappears after
10 steps. Transforming an enemy gives +0.9 reward. More details are described in the appendix D.

Subtasks and Instructions. The subtask space is defined as the Cartesian product of two argu-
ments: G = {Visit,Pick up,Transform}×{X1, X2, ..., X15} where Xi is an object type. The agent
should be on the same cell of the target object to finish ‘Visit’ task. For ‘Pick up’ and ‘Transform’
tasks, the agent should perform the corresponding primitive action to the target object. If there are
multiple target objects in the world, the agent can perform the action to any of the target objects.

The instructions are represented as a sequence of sentences, each of which is one of the following:
Visit X, Pick up X, Transform X, Pick up all X, and Transform all X where ‘X’ is the target object
type. While the first three instructions require the agent to perform the corresponding subtask, the
last two instructions require the agent to repeat the same subtask until the target objects completely
disappear from the world.

Task Split. Among 45 subtasks in G, only 30 subtasks are presented to the subtask controller
during training. 3 subtasks from the training subtasks and 3 subtasks from the unseen subtasks
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Agent Train Unseen
Reward Success Accuracy Reward Success Accuracy

w/o Analogy 0.56 99.9% 100.0% -1.88 60.8% 49.6%
w/ Analogy 0.56 99.9% 100.0% 0.55 99.8% 99.6%

Table 1: Performance of subtask controller. ‘Analogy’ indicates analogy-making regularization. ‘Accuracy’
represents termination prediction accuracy. We assume a termination prediction is correct only if predictions
are correct throughout the whole episode.

were selected as the validation set to pick the best-performing subtask controller. For training the
meta controller, we created four sets of sequences of instructions: training, validation, and two test
sets. The training tasks consist of sequences of up to 4 instructions sampled from the set of training
instructions. The validation set consists of sequences of 7 instructions with small overlaps with
the training instructions and unseen instructions. The two test sets consist of 20 seen and unseen
instructions respectively. More details of the task split are described in the appendix D.

Flat Controller. To understand the advantage of using the communicating hierarchical structure
of our controllers, we trained a flat controller which is almost identical to the meta controller archi-
tecture except that it directly chooses primitive actions without using the subtask controller. Details
of the flat controller architecture are described in the appendix F. The flat controller is pre-trained
on the training set of subtasks. To be specific, we removed the instruction memory and fed a single
instruction as an additional input (i.e., rt is fixed throughout the episode). We found that the flat
controller could not learn any reasonable policy without this pre-training step which requires mod-
ification of the architecture based on domain knowledge. After pre-training, we fine-tuned the flat
controller with the instruction memory on lists of instructions. Note that the flat controller is also
capable of executing instructions as well as dealing with random events in principle.

6.2 TRAINING DETAILS

The subtask controller consists of 3 convolution layers and 2 fully-connected layers and takes the
last 2 observations concatenated through channels as input. Each subtask argument (g(i)) is linearly
transformed and multiplied with each other to compute the joint subtask embedding. This is further
linearly transformed into the weight of the first convolution layer, and the weight of the first fully-
connected layer. The meta controller takes the current observation as input and has 2 convolution
layers and 2 fully-connected layers where the parameters of the first convolution layer and the first
fully-connected layer are predicted by the joint embedding of rt−1, ϕ(gt−1), and bt.

We implemented synchronous actor-critic with 16 CPU threads based on MazeBase (Sukhbaatar
et al., 2015), each of which samples a mini-batch of episodes (K) in parallel. The parameters are
updated after 16 × K episodes. The details of architectures and hyperparameters are described in
the appendix F.

Curriculum Learning via a Forgiving World. We conducted curriculum training by changing
the size of the grid world, the density of objects, and the number of instructions according to the
agent’s success rate. In addition, we trained the soft-architectures on an easier forgiving environment
which generates target objects whenever they do not exist. Crucially, this allows the agent to recover
from past mistakes in which it removed needed target objects. The soft-architectures are fine-tuned
on the original (and far more unforgiving) environment which does not regenerate target objects
in the middle of the episode. Training directly in the original environment without first training in
the forgiving environment leads to too much failture at executing the task and the agent does not
learn successfuly. Finally, the hard-architectures are initialized by the soft-architectures and further
fine-tuned on the original environment.

6.3 EVALUATION OF SUBTASK CONTROLLER

To see how well the subtask controller performs separately from the meta controller, we evaluated
it on the training set of subtasks and unseen subtasks in Table 1. It is shown that analogy-making
regularization is crucial for generalization to unseen subtasks. This result suggests that analogy-
making regularization plays an important role in learning the relationship between different subtasks
and enabling generalization to unseen subtasks.

In addition, we observed that the subtask controller learned a non-trivial policy by exploiting causal
relationships. For example, when [Pick up, egg] is given as the subtask arguments, but a duck
is very close to the agent, it learned to transform the duck and pick up the resulting egg because
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Train Test #1 Test #2 Test #3 Test #4
Set of instructions Seen Seen Unseen Seen w/o all Unseen w/o all

Num of instructions 4 20 20 20 20
Fo

rg
iv

in
g Shortest Path -1.56 (99.6%) -11.94 (99.1%) -9.62 (99.1%)

Near-Optimal -0.96 (99.6%) -9.99 (99.1%) -8.19 (99.1%)
Flat -1.64 (85.8%) -14.53 (65.9%) -17.25 (23.7%) -12.38 (60.4%) -14.18 (16.7%)

Hierarchical-TA-Analogy -1.05 (92.4%) -11.06 (86.2%) -13.69 (51.2%) -8.54 (91.9%) -9.91 (75.2%)

O
ri

gi
na

l

Shortest Path -1.62 (99.7%) -11.94 (99.4%) -8.72 (99.6%)
Near-Optimal -1.34 (99.5%) -10.30 (99.3%) -7.62 (99.4%)

Flat -2.38 (76.0%) -18.83 (0.1%) -18.92 (0.0%) -15.09 (0.0%) -15.17 (0.0%)
Hierarchical -2.04 (72.8%) -16.85 (16.6%) -17.66 (6.9%) -10.99 (49.4%) -11.40 (47.4%)

Hierarchical-Analogy -1.74 (81.0%) -15.89 (28.0%) -17.23 (11.3%) -10.11 (61.8%) -10.66 (57.7%)
Hierarchical-TA -1.38 (92.6%) -12.96 (62.9%) -17.19 (13.0%) -9.11 (74.4%) -10.37 (61.2%)

Hierarchical-TA-Analogy -1.26 (95.5%) -11.30 (81.3%) -14.75 (40.3%) -8.24 (85.5%) -9.51 (73.9%)

Table 2: Performance of meta controller. Each column corresponds to different evaluation sets of instructions,
while each row corresponds to different configurations of our architecture and the flat controller. Test #3
and Test #4 do not include ‘Transform/Pick up all X’ instructions. ‘TA’ indicates the meta controller with
temporal abstraction. Each entry in the table represents reward with success rate in parentheses averaged over
10-best runs among 20 independent runs. ‘Shortest Path’ is a hand-designed policy which executes instructions
optimally based on the shortest path but ignores enemies. ‘Near-Optimal’ is a near-optimal policy that executes
instructions based the shortest path and transforms enemies when they are close to the agent. ‘Forgiving’
rows show the result from the forgiving environment used for curriculum learning where target objects are
regenerated whenever they do not exist in the world.
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Figure 4: Performance per number of instructions. From left to right, the plots show reward, success rate, the
number of steps, and the average number of instructions completed respectively. Solid and dashed curves show
the performances on seen instructions and unseen instructions respectively.

transforming the duck transforms it to an egg in our environment. More analysis of the subtask
controller and the effect of analogy-making regularization is discussed in the appendix A and B.

6.4 EVALUATION OF META CONTROLLER

We evaluated the meta controller separately from the subtask controller by providing the best-
performing subtask controller during training and evaluation. The results are summarized in Table 2
and Figure 4. Note that there is a discrepancy between reward and success rate, because success rate
is measured only based on the instruction execution, while reward takes into account the background
task (i.e., handling randomly appearing enemy) as well as the instruction execution.

Overall performance. Table 2 shows that our hierarchical agent with temporal abstraction and
analogy-making regularization, denoted Hierarchical-TA-Analogy in the table, can handle 20 seen
instructions (Test #1) and 20 unseen instructions (Test #2) correctly with reasonably high success
rates. In addition, that agent learned to deal with enemies whenever they appear, and thus it out-
performs the ‘Shortest Path’ policy which is near-optimal in executing instructions while ignoring
enemies. We further investigated how the number of instructions affects the performance in Figure 4.
Although the performance is degraded as the number of instructions increases, our architecture fin-
ishes 18 out of 20 seen instructions and 12 out of 20 unseen instructions on average. These results
show that our agent is able to generalize to longer compositions of instructions as well as unseen
instructions by just learning to solve short sequences of a subset of instructions.

Flat vs. Hierarchy. All our hierarchical controllers outperform the flat controller both on the
training tasks and longer/unseen instructions (see Table 2). We observed that the flat controller
learned a sub-optimal policy which assumes that ‘Transform/Pick up X’ instructions are identical to
‘Transform/Pick up all X’ instructions. In other words, it always transforms or picks up all existing
targets. Although this simple strategy is a reasonable sub-optimal policy because such wrong actions
are not explicitly penalized in our environment other than through the accumulating penalty per-
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Update

Shift
A B C D

A B C D

-1
0
+1

Figure 5: Analysis of the learned policy. ‘Update’ shows our agent’s internal update decision. ‘Shift’ shows
our agent’s memory-shift decision which is either -1, 0, or +1 from top to bottom. The bottom text shows the
instruction indicated by the memory pointer, while the top text shows the subtask chosen by the meta controller.
(A) the agent transforms the pig given ‘Transform Pig’ instruction and decides to update the subtask (Update
is true) and move to the next instruction. (B) an enemy (red) appears while the agent is executing ‘Pick up all
meat’ instruction (green boxes for meat). The agent changes the subtask to [Transform, enemy]. (C) the agent
successfully transforms the enemy and sets the subtask to [Pick up, meat] to resume executing the instruction.
(D) the agent picks up the last meat in the world, moves the memory pointer to the next instruction, and sets a
new subtask according to the next instruction.

time-step, it often unnecessarily removes objects that can be potentially target objects in the future
instructions. This is why the flat controller performs reasonably well on the short sequences of
instructions (training) where such cases are rare and on the forgiving environment where target
objects are restored whenever needed. But, it completely fails on longer instructions in the original
environment because the entire task becomes unsolvable when target objects are removed in error.
This implies that the flat controller struggles with detecting when a subtask is finished precisely,
whereas our hierarchical controllers can easily detect when a subtask is done, because the subtask
controller in our communicating architecture provides a termination signal to the meta controller.

In addition, the flat controller tends to ignore enemies, while the hierarchical controllers try to deal
with enemies whenever they exist by changing the subtask-arguments communicated by the meta
controller to the subtask controller, which is a better strategy to maximize the reward. The flat
controller instead has to use primitive actions to deal with both instructions and enemies. This
implies that our communicating hierarchical controllers have more advantages for context switching
between different sources of tasks (i.e., executing instructions and dealing with enemies).

Finally, we observed that the flat controller often makes many mistakes on unseen instructions (e.g.,
transform X given ‘Visit X’ as instruction). In contrast, the hierarchical controllers do not make such
mistakes as the subtask controller generalizes well to unseen instructions as discussed in Section 6.3.

Effect of Analogy-making. Table 2 shows that analogy-making significantly improves general-
ization performance especially on Test #2 (Hierarchical-Analogy outperforms Hierarchical, and
Hierarchical-TA-Analogy outperforms Hierarchical-TA). This implies that given an unseen target
object for the ‘Transform/Pick up all’ instruction, the meta controller without analogy-making tends
to fail to check if the target object exists or not. On the other hand, there is almost no improvement
by using analogy-making on Test #3 and Test #4 where there are no ‘all’ instruction. This is because
the meta controller can simply rely on the subtask termination (bt) given by the subtask controller
to check if the current instruction is finished for non-‘all’ instructions, and the subtask controller
(trained with analogy-making) successfully generalizes to unseen subtasks and provides accurate
termination signals to the meta controller. The empirical results showing that analogy-making con-
sistently improves generalization performance in both non-analogy-making controllers suggests that
analogy-making is crucial for generalization to unseen tasks.

Effect of Temporal Abstraction. To see the effect of temporal abstractions, we trained a baseline
that updates the memory pointer and the subtask at every time-step which is shown as ‘Hierarchical’
and ‘Hierarchical-Analogy’ in Table 2. It turns out that the agent without temporal abstractions
performs much worse both on the training tasks and testing tasks. We hypothesize that temporal
credit assignment becomes easier with temporal abstractions because the subtask updater (described
in Section 5.1.2) can operate at a larger time-scale by decoupling the update decision from the
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Figure 6: Learned policy in 3D environment. The agent observes ‘First-person-view’ images, while ‘Top-down-
view’ is not available to the agent. The right text shows the list of instructions. (A) The agent cannot see the
target block (blue) at this point due to the partially observable nature of the environment and the randomness
of the topology. The agent learned to explore the map to find the target block. (B) Although the current
instruction is ‘Transform purple’, the agent decides to transform the green block because transforming a green
block gives a large positive reward (stochastic event). (C) After dealing with the stochastic event, the agent
resumes executing the instruction (Traansform purple). (D) The agent finishes the whole list of instructions.

Train Test #1 Test #2
Set of instructions Seen Seen Unseen

Num of instructions 4 20 20
Flat -1.87 (92.2%) -22.35 (68.7%) -39.24 (0.0%)

Ours -1.41 (95.0%) -15.60 (92.2%) -17.80 (84.3%)

Table 3: Performance on 3D environment.

subtask selection. In particular, given ‘all’ instructions, the agent should repeat the same subtask
while not changing the memory pointer for a long time and the reward is even more delayed. This
can possibly confuse the subtask updater without temporal abstractions because it should make the
same decision for the entire time-steps of such instructions. In contrast, the subtask updater with
temporal abstractions can get a direct feedback from the long-term future, since one decision made
by the subtask updater results in multiple primitive actions. We conjecture that this is why the agents
learn more stably with temporal abstractions under delayed reward.

Analysis of The Learned Policy. We visualized our agent’s behavior on a task with a long list of
instructions in Figure 5. We observed that our meta controller learned to communicate the correct
subtask-arguments to the subtask controller and learned to move precisely to the next instruction
by shifting the memory pointer whenever the instruction is finished. More interestingly, whenever
an enemy appears, our meta controller immediately changes the subtask to [Transform, enemy]
regardless of the instruction and resumes executing the instruction after dealing with the enemy.
Throughout the background task and the ‘all’ instructions, the meta controller keeps the memory
pointer unchanged as illustrated in (B-D) in the figure. In addition, the agent learned to update the
memory pointer and the subtask-argument almost only when it is needed, which provides the subtask
updater with temporally-extended actions. This is not only computationally efficient but also useful
for learning a better policy as discussed above.

6.5 EVALUATION IN 3D VISUAL ENVIRONMENT

We developed a similar set of tasks in Minecraft environment based on Oh et al. (2016) as shown
in Figure 6. In this environment, the agent can observe only the first-person-view images, which
naturally involves partial observability. In this environment, even executing a simple instruction
(e.g., Visit X) requires the agent to explore the topology to find the target.

An observation is represented as a 64×64 RGB image (xt ∈ R3×64×64). There are 7 different types
of colored blocks: red, blue, green, yellow, brown, purple, and black which correspond to different
types of objects in the grid world experiment. Like 2D grid world environment, the topology of
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walls and the colored blocks are randomly generated for every episode. A wall not only acts as an
obstacle but also occludes the objects behind it as shown in Figure 6, which makes the task more
challenging.

The agent has 9 actions: Look (Left/Right/Up/Down), Move (Forward/Backward), Pick up, Trans-
form, and No operation. Look left/right actions change the yaw of the agent by 90 degree, while
Look up/down actions change the pitch of the agent by 45 degree. Move forward/backward actions
move the agent by one block according to the agent’s looking direction. Pick up removes the block
in front of the agent, and Transform changes the block in front of the agent to the black-colored
block.

We used the same reward function used in the 2D grid world experiment. In addition, a green block
randomly appears and transforming a green block gives +0.9 reward regardless of instructions,
which acts as a stochastic event. Each instruction is one of the following: Visit X, Pick up X, and
Transform X where ‘X’ is the target color. We excluded ‘all’ instructions in this environment because
we found that solving ‘all’ instructions given a limited amount of time is extremely challenging even
for humans due to the partial observability.

We used almost the same architectures used in the 2D grid world experiment except that a long
short-term memory (Hochreiter and Schmidhuber, 1997) is added on top of the final convolution
layer both in the subtask controller and the meta controller, as it is one of the simplest ways to deal
with partial observability (Hausknecht and Stone, 2015; Mnih et al., 2016; Oh et al., 2016). We
followed the same training scheme used in the 2D grid world experiment.

Table 3 shows that our proposed architecture significantly outperforms the flat controller baseline
especially on the test sets of instructions. We observed that the flat controller tends to struggle
with detecting when an instruction is finished and completely fails on unseen instructions, while our
architecture performs well on unseen and longer instructions. As shown in Figure 6, our architecture
learned to find the target blocks, detect when an instruction is finished, and deal with the stochastic
event. This result demonstrates that the proposed approach can also be applied to a more complex
visual environment.

7 CONCLUSION

In this paper, we explored zero-shot task generalization in RL with a new problem where the agent
is required to execute a sequence of instructions and to generalize over longer sequences of (un-
seen) instructions without additional learning. To solve the problem, we presented a hierarchical
deep RL architecture in which a meta controller learns a closed-loop policy of subtask-argument
communications to a subtask controller which executes the given subtask and communicates its ac-
complishment back to the meta controller. Our architecture not only generalizes to unseen tasks
after training but also deals with random events relevant to a background task. In addition, we pro-
posed several techniques that led to improvements in both training and generalization performance.
First, analogy-making regularization turned out to be crucial for generalization to unseen subtasks.
Second, learning temporal abstractions improved the performance by making the subtask updater
operate at a larger time-scale. One interesting line of future work would be to define and solve
richer task instructions such as conditional statements (i.e., IF-THEN-ELSE) and loop instructions
(i.e., collect 3 target objects). Moreover, end-to-end training of the whole hierarchy and discovering
the subtask decomposition would be important future work.
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A LEARNED VALUE FUNCTION VISUALIZATION

We visualized the value function learned by the critic network of the subtask controller in Fig-
ure 7. As expected from its generalization performance, our subtask controller trained with analogy-
making regularization learned high values around the target objects given unseen subtasks.

(a) Observation (b) Visit egg (c) Pick up cow (d) Transform meat

Figure 7: Value function visualization given unseen subtasks. (b-d) visualizes learned values for each position
of the agent in a grid world (a). The agent estimates high values around the target object in the world.

B INJECTING PRIOR KNOWLEDGE THROUGH ANALOGY-MAKING

As discussed in Section 4.1, the assumption that subtask arguments are independent from each
other may not hold in the real-world. In this experiment, we simulate such a case by introducing a
new subtask, Interact with X, which requires the agent to perform either ‘Pick up’ or ‘Transform’
depending on object type. We divided objects into two groups: Group A should be picked up given
‘Interact with’ subtasks, while Group B should be transformed.

Although it is impossible to generalize to unseen target objects in this setting, humans can still
easily generalize if someone teaches them by saying ‘Interact with X as you do with Y’ where X is
unseen but Y is seen. We claim that our analogy-making regularizer can be used to mimic such a
generalization scenario. To empirically verify this, we presented only a subset of target objects to the
agent for ‘Interact with X’ subtasks during training, while the agent observes all target objects for
the original subtasks (i.e., Visit, Pick up, Transform). In the meantime, we applied analogy-making
regularization only within Group A and Group B separately.

The result in Table 4 shows that the subtask controller successfully generalizes to unseen target
objects by picking up target objects for Group A and transforming them for Group B. This result
suggests that analogy-making can also be used as a tool for injecting (minimal but sufficient) prior
knowledge so that the agent generalizes to unseen tasks in a specific way without having any expe-
rience on such tasks.

Agent Train Unseen
Reward Success Accuracy Reward Success Accuracy

w/o Analogy 0.55 99.9% 99.9% -3.23 42.1% 44.1%
w/ Analogy 0.55 99.9% 99.9% 0.55 99.8% 99.6%

Table 4: Injecting prior knowledge through analogy-making. ‘Unseen’ column shows performances on unseen
‘Interact with X’ subtasks. ‘Reward’, ‘Success’, and ‘Accuracy’ represent reward, success rate, and termination
prediction accuracy, respectively.

C HARD VS. SOFT

Table 5 compares the hard-architecture described in Algorithm 1 against the soft-architecture de-
scribed in Algorithm 2. It is shown that the hard-architecture outperforms the soft-architecture on
unseen and longer instructions, while the soft-architecture performs as well as the hard-architecture
on the training set of instructions. This is because the soft-architecture tends to diffuse the memory
pointer over memory locations when it is not certain about its decision. In fact, there is no advantage
of using the soft-architecture in this problem because the agent should focus on one instruction at
a time. Nevertheless, training the soft-architecture is very important because it is used to initialize
the hard-architecture. Otherwise, we observed that it is difficult to train the hard-architecture from
scratch because its non-differentiable operations make optimization difficult.
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Train Test #1 Test #2 Test #3 Test #4
Set of instructions Seen Seen Unseen Seen w/o all Unseen w/o all

Num of instructions 4 20 20 20 20
Soft -1.27 (95.1%) -11.80 (74.8%) -16.24 (22.0%) -7.93 (88.9%) -9.53 (72.6%)

Hard -1.26 (95.5%) -11.30 (81.3%) -14.75 (40.3%) -8.24 (85.5%) -9.51 (73.9%)

Table 5: Comparison of the hard-architecture and the soft-architecture.

D ENVIRONMENT AND TASKS

Environment. The types of objects are illustrated in Figure 8. ‘Transform’ action either trans-
forms an object to a different object or removes it depending on its type as descirbed in Figure 8.

Block
Water
Agent

Cow
Pig
Rock
Tree
Box
Duck
Enemy
Candy

Milk
Meat
Stone
Wood
Diamond
Egg
Heart

Figure 8: Example of grid-world with object specification. The arrows represent the outcome of object trans-
formation. Objects without arrows disappear when transformed. The agent is not allowed to go through blocks
and gets a penalty for going through water.

Task Split. For training and evaluating the subtask controller, we constructed a training set of
subtasks for training and a validation set for selecting the best-performing agent. These sets are
also used to pre-train the flat controller. The details of the sets of subtasks are described in Table 6.
For training the meta controller, we constructed a training set of instructions and a validation set
of instructions described in Table 7. By sampling instructions from such sets of instructions, we
generated different sets of sequences of instructions for training, validation and evaluation in Table 8.

Train (Seen) Validation
Visit Pick up Transform Visit Pick up Transform

Cow X X X
Enemy X X
Pig X X X
Rock X X X
Tree X X
Candy X X X
Diamond X X
Milk X X
Pork X X
Wood X X X
Box X X X
Duck X X
Egg X X
Heart X X
Stone X X

Table 6: Set of subtasks. ‘Train (Seen)’ shows subtasks used to train the subtask controller. The other unchecked
subtasks are used as the unseen set of subtasks for evaluation.

Train (Seen) Validation
Visit Pick up Transform Pick up all Transform all Visit Pick up Transform Pick up all Transform all

Cow X X X X
Pig X X X X
Rock X X X X X
Tree X X X
Candy X X X X
Diamond X X X X
Milk X X X X
Pork X X X
Wood X X X X
Box X X X X X
Duck X X X X X
Egg X X X X
Heart X X X X
Stone X X X X

Table 7: Set of instructions. ‘Train’ and ‘Validation’ columns show the set of instructions used for training and
validation. The unseen set of instructions are defined as the unchecked instructions in ‘Train’ column.
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Train Validation Test #1 Test #2 Test #3 Test #4
Set of instructions Seen Unseen Seen Unseen Seen w/o all Unseen w/o all

Max num of instructions 4 7 20 20 20 20
Max steps 60 90 250 250 200 200

Table 8: Task split.

E DETAILS OF LEARNING OBJECTIVES

E.1 SUBTASK CONTROLLER

The subtask controller is first trained through policy distillation (Rusu et al., 2015; Parisotto et al.,
2015) and fine-tuned using actor-critic method (Konda and Tsitsiklis, 1999) with generalized ad-
vantage estimation (GAE) (Schulman et al., 2015). The subtask controller is also trained to predict
whether the current state is terminal or not through binary classification objective.

The idea of policy distillation is to first train separate teacher policies (πgT (a|s)) for each subtask (g)
through reinforcement learning and train a single policy (πgφ(a|s)) to mimic teachers’ behavior by
minimizing KL divergence between them as follows:

∇φLRL = Eg∼U
[
Es∼πgφ

[
∇φDKL

(
πgT ||π

g
φ

)
+ α∇φLterm

]]
(8)

where DKL

(
πgT ||π

g
φ

)
=
∑
a π

g
T (a|s) log

πgT (a|s)
πgφ(a|s)

and U ⊂ G is the training set of subtasks.

Lterm = − log βφ (st, g) = − logPφ (st ∈ Tg) is the cross-entropy loss for termination predic-
tion. Intuitively, we sample a mini-batch of subtasks (g), use the subtask controller to generate
episodes, and train it to predict teachers’ actions. This method has been shown to be efficient for
multi-task learning.

After policy distillation, the subtask controller is fine-tuned through actor-critic with generalized
advantage estimation (GAE) (Schulman et al., 2015) as follows:

∇φLRL = Eg∼U
[
Es∼πgφ

[
−∇φ log πφ (at|st, g) Â

(γ,λ)
t + α∇φLterm

]]
(9)

where Â(γ,λ)
t =

∑∞
l=0(γλ)lδVt+l and δVt = rt + γV π(st+1;φ′) − V π(st;φ

′). φ′ is optimized to

minimize E
[
(Rt − V π(st;φ

′))
2
]
. γ, λ ∈ [0, 1] are a discount factor and a weight for balancing

between bias and variance of the advantage estimation.

The final update rule for the subtask controller is:

∆φ ∝ − (∇φLRL + ξ∇φLAM ) (10)

where LAM = Lsim+ρ1Ldis+ρ2Ldiff is the analogy-making regularizer defined as the weighted
sum of three objectives described by Eq (4)-(6). ρ1, ρ2, ξ are hyperparameters for each objective.

E.2 META CONTROLLER

Actor-critic method with GAE is used to update the parameter of the meta controller. as follows:

∇θLRL = −


E
[
ct

(∑
i∇θ log πθ

(
g
(i)
t |ht, rt

)
+∇θ logP (lt|ht)

)
Â

(γ,λ)
t (Hard)

+∇θ logP (ct|ht) Â(γ,λ)
t + η∇θ

∥∥σ (ϕupdate (ht)
)∥∥

1

]
E
[∑

i∇θ log πθ

(
g
(i)
t |ht, rt

)
Â

(γ,λ)
t

]
(Soft)

(11)

where ct ∼ P (ct|ht) ∝ σ
(
ϕupdate (ht)

)
, and P (lt|ht) ∝ Softmax

(
ϕshift(ht)

)
. η is a weight for

the update penalty.

The final update rule for the meta controller is:

∆θ ∝ − (∇θLRL + ξ∇θLAM ) (12)

where LAM is the analogy-making regularizer. ρ1, ρ2, ξ are hyperparameters for each objective.
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F ARCHITECTURES AND HYPERPARAMETERS
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Termination
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(b) Meta controller
Figure 9: Proposed neural network architectures.

Parameter Prediction. Parameter prediction approaches construct a neural network with param-
eters predicted by condition variables (e.g., exempler, class embedding). This approach has been
shown to be effective for achieving zero-shot and one-shot generalization in image classification
problems (Lei Ba et al., 2015; Bertinetto et al., 2016). More formally, given an input (x), the output
(y) of a convolution and a fully-connected layer with parameters predicted by a condition variable
(g) can be written as:

Convolution: y = ϕ (g) ∗ x + b Fully-connected: y = W′diag (ϕ (g)) Wx + b

where ϕ is the embedding of the condition variable learned by a multi-layer perceptron (MLP). Note
that we use matrix factorization (similar to (Memisevic and Hinton, 2010)) to reduce the number
of parameters for the fully-connected layer. Intuitively, the condition variable is converted to the
weight of the convolution or fully-connected layer through multiplicative interactions. We used
this approach as a building block to condition the policy network on the subtask embedding in the
subtask controller and the meta controller.

Subtask controller. The teacher architecture used for policy distillation is Conv1(32x3x3-1)-
Pool(2)-Conv2(64x3x3-1)-FC1(256).1 The network has two fully-connected output layers for ac-
tions and baseline respectively. The subtask controller architecture consists of Conv1(3x1x1-
1)-Conv2(64x1x1-1)-Pool(2)-Conv3(128x3x3-1)-FC1(256) taking two recent observations as in-
put. In addition, the subtask controller takes two subtask arguments (g(1), g(2)) and computes
ReLU(W(1)g(1) �W(2)g(2)) to compute the subtask embedding. It is further linearly transformed
into the weight of Conv1 and the (factorized) weight of FC1. Finally, the network has three fully-
connected output layers for actions (ϕπ), termination probability (ϕβ), and baseline. In ‘Concat’
baseline architecture, the subtask embedding is linearly transformed and concatenated into the ob-
servation as 18 channels and FC1 as 256-dimensional vector.

We used RMSProp optimizer with the smoothing parameter of 0.97 and epsilon of 1e − 6. When
training the teacher policy through actor-critic, we used a learning rate of 1e − 3. For training the
subtask controller, we used a learning rate of 1e−3 and 1e−4 for policy distillation and actor-critic
fine-tuning respectively. We used τdis = τdiff = 3, α = 0.1 for analogy-making regularization and
the termination prediction objective. γ = 0.99 and λ = 0.96 are used as a discount factor and a
balancing weight for GAE. 16 threads with batch size of 8 are used to run 16×8 episodes in parallel,
and the parameter is updated after each run (1 iteration = 16 × 8 episodes). For better exploration,
we applied entropy regularization with a weight of 0.01 and linearly decreased it to zero for the first
7500 iterations. The total number of iterations was 10K for both policy distillation and actor-critic
fine-tuning.

Meta Controller. The meta controller consists of Conv1(3x1x1-1)-Pool(2)-FC1(256) taking the
current observation as input. The embedding of previously selected subtask (ϕ(gt−1)), the previ-
ously retrieved instruction (rt−1), and the subtask termination (bt) are concatenated and given as

1For convolution layers, NxKxK-P represents N kernels with size of KxK and padding of P. The number in
Pool and FC represents the pooling size and the number of hidden units.
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input for one-layer MLP to compute the joint embedding. This is further linearly transformed into
the weight of Conv1 and FC1. The output of FC1 is used as the context vector (ht). We used the
bag-of-words (BoW) representation as a sentence embedding which computes the sum of all word
embeddings in a sentence: ϕw (mi) =

∑|mi|
j=1 Wmwj where Wm is the word embedding matrix,

each of which is 256-dimensional. An MLP with one hidden layer with 256 units is for ϕshift, a
linear layer is used for ϕupdate. ϕgoal is an MLP with one hidden layer with 256 units that takes
the concatenation of rt and ht as an input and computes the probability over subtask arguments as
the outputs. The baseline network takes the concatenation of the memory pointer pt, a binary mask
defined over memory locations indicating the presence of instruction, and the final hidden layer of
ϕgoal.

We used the same hyperparameters used in the subtask controller except that the batch size was 32
(1 iteration = 16 × 32 episodes). We trained the soft-architecture with a learning rate of 2.5e − 4
using curriculum learning for 150K iterations, and fine-tune it with a learning rate of 1e− 4 without
curriculum learning for 25K iterations. Finally, we initialized the hard-architecture to the soft-
architecture and fine-tune it using a learning rate of 1e− 4 for 25K iterations. η = 0.0001 is used to
penalize update decision.

Flat Controller. The flat controller architecture consists of Conv1(3x1x1-1)-Conv2(64x1x1-1)-
Pool(2)-Conv3(128x3x3-1)-FC1(256) taking two recent observations as input. The previously re-
trieved instruction (rt−1) is transformed through an MLP with two hidden layers to compute the
weight of Conv1 and FC1. The rest of the architecture is identical to the meta controller except that
it does not learn temporal abstractions (ϕupdate) and has a softmax output over primitive actions.

Curriculum Learning. For training all architectures, we randomly sampled the size of the grid
world from {7, 8, 9, 10}, the density of blocks and water cells are sampled from [0, 0.1], and the
density of objects are sampled from [0, 0.6] for subtask pre-training, [0, 0.15] for training on the
easier environment, [0, 0.3] for training on the original environment. We sampled the number of
instructions from {1, 2, 3, 4} for training the meta controller on the easier environment, but it was
fixed to 4 for fine-tuning. The sampling range was determined based on the success rate of the
agent.
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