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ABSTRACT

Conventional deep learning classifiers are static in the sense that they are trained on
a predefined set of classes and learning to classify a novel class typically requires
re-training. In this work, we address the problem of Low-Shot network-expansion
learning. We introduce a learning framework which enables expanding a pre-trained
(base) deep network to classify novel classes when the number of examples for the
novel classes is particularly small. We present a simple yet powerful distillation
method where the base network is augmented with additional weights to classify
the novel classes, while keeping the weights of the base network unchanged. We
term this learning hard distillation, since we preserve the response of the network
on the old classes to be equal in both the base and the expanded network. We
show that since only a small number of weights needs to be trained, the hard
distillation excels for low-shot training scenarios. Furthermore, hard distillation
avoids detriment to classification performance on the base classes. Finally, we
show that low-shot network expansion can be done with a very small memory
footprint by using a compact generative model of the base classes training data
with only a negligible degradation relative to learning with the full training set.

1 INTRODUCTION

In many real life scenarios, a fast and simple classifier expansion is required to extend the set of
classes that a deep network can classify. For example, consider a cleaning robot trained to recognize
a number of objects in a certain environment. If the environment is modified with an additional novel
object, it is desired to be able to update the classifier by taking only a few images of that object and
expand the robot classifier. In such a scenario, the update should be a simple procedure, based on a
small collection of images captured in a non-controlled setting. Furthermore, such a low-shot network
update should be fast and without access the entire training set of previously learned data. A common
solution to classifier expansion is fine-tuning the network Kading et al. (2016). However fine-tuning
requires keeping a large amount of base training data in memory, in addition to collecting sufficient
examples of the novel classes. Otherwise, fine-tuning can lead to degradation of the network accuracy
on the base classes, also known as catastrophic forgetting French (1999). In striking contrast, for
some tasks, humans are capable of instantly learning novel categories. Using one or only a few
training examples humans are able to learn a novel class, without compromising previously learned
abilities or having access to training examples from all previously learned classes.

We consider the classifier expansion problem under the following constraints:

1. Low-shot: very few samples of the novel classes are available.
2. No forgetting: preserving classification performance on the base classes.
3. Small memory footprint: no access to the base classes training data.

In this work we introduce a low-shot network expansion technique, augmenting the capability of
an existing (base) network trained on base classes by training additional parameters that enables to
classify novel classes. The expansion of the base network with additional parameters is performed in
the last layers of the network.

To satisfy low-shot along with no-forgetting constraints, we present a hard distillation framework.
Distillation in neural networks Hinton et al. (2014) is a process for training a target network to imitate
another network. A loss function is added to the target network so that its output matches the output
of the mimicked network. In standard soft distillation the trained network is allowed to deviate from
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the mimicked network. Whereas hard distillation enforces that the output of the trained network
for base classes matches the output of the mimicked network as a hard constraint. We achieve hard
distillation by keeping the weights of the base network intact, and learn only the newly added weights.
Network expansion with hard distillation yields a larger network, distilling the knowledge of the
base network in addition to augmented capacity to classify novel classes. We show that in the case
of low-shot (only 1–15 examples of a novel class), hard distillation outperforms soft distillation.
Moreover, since the number of additional parameters in the expanded network is small, the inference
time of the new network is nearly identical to the base network.

To maintain a small memory footprint, we refrain from saving the entire training set. Instead, we
present a compact generative model, consisting of a collection of generative models fitted in the
feature space to each of the base classes. We use a Gaussian Mixture Model (GMM) with small
number of mixtures, and show it inflicts a minimal degradation in classification accuracy. Sampling
from the generative GMM model is fast, reducing the low-shot training time and allowing fast
expansion of the network.

We define a benchmark for low-shot network expansion. The benchmark is composed of a series
of tests of increasing complexity, ranging from simple tasks where base and novel classes are from
different domains and to difficult tasks where base and novel classes are from the same domain
and shares objective visual similarities. We perform a comprehensive set of experiments on this
challenging benchmark, comparing the performance of the proposed to alternative methods.

To summarize, the main contributions of the paper are:

1. A novel hard-distillation solution to a low-shot classifier expansion problem
2. GMM as a sufficient generative model to represent base classes in a feature space
3. A new benchmark for the low-shot classifier expansion problem

2 RELATED WORKS

A common solution to the class-incremental learning problem is to use a Nearest-Neighbors (NN)
based classifier in feature space. A significant advantage of a NN-based classifier is that it can be
easily extended to classify a novel class, even when only a single example of the class is available
(one-shot learning). However NN-based classifiers require keeping in the memory significant amount
of training data from the base classes. Mensink et al. (2013) proposed to use Nearest Class Mean
(NCM) classifier, where each class is represented by a single prototype example which is the mean
feature vector of all class examples. One major disadvantage of NCM and NN-based methods is that
they are based on a fixed feature representation of the data. To overcome this problem Mensink et al.
(2013) proposed to learn a new distance function in the feature space using metric learning.

The ideas of metric learning combined with the NN classifier resonate with recent work by Vinyals
et al. (2016) on Matching Networks for one-shot learning, where both feature representation and
the distance function are learned end-to-end with attention and memory augmented networks. The
problem we consider in this paper is different from the one discussed by Vinyals et al. (2016). We
aim to expand existing deep classifier trained on large dataset to classify novel classes, rather than to
create a general mechanism for one-shot learning.

Hariharan & Girshick (2016) presented an innovative low-shot learning mechanism, where they
proposed a Squared Gradient Magnitude regularization technique for an improved fixed feature
representation learning designed for low-shot scenarios. They also introduced techniques to hallu-
cinate additional training examples for novel data classes. In contrast, we present a method which
aims to maximize performance in low-shot network expansion given a fixed representation, allowing
expanding the representation based on novel low-shot data. Furthermore, in our work, we demonstrate
the ability to expand the network without storing the entire base classes training data.

Recently, Rebuffi et al. (2016) proposed iCaRL – (Incremental Classifier and Representation Learn-
ing), to solve the class-incremental learning problem. iCaRL is based on Nearest-Mean-of-Exemplars
classifier, similar to the NCM classifier of Mensink et al. (2013). In the iCaRL method, the feature
representation is updated and the class means are recomputed from a small stored number of represen-
tative examples of the base classes. During the feature representation update, the network parameters
are updated by minimizing a combined classification and distillation loss. The iCaRL method was
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introduced as a class-incremental learning method for large training sets. In Section 4 we discuss its
adaptation to low-shot network expansion and compare it to our method.

Rusu et al. (2016) proposed the Progressive Network for adding new tasks without affecting the
performance of old tasks. They propose freezing the parameters that were trained on old tasks and
expand the network with a additional layers when training a new task. Venkatesan & Er (2016)
proposed the Progressive learning technique which solves the problem of online sequential learning
in extreme learning machines paradigm (OS-ELM). The purpose of their work is to incrementally
learn the last fully-connected layer of the network. When a sample from a novel class arrives, the
last layer is expanded with additional parameters. The Progressive learning solution updates the last
layer only sequentially and only works in the ELM framework (does not update internal layers of
the network). In another work Venkatesan et al. (2017) proposed an incremental learning technique
which augments the base network with additional parameters in last fully connected layer to classify
novel classes. Similar to iCaRL, they perform soft distillation by learning all parameters of the
network. Instead of keeping historical training data, they propose phantom sampling - hallucinating
data from past distribution modeled with Generative Adversarial Networks.

In this work we propose a solution that borrows ideas from freeze-and-expand paradigm, improved
feature representation learning, network distillation and modeling past data with a generative model.
We propose to apply expansion to the last fully connected layer of a base network to enable classifica-
tion on novel classes, and to deeper layers to extend and improve the feature representation. However,
in contrast to other methods Rebuffi et al. (2016); Venkatesan & Er (2016), we do not retrain the base
network parameters, but only the newly introduced weights of the expansion.

Moreover, the extended feature representation is learned from samples of base and novel classes.
In contrast to Hariharan & Girshick (2016), where the improved feature representation is learned
from simulating low-shot scenarios on the base classes only, before the actual novel data is available.
Finally, in order to avoid keeping all historical training data, we use Gaussian Mixture Model of the
feature space as a generative model for base classes.

3 THE PROPOSED METHOD

Assume a deep neural network is trained onK base classes with the full set of training data. This base
network can be partitioned into two subnetworks: a feature extraction network and a classification
network. The feature extraction network frep maps an input sample x into a feature representation
v ∈ RN . The classification network fcls maps feature vectors v into a vector of approximated class
posterior probabilities P (k|v) which correspond to each one of K classes. The whole network
can be represented as composition of two networks fnet(x) = fcls(frep(x)). For example, if the
classification network consists of the last fully connected layer (FC) followed by softmax, then
fcls(v)[k] = 1

Z e
wT

k v , where wk ∈ RN is class’s k weights vector, and Z is the normalization factor.

In the following we discuss how the pre-learned feature representation of feature extraction network
can be leveraged to classify additional classes in low-shot scenario with only relatively minor changes
to the classification subnetwork.

3.1 EXPANSION OF THE LAST LAYER OF CLASSIFICATION SUBNETWORK

First, we discuss how to expand the classification network to classify one additional class. We can
expand fcls from a K-class classifier into K + 1 class classifier by adding a new weight vector
wK+1 ∈ RN to the last FC layer. Thus, the K + 1 class probability is fcls(v)[K + 1] = 1

Z′ e
wT

K+1v ,
where Z ′ is a new normalization factor for K + 1 classes. We would like to preserve classification
accuracy on the base classes to avoid catastrophic forgetting. To that end, during training we constrain
to optimize of the wK+1 weights, while the vectors {wi}Ki=1 are kept intact. We refer to this paradigm
as hard distillation. By preserving the base classes weight vectors, we guarantee that as a result of
the last classification layer expansion the only new errors that can appear are between the novel class
and the base classes, but not among the base classes. Moreover, the small number of newly learned
parameters helps avoid over-fitting, which is especially important in low-shot scenarios.

Similarly, we can expand the classification network to classify more than one novel class.
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Figure 1: (a) Gen-LSNE overview, generating frep feature representation of base classes to train
the fcls expansion. (b) training last two layers, learning shared representation in addition to the per
novel class weights expansion: Gi are samples of feature vector generations of base class i, M are
the novel class feature vector measurements, NFC1 are the number of input features to FC1, NFC2

are the number of input feature to FC2 before the expansion.

3.2 DEEP FEATURE GMM - GENERATIVE MODEL FOR BASE CLASSES

Due to the small memory footprint constraint, we are unable to keep the entire training data of the
base classes. As an alternative, we can use a generative model of the base classes and during training
draw samples from the model. There are various approaches to this task, such as GAN Goodfellow
et al. (2014), VAE Pu et al. (2016), Pixel CNN van den Oord et al. (2016), or conventional methods of
non-parametric kernel density estimation Hastie et al. (2001). However, it is usually hard to generate
accurate samples from past learned distributions in the image domain, and these methods still require
a significant amount of memory to store the model network parameters. Furthermore, since training
typically requires thousands of samples, we prefer a generative model that allows fast sampling to
reduce the low-shot phase training time.

In our work, we use the Gaussian Mixture Model (GMM) density estimator as an approximate
generative model of the data from the base classes. However, instead of approximating the generative
distribution of the image data, we approximate a class conditional distribution of its feature repre-
sentation. Thus, we model a GMM P (v|c = k) =

∑M
i=1 πiN (v|µi,Σi), where M is the number

of mixtures for each bass class. In order to satisfy the small memory footprint constraint, we use a
GMM which assumes feature independence, i.e., the covariance matrix Σi of each Gaussian mixture
is diagonal. We denote this model as Deep Feature GMM. If we have K classes, and the feature
vectors dimensionality is N , the memory requirements for storing information about base classes is
O(MKN). The feature representation v, which we learn a generative model for, can be from the
last fully connected layer or from deeper layers. In Section 4.5, we evaluate the effectiveness of the
use of the Deep Features GMM, showing that despite its compact representation, there is a minimal
degradation in accuracy when training a classifier based only on data that is generated from the Deep
Features GMM, compared to the accuracy obtained on the full training data.

3.3 LOW-SHOT TRAINING

We apply standard data augmentation (random crop, horizontal flip, and color noise) to the input
samples of the novel classes and create 100 additional samples variants from each of the novel
class samples. These samples are passed through the feature extraction network frep to obtain their
corresponding feature representation. Note that new samples and their augmented variants are passed
through frep only once.

As described in Section 3.1, we expand the classification subnetwork fcls and train the expanded
network to classify novel classes in addition to the base classes. Figure 1(a) illustrates the proposed
method in the case where fcls is the last fully connected layer. As mentioned above, we only learn
the N dimensional vector wK+1, which augments the K ×N weight matrix of the FC layer.
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Each training batch is composed of base classes feature vectors drawn from the Deep Features GMM
models learned from the base classes training data and the available samples of a novel class. The
training batch is balanced to have equal number of generations/samples per class.

Since the forward and backward passes are carried out by only the last FC layers, each iteration
can be done very rapidly. We use SGD with gradient dropout (see below) to learn wK+1. More
specifically, the weights update is done by:

gK+1 = gK+1 + µ∆wK+1

wK+1 = wK+1 − αMgK+1

where µ is the momentum factor, α is the learning rate and M is a binary random mask with
probability p of being 1 (M is randomly generated throughout the low-shot training). That is, the
gradient update is applied to a random subset of the learned weights. This SGD with gradient dropout
is our heuristic variant for Noisy SGD proposed by Ge et al. (2015) which provably helps to escape
saddle points. In Section 4.3 we demonstrate the contribution of the gradient dropout when only a
few novel labeled samples are available.

3.4 EXPANSION OF DEEPER LAYERS FOR LEARNING REPRESENTATION

The procedure described in the previous subsections expands the last classification layer, but does not
change the feature representation space. In some cases, especially in those which the novel classes
are similar to the base classes, it is desirable to update and expand the feature representation.

To expand the feature representation, we add new parameters to deeper layers of the network. This
of course requires an appropriate expansion of all subsequent layers. To satisfy the hard distillation
constraints, we enforce that the feature representation expansion does not affect the network output
for the base classes. All weights in subsequent layers which connects the expanded representation to
the base classes are set to zero and remain unchanged during learning. In Figure 1(b) we demonstrate
an expansion of two last fully connected layers. The FC2 weight matrix is zero padded to adjust to
the new added weights in FC1. Only the expansion to FC2 uses the new added features in FC1.
The details of the representation learning expansion can be found in Appendix D.

4 EXPERIMENTS

In this section, we evaluate the proposed low-shot network expansion method on several classification
tasks. We design a benchmark which measures the performance of several alternative low-shot
methods in scenarios that resemble real-life problems, starting with easier tasks (Scenario 1) to harder
tasks (Scenario 2 & 3). In each experiment, we use a standard dataset that is partitioned to base
classes and novel classes. We define three scenarios:

Scenario 1 Generic novel classes: unconstrained novel and base classes which can be from different
domains.

Scenario 2 Domain specific with similar novel classes: base and novel classes are drawn from the
same domain and the novel classes share visual similarities among themselves.

Scenario 3 Domain specific with similar base and novel classes: base and novel classes are drawn
from the same domain and each novel class shares visual similarities with one of the base
classes.

In each scenario we define five base classes (learned using the full train set) and up to five novel
classes, which should be learned from up to 15 samples only. We compare the proposed method to
several alternative methods for low-shot learning described in Section 4.2.

4.1 DATASETS FOR LOW-SHOT NETWORK EXPANSION SCENARIOS

Dataset for Scenario 1 For the task of generic classification of the novel classes we use the
ImageNet dataset Russakovsky et al. (2015), such that the selected classes were not part of the
ILSVRC2012 1000 classes challenge. Each class have at least 1000 training images and 250 test
images per class. The randomly selected 5 partition of 5 base classes and 5 novel classes.
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Dataset for Scenario 2 and Scenario 3 For these scenarios we use the UT-Zappos50K Yu &
Grauman (2014) shoes dataset for fine-grained classification. We choose 10 classes representing
different types of shoes each having more than 1,000 training images and 250 test images.

To define similarity between the chosen classes, we fine-tune the base network (VGG-19 Simonyan
& Zisserman (2015)) on the selected classes with the full dataset, and we use the confusion matrix as
a measure of similarity between classes. Using the defined similarities, we randomly partition the
10 classes to 5 base and 2 novel classes, where for Scenario 2 we enforce similarity between novel
classes, and for Scenario 3 we enforce similarity between novel and base classes. The confusion
matrix representing the visual similarities and an illustration of the similarities between the base and
novel classes is presented in Figure 10 in Appendix C.

4.2 EVALUATED METHODS

In the proposed method we use the VGG-19 network Simonyan & Zisserman (2015) trained on
ImageNet ILSVRC2012 Russakovsky et al. (2015) 1000 classes as a feature extraction subnetwork
frep. In all three scenarios for training the classification subnetwork fcls on the base classes, we
fine-tune the last two fully-connected layers of VGG-19 on the 5 selected base classes, while freezing
the rest of the layers of frep.

We denote the method proposed in Section 3 as Generative Low-Shot Network Expansion: Gen-LSNE.
We compare our proposed method to NCM Mensink et al. (2013), and to the Prototype-kNN method
which is an extension of NCM and the soft distillation based method inspired by iCaRL method
Rebuffi et al. (2016), adapted for the low-shot scenario.

4.2.1 NCM & PROTOTYPE-KNN

We compare the proposed method to NCM classifier proposed by Mensink et al. (2013). Additionally,
we extend the NCM classifier by using multiple prototypes for each class, as in the Prototype-kNN
classifier Hastie et al. (2001). Both NCM and Prototype-kNN are implemented in a fixed feature space
of the FC2 layer of the VGG-19 network. In our implementation of the Prototype-kNN, we fit a Deep
Features GMM model with 20 mixtures for each of the base classes. We extract feature representation
of all of the available samples from the novel classes. The Deep Features GMM centroids of the base
feature vectors and the novel feature vectors of the samples are considered as a prototypes of each
class. We set k for Prototype-kNN classifier to be the smallest number of prototypes per class (the
number of prototypes in the novel classes is lower than the number of mixture in the base classes).
The Prototype-kNN classification rule is the majority vote among k nearest neighbors of the query
sample. If the majority vote is indecisive, that is, there are two or more classes with the same number
of prototypes among the k nearest neighbors of query image, we repeat classification with k = 1.

4.2.2 LOW-SHOT WITH SOFT DISTILLATION

We want to measure the benefit of the hard distillation constraint in low-shot learning scenario. Thus,
we formulate a soft distillation based method inspired by iCaRL Rebuffi et al. (2016) and methods
described by Venkatesan et al. (2017) and Venkatesan & Er (2016) as an alternative to the proposed
method.

In the iCaRL method, feature representation is updated by re-training the whole representation
network. Since in low-shot scenario we have only a small number of novel class samples, updating
the whole representation network is infeasible. Using the soft distillation method, we adapt to the
low-shot scenario by updating only the last two fully connected layers FC1, FC2, but still use a
combination of distillation and classification loss as in the iCaRL method.

The iCaRL method stores a set of prototype images and uses the Nearest Mean Exemplar (NME)
classifier at the final classification stage. In order to provide a fair comparison with the hard distillation
method and uphold our memory restriction, we avoid storing prototypes in image domain, and use the
proposed Deep-Features GMM as a generative model for the base-classes. Using NME classifier with
prototypes of the base classes is in fact a special case of Prototype-kNN with k = 1. Therefore, in soft
distillation method instead of NME we use a learned expanded network with additional parameters in
last fully connected layers, which aligns with Venkatesan et al. (2017) and Venkatesan & Er (2016),
and in our proposed hard-distillation method in Section 3.1.
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Base + Novel Top-1 Test Error(%)
Method /NumSamples 1 3 5 9 15

Prototype-KNN 19.81 23.01 19.89 20.29 19.25
NCM 21.3 9.84 8.89 7.92 7.71

Soft-Dis+GradDrop 21.46 12.04 9.45 7.48 6.42
Soft-Dis 21.31 12.41 9.82 7.48 6.5

Gen-LSNE+GradDrop 15.21 9.82 8.72 7.77 7.54
Gen-LSNE 17.11 9.82 8.46 7.15 6.64
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Figure 2: Scenario 1, Generic novel classes: Top-1 Test Error on the proposed-method, Prototype-
kNN, NCM and Soft-Dis: (a) the average Test Error on all 7 classes (base + novel), (b) show the
results viewed in (a) in tabular form.

To summarize, soft distillation applies a distillation loss and allows the FC1, FC2 layers to adjust
to the new data, while the proposed hard-distillation freezes FC1, FC2 and trains only the new
(expanded) parameters without using a distillation loss. We denote the soft distillation based methods
as Soft-Dis in the presented results.

4.2.3 GRADIENT DROPOUT

In Section 3.3 we proposed using gradient dropout regularization on SGD as a technique to improve
convergence and overcome overfitting in a low-shot scenario. We perform ablation experiments to
assess the importance of the gradient dropout and train using both soft distillation (Soft-Dis) and
proposed hard distillation (Gen-LSNE) with and without gradient dropout regularization.

4.3 RESULTS: EXPANSION OF THE LAST FULLY CONNECTED LAYER

Scenario 1: Generic novel classes In this experiment, the base classification network is trained on
five base classes and then expanded to classify two novel classes chosen at random. For each of the
five class partitions (Section 4.1), we perform five trials by randomly drawing two novel classes from
five novel classes available in the partition. The results are an average of 25 trials. The results of this
experiment are presented in Figure 2. In Figure 6 in Appendix B we present detailed results of the
test error on the base and novels classes apart. Prototype-kNN and the Soft-Dis methods perform
better on the base classes. However, our method is significantly better on the novel classes and the
overall test error is considerably improved, particularly when the number of samples is small. In
addition, we see the significant gain in accuracy delivered by the gradient dropout when the number
of novel samples is lower than 3 samples. Furthermore, gradient dropout also improves the results of
the Soft-Dis method.

The Prototype-kNN method is unable to effectively utilize the new available novel samples, however
it best preserves the base class accuracy when the number of novel samples and base class prototypes
is high (above 5 , see Figure 6). Since the number of prototypes used is equal to the number of novel
samples used, the addition of a novel samples/base class prototypes generally has a greater impact
on the preservation of the base class accuracy. We assume that since the spread of the base class
prototypes is better than that of the novel classes, then some novel samples are misclassified as some
similar base class. NCM generally performs considerably better than Prototype-kNN, despite the use
of less information from the base classes. However, NCM is unable to effectively utilize more novel
samples when they are available. Gen-LSNE significantly outperforms NCM with a single novel
sample, and overall outperforms all the tested method with nine and below samples per novel class.

Scenario 2 & 3: Domain specific with similar novel-to-novel and novel-to-base classes As
described in Section 4.1, in each scenario we have 5 partitions with five base classes and two novel
classes. The results are an average of 5 trials. The result of the experiments are presented in Figures
3 and 4. In Scenario-2 & Scenario-3 we see that the proposed method consistently outperforms the
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Figure 3: Scenario 2, Domain specific with similar novel classes: Top-1 test error rate on the
proposed-method, Prototype-kNN, NCM and Soft-Dis: (a) the average test error on all 7 classes (base
+ novel), (b) show the results viewed in (a) in tabular form and adding Prototype-kNN.

Soft-Dis, NCM and Prototype-kNN methods. Training Gen-LSNE with gradient dropout improves
results in cases with 1 & 3 novel samples per class, especially in Scenario-3. Additionally, training
with gradient dropout improves the results of the Soft-Dis method. In Figures 7 and 8 in Appendix B
we present detailed results of the test error on base and novels classes apart.

4.4 RESULTS: EXPANSION OF DEEPER LAYERS FOR LEARNING REPRESENTATION

In this section we explore the effect of expansion of deeper layers, as described in Section 3.4. We
partition the datasets as defined in 4.1 to five base and five novel classes, and we test a 10 classes
classification task. We expand the feature representation which is obtained after FC1 layer with 5
new features. The size of the feature representation after the FC1 layer of VGG-19 is of dimension 4k.
Thus, FC1 is expanded with 4k · 5 new weights. The results are averaged over the 5 trails. Figure 5
shows the results obtained, we denote +5Inner as the experiments with the additional five shared
representation features.

We see a marginal gain in Scenario 1. However, we observe a significant gain in Scenario 2 and 3
when the number of samples increases (especially Scenario 2). Observe that Gen-LSNE significantly
outperforms the alternative tested method in almost all of the tested cases. Note that the addition of
the five shared additional representation features has no observable effect on Soft-Dis.
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Figure 4: Scenario 3, Domain specific with similar class in base: Top-1 test error rate on the
proposed-method, Prototype-kNN, NCM and Soft-Dis, showing the gain obtained by applying
gradient dropout on the proposed method and on Soft-Dis: (a) the average test error on all 7 classes
(base + novel). (b) tabular form and adding Prototype-kNN
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Scenario 1: Generic novel classes
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Base + Novel Top-1 Test Error(%)
Method /#Samples 1 2 3 5 7 9 11 15

Prototype-KNN 37.76 38.49 36.98 36.66 35.36 33.97 33.45 33.23
NCM 36.08 22.79 17.18 15.54 14.96 13.7 13.37 13.17

Soft-Dis 37.39 26.34 20.46 15.6 14.04 12.18 11.4 10.62
Soft-Dis+5Inner 37.71 26.32 20.83 15.69 14.09 12.16 11.32 10.59

Gen-LSNE 28.51 20.92 17.15 14.55 13.35 11.98 11.27 10.9
Gen-LSNE+5Inner 28.8 21.0 17.14 14.46 13.15 11.7 11.13 10.44

(a)
Scenario 2: Domain specific with similar novel classes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# novel samples

25

30

35

40

a
v
e
ra

g
e
 t

e
st

 e
rr

o
r(

%
)

10 classes average test error(%) - ut-zap-scenario2

Base + Novel Top-1 Test Error(%)
Method /#Samples 1 2 3 5 7 9 11 15

Prototype-KNN 41.28 40.37 39.63 39.96 39.11 37.31 38.06 36.42
NCM 41.61 36.6 32.74 29.16 28.02 27.49 27.57 27.24

Soft-Dis 41.0 38.49 36.75 31.26 28.96 27.58 27.01 25.78
Soft-Dis+5Inner 41.3 38.43 37.18 31.53 28.98 27.39 27.06 25.57

Gen-LSNE 38.52 35.95 33.2 29.09 27.47 26.42 26.71 25.87
Gen-LSNE+5Inner 39.11 36.45 33.95 28.89 26.74 25.62 25.76 24.99

(b)
Scenario 3: Domain specific with similar class in base
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Prototype-KNN
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Soft-Dis+5Inner
Gen-LSNE
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Base + Novel Top-1 Test Error(%)
Method /#Samples 1 2 3 5 7 9 11 15

Prototype-KNN 48.69 46.81 48.7 47.96 45.02 43.72 44.17 44.35
NCM 48.91 38.62 34.47 31.98 30.72 29.91 29.34 29.49

Soft-Dis 49.47 42.8 39.49 35.18 32.64 29.97 29.39 27.75
Soft-Dis+5Inner 49.52 42.64 39.45 35.35 32.42 30.22 29.36 27.81

Gen-LSNE 41.0 34.29 32.5 29.93 28.43 27.26 26.52 25.93
Gen-LSNE+5Inner 42.07 34.37 33.45 30.07 28.09 26.58 26.12 25.7

(c)

Figure 5: Expansion of Deeper Layers for Learning Representation: showing performance
obtained with learning additional 5 shared inner features, +5Inner marks the addition of the shared
expanded features: (a) averaged results on Scenario 1 , (b) averaged results on Scenario 2, (c) averaged
results on Scenario 3.

4.5 RESULTS: DEEP-FEATURES GMM EVALUATION

In the Deep-features GMM evaluation experiment, we feed the full training data to the base network
and collect the feature vectors before FC1, i.e., two FC layers before the classification output. We fit
a GMM model to the feature vectors of each of the base classes with a varying number of mixture. We
train the two last FC layers of the base network from randomly initialized weights, where the training
is based on generating feature vectors from the fitted GMM. We measure the top-1 accuracy on the
test set of the networks trained with GMM models and the base network trained with full training data
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Top-1 Accuracy(%)
Dataset /# Mixtures Full 1 10 20 40 60
imagenet-group1-base 95.3 91.94 94.03 94.19 94.03 94.57
imagenet-group2-base 98.0 93.83 97.04 96.63 96.54 97.37
imagenet-group3-base 98.2 94.40 96.81 97.45 97.09 96.52
imagenet-group4-base 98.8 95.60 98.16 98.01 98.30 98.58
imagenet-group5-base 99.0 97.26 98.26 98.01 98.01 98.26
ut-zap-scenario3-base 89.5 73.23 85.34 85.10 85.50 85.50
ut-zap-scenario2-novel 86.5 81.81 80.59 78.97 78.92 81.27
ut-zap-scenario2-base 91.9 82.15 87.73 88.45 91.16 90.68

Table 1: Deep-Features GMM Evaluation: Full stands for Fine tuning FC7,FC8 with the full training
data.

on the datasets defined in 4.1. The difference in top-1 accuracy between the network trained with full
data and the networks trained with GMM models represent degradation caused by compressing the
data into simple generative model. The results of the experiment presented in the Table 1 demonstrate
that learning with samples from GMM models cause only a negligible degradation relative to learning
with a full training set. We observe that the degradation in accuracy is not monotonic in the number
of GMM mixtures, and that for many practical purposes a small number of mixture may be sufficient.

5 CONCLUDING REMARKS

We have introduced Gen-LSNE , a technique for low-shot network expansion. The method is based
on hard-distillation, where pre-trained base parameters are kept intact, and only a small number of
parameters are trained to accommodate the novel classes. We presented and evaluated the advantages
of hard-distillation: (i) it gains significant increased accuracy (up to 20%) on the novel classes, (ii) it
minimizes forgetting: less than 3% drop in accuracy on the base classes, (iii) small number of trained
parameters avoids overfitting, and (iv) the training for the expansion is fast. We have demonstrated
that our method excels when only a few novel images are provided, rendering our method practical
and efficient for a quick deployment of the network expansion.

We have also presented Deep–Features GMM for effective base class memorization. This com-
putationally and memory efficient method allows training the network from a generative compact
feature-space representation of the base classes, without storing the entire training set.

In basic setting of a hard distillation, novel class classification is based on the base representation. We
have also presented an extended version of network expansion, where the representation is updated
by training the last deeper layers. We have shown that when more images of the novel classes
are available, the adjusted representation is effective. Generally speaking, the representation can
be improved as more samples are available, but at the expense of longer training, larger memory
footprint, and risking forgetting.

In the future we would like to continue exploring hard-distillation methods, in extremely low-shot
classifier expansion, where only one or a handful of images of the novel class are provided. An
additional research direction would be to maximize the information gain that is obtained from each
novel image, aspiring towards human low-shot understanding.
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APPENDIX A VGG-19 BASE NETWORK TRAINING HYPER PARAMETERS

We use batch size of 60, and 5000 training iterations. We apply SGD with momentum µ = 0.9 and
with learning rate lr = 0.001. We apply polynomial learning rate policy with power = 0.25, and L2
norm weight decay of 0.0005. The network was fine-tuned on two TITAN-X Pascal GPUs.

APPENDIX B BASE & NOVEL CLASSES TEST ERROR
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Figure 6: Scenario 1, Generic novel classes: Top-1 test error rate on the proposed-method, Prototype-
kNN, NCM and Soft-Dis: (a) the test error accuracy on the 5 base classes in a 7 class classification
task, (b) the average test error on the 2 novel classes in a 7 class classification task
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Figure 7: Scenario 2, Domain specific with similar novel classes: Top-1 test error rate on the
proposed-method, Prototype-kNN, NCM and Soft-Dis: (a) the average test error on the 5 base classes
in a 7 class classification task, (b) the average test error on the 2 novel classes in a 7 class classification
task.
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Figure 8: Scenario 3, Domain specific with similar class in base: Top-1 test error rate on the
proposed-method, Prototype-kNN, NCM and Soft-Dis : (a) the average test error on the 5 base classes
in a 7 class classification task, (b) the average test error on the 2 novel classes in a 7 class classification
task.
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APPENDIX C CLASSES AND PARTITIONS OF UT-ZAPPOS50K YU &
GRAUMAN (2014) DATASET
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Loafers

Boot_Mid-Calf

Boot_Ankle
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(a) (b)

Figure 9: Scenario 2, Partition with similar novel classes: (a) random examples from base classes;
(b) random examples from novel classes. For example, in Scenario 2 we aim to distinguish between
Loafers and Oxfords based on Low-Shot samples, with the base classes shown in (a)

base/Boots_Ankle<->novel/Oxfords

base/Boots_Knee_High<->novel/Boots_Mid-Calf

base/Flats<->novel/Loafers

base/Heels<->novel/Sandals_Flat

base/Slipper_Flats<->novel/Sneakers_and_Athletic_Shoes
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Figure 10: (a) Partition with similarities between base to novel classes. (b) Confusion matrix of 10
UT-Zappos50K classes based on fine-tuned VGG-19 Simonyan & Zisserman (2015) network.
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APPENDIX D REPRESENTATION LEARNING: WEIGHTS INITIALIZATION

The fully connected layer FC1 is parametrized with weight matrix W ∈ RN×V , where V is
the dimensionality of input feature vector ν and N is the dimensionality of the output feature
representation vector v. As was described in Section 3.4 we want to extend the feature representation
v ∈ RN with E additional dimensions ṽ ∈ RE . We expand the weight matrix W with E × V
additional weights as shown in Figure 1(b). We denote the expanded weights as Wexp ∈ RE×V . The
expanded weights are to be learned from the novel data.

We draw a random set of S novel examples. Let

R =
1

S

S∑
i=1

W · νi

denote the mean response of the FC1 to the set of novel examples. Let {ji}Ei=1 be the E indexes of
maximum elements of R. We initialize the expansion to FC1 layer Wexp in the following manner:

Wexp = α[wT
j1 , w

T
j2 , ...w

T
jE ]T + (1− α)ε

where wj ∈ RV is the j′th row of matrix W , ε ∼ N (0, std(W )), and α is a weight constant (in
our experiments α = 0.25). This initialization allows the expansion of the feature representation ṽ
to have non zero responses (after ReLU) with respect to the novel samples. Since we operate in a
Low-Shot scenario, where only few samples of novel classes are available, this weights initialization
plays crucial role in convergence of FC1 extended weights.

We initialize the subsequent layer FC2 in the following manner: let W
′ ∈ RK×N be the weight

matrix of FC2, where N is the dimensionality of the feature representation vector v and K is the
number of base classes. Since v was expanded with additional E features ṽ, and we want to allow
classification of L novel classes, the dimension of expanded W

′
will be (K+L)× (N +E). As was

mentioned in Section 3.4 and illustrated in Figure 1(b), the hard distillation constraint requires that
W

′
will be zero-padded with K×E zeros to avoid influence of the expanded features ṽ on the output

of the base network. In contrast, the expansion of W
′

which we denote W
′

exp ∈ RL×(N+E) should
be encouraged to produce larger responses to ṽ to improve learning. We initialize the expansion of
FC2 layer W

′

exp in the following manner:

W
′

InExp = std
(
W

′
)
· u · Γ

where u ∈ {−1, 1} with probability 0.5 and Γ is an amplification parameter. In our experiments
we used Γ = 2. We found that this initialization technique is crucial in assuring convergence of the
added weights and the ability of the new weights to improve classification results in low-shot setting.
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