
Transformer Compression via Subspace Projection

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose TCSP, a novel method for compressing a transformer model by focus-1

ing on reducing the hidden size of the model. By projecting the whole transform2

model into a subspace, we enable matrix operations between the weight matrices3

in the model and features in a reduced-dimensional space, leading to significant4

reductions in model parameters and computing resources. To establish this sub-5

space, we decompose the feature matrix, derived from different layers of sampled6

data instances, into a projection matrix. For evaluation, TCSP is applied to com-7

press T5 and BERT models on the GLUE and SQuAD benchmarks. Experimental8

results demonstrate that TCSP achieves a compression ratio of 44% with at most9

1.6% degradation in accuracy, surpassing or matching prior compression methods.10

Furthermore, TCSP exhibits compatibility with other methods targeting filter and11

attention head size compression.12

1 Introduction13

The transformer model [1] is widely used in Natural Language Processing as well as other do-14

mains such as Computer Vision [2, 3, 4] and Speech Recognition [5, 6, 7]. Despite its impres-15

sive performance, the large size of transformer models and the high inference latency limit their16

practical deployment. To address this challenge, model compression techniques including prun-17

ing [8, 9, 10, 11, 12, 13] and low-rank decomposition [14, 15, 16, 17] have been proposed to reduce18

model parameters and improve inference speed while ensuring that the performance of the compressed19

model is not significantly disturbed.20

The transformer model consists of a series of weight matrices that are determined by the hidden21

size d, attention head size dh in the multi-head attention layers, and the number of filters df in the22

feed-forward network layers. Existing compression methods primarily focus on reducing the attention23

head size dh [14, 8, 13] and the number of filters df [8, 13], or performing matrix decomposition24

to transform d⇥ d matrices into two d⇥ k matrices [14, 15, 16]. However, none of these methods25

directly address the reduction of the hidden size d. Although CoFi [13], a pruning method, attempts26

to compress d, it can only achieve a 1% reduction while keeping model performance.27

This paper introduces a novel method, named Transformer Compression via Subspace Projection28

(TCSP), for compressing transform models by reducing the hidden size. By projecting the transformer29

model into a subspace, TCSP achieves this compression. To create this subspace, we employ low-rank30

factorization to decompose the feature matrix derived from sampled data instances into a projection31

matrix. Specifically, we gather multiple data instances, pass each through the transformer model to32

obtain their respective features from different layers, and concatenate them to form a feature matrix.33

Decomposing this matrix yields the projection matrix, which allows us to project the model into a34

subspace, resulting in a significant reduction in model parameters. Furthermore, TCSP can be easily35

combined with other compression methods that reduce attention head size and the number of filters,36

ensuring compatibility. Although low-rank factorization is employed in TCSP, it is considered a37

sub-technique to achieve the primary goal of reducing hidden size.38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Our contributions can be summarized as follows:39

• We take a fresh perspective on model compression by reducing the hidden size of the40

transformer model, which has been rarely explored before.41

• We propose the TCSP technique to achieve the compression goal. TCSP decomposes the42

feature matrix derived from sampled data instances into a projection matrix, which is then43

used to project the transformer model into a subspace. In addition, TCSP is compatible with44

other compression methods, such as reducing the multi-head attention size and the number45

of filters, which could further speed up inference.46

• Experimental results on two widely-used benchmarks, GLUE and SQuAD, show that TCSP47

can compress 44% of the parameters of both T5 and BERT within 1.6% accuracy loss,48

surpassing or matching prior compression methods.49

2 Related Work50

The transformer model is a general model that has been widely used in the fields of deep learning.51

To improve inference speed and reduce memory overhead, different approaches have been proposed52

to compress the transformer. Previous research [18] categorize these approaches into five distinct53

categories: quantization [19, 20, 21], pruning [8, 9, 10, 11, 12, 13], knowledge distillation [22, 23],54

low-rank factorization [14, 15, 16, 17], and weight sharing [24, 25]. These five types of methods are55

orthogonal to each other. In this work, we focus on exploring low-rank factorization and pruning56

approaches as means to directly reduce the number of parameters in fined-tuned task-specific models.57

We do not delve into Knowledge distillation and weight sharing, as they involve training models from58

scratch. We do not cover quantization, which compresses models based on storage considerations.59

Low-Rank Factorization for Transformer. In recent years, various low-rank decomposition60

methods have been proposed specifically for Transformers. Ma et al. [26] introduce a block term61

tensor decomposition approach to decompose the multi-head attention in Transformers. Noach et62

al. [27] propose a two-stage method for Transformer compression, where they first employ SVD to63

decompose Transformer’s weight matrix and then fine-tune the model using knowledge distillation.64

However, direct SVD-based compression of the weight matrix assumes that it possesses low-rank65

properties, which may not always hold for Transformers. To address this issue, Chen et al. [14]66

propose a data-aware low-rank factorization method. This method minimizes the reconstruction error67

of the matrix multiplication between each weight matrix and its corresponding input feature matrix68

rather than directly minimizing the reconstruction error of the weight matrix itself. Hsu et al. [15]69

and Hua et al. [16] propose FWSVD and TFWSVD, respectively, which utilize Fisher information70

to measure the contribution of different parts of the weight matrix to model performance during the71

SVD process, achieving improved results compared to direct SVD. Alternatively, Tahaei et al. and72

Edalati et al. [28, 29] employ Kronecker decomposition to preserve the matrix rank and successfully73

compress models like BERT and GPT2.74

Pruning for Transformer. Pruning is a commonly used technique for eliminating unnecessary75

parameters in the model. Existing pruning methods can be broadly divided into two categories:76

unstructured pruning and structured pruning. Unstructured pruning aims to remove unimportant77

scalar values in model’s parameters. Various unstructured pruning approaches have been proposed78

for Transformer, such as magnitude-based [30], first-order [31], second-order [32], and lottery79

ticket hypothesis [33]. Although unstructured pruning algorithms can remove many redundant80

parameters while ensuring accuracy, compressed models require specific sparse data structures and81

hardware support to take advantage of unstructured pruning. For this reason, structure pruning82

approaches [8, 9, 10, 11, 12, 13] are proposed to remove weight blocks in the transformer model,83

including entire transformer layers, attention heads, and filters. Unlike unstructured pruning, structure84

pruning can accelerate inference speed and reduce memory overhead without specialized data85

structure and hardware.86

2

Original
Transformer

Sampled
Dataset Entire

Dataset

Compressed
Transformer

Weight Matrices

× 𝐿 × 𝐿

Compressed Matrices

Feature Matrix

Finetuned
Compressed
Transformer

(1) Generating Projection Matrix (2) Fusing Projection and Weight Matrix (3) Fine-tuning Weight Matrix

𝑊 ෡𝑊

𝑊 𝑃 ෡𝑊
SVD

Σ𝑃𝑋 V

𝑋

Features

…

Projection Matrix

Figure 1: Workflow of Transformer Compression via Subspace Projection (TCSP).

3 Overview87

3.1 Preliminary: Transformer Architecture88

We take T5 [34] as an example of the transformer model to present the proposed TCSP, although it89

can be easily extended to other transform models such as BERT [35] and GPT [36].90

A transformer model comprises a stack of blocks, each containing a multi-head attention (MHA)91

layer, an optional cross-attentive (CA) layer, and a feed-forward network (FFN) layer.92

Multi Head Attention (MHA). In a transformer encoder, each MHA layer consists of H attention93

heads that facilitate interactions between tokens, with a pre-normalization step. Other transform94

models such as BERT adopt post-normalization after the MHA layer.95

xM = x+MHA(xn), xn = norm(x), MHA(xn) =

HX

i=1

Att
(i)
(xn), (1)

Att
(i)
(xn) = W

(i)>
O W

(i)
V xn · Softmax((W

(i)
K xn)

>
(W

(i)
Q xn)/

p
d), (2)

where norm(x) represents the normalization function such as LayerNorm and RMSNorm,96

WQ,WK ,WV ,WO 2 Rdh⇥d are the parameters of an MHA layer, denoting the query, key, value,97

and output matrices, respectively. Here d denotes the hidden size, and dh = d/H denotes the98

attention head size.99

In a transformer decoder, a CA layer is added after the MHA layer. The CA layer closely resembles100

the MHA, with one only distinction: the feature matrices multiplied by WQ and WK in the CA layer101

are sourced from the output of the Transformer encoder. Further information on the CA layer can be102

found in Appendix A.103

Feed Forward Network (FFN). Following each MHA layer, there is an FFN layer that takes xM as104

input and generates xF as output:105

xF = xM + FFN(xn), xn = norm(xM), FFN(xn) = W
>
D�(WUxn), (3)

where � is the activation function, and WU ,WD 2 Rdf⇥d are the parameters of the FFN layer, which106

correspond to the up and down matrices, respectively. Here df indicates the number of filters.107

3.2 Basic Idea of TCSP: Subspace Projection108

The basic idea of Transformer Compression via Subspace Projection (TCSP) is to project the109

Transformer model into a suitable subspace via matrix fusion. To provide a clearer explanation, we110

take the linear regression model as an example. Here we denote the original model F as:111

3

F(x) = Wx, (4)

where W 2 R1⇥d
, x 2 Rd.112

Assume that the input x of the model is distributed in a k-dimensional subspace. In other words,113

there exists a projection matrix P 2 Rd⇥k such that every x in the dataset satisfies x = Px̂, where114

x̂ 2 Rk. Thus, we have,115

F̂(x̂) = (WP)x̂ = Ŵ x̂, (5)

where Ŵ = WP 2 R1⇥k represents the compressed weight matrix, x̂ 2 Rk. In this way, we project116

the original model from a d-dimensional space into a reduced k-dimensional subspace. We will117

elaborate on how to extend this method to the transformer model.118

Workflow of TCSP. The proposed TCSP comprises three stages, as illustrated in Figure 1. Firstly,119

given the training data and the original transformer model (e.g., a fine-tuned T5), we sample a subset120

of the training data, feed it into the transformer model to obtain the feature matrix X , and employ121

SVD on X to derive the projection matrix P . Then, we project the weight matrices {W} of the122

original transformer to a subspace via the fusion of the model’s weight matrices and the projection123

matrix, resulting in {Ŵ}. Finally, following prior work [14, 15, 16], we fine-tune the compressed124

transformer with the entire training data.125

4 Methodology126

4.1 Generating Projection Matrix127

Motivated by the fact that features produced by the transformer model usually tend to reside in a128

low-dimensional subspace, our objective is to carry out the forward pass of the transformer model in129

the low-dimensional subspace. To achieve this, the initial step of TCSP focuses on determining the130

subspace where the features are located. This can be formalized as a optimization problem:131

argmin
P

E
x2D

NX

i=1

kL(1⇠i)
(x)� PP

>
L
(1⇠i)

(x)k2F

!
s.t. P

>
P = I, (6)

where N denotes the number of layers in the transformer, L(i) represents the i-th layer in the132

transformer model, which can correspond to different components such as the MHA or the FFN133

layer. L(1⇠i)
= L

(i) � . . . L(2) �L(1) represents the composite function that is formed by sequentially134

applying the transformations from the first layer to the i-th layer. L(1⇠i)
(x) refers to the application135

of the composition function L
(1⇠i) on the input x, resulting in its corresponding feature. I is an136

identity matrix, and P is the desired projection matrix. For a given projection matrix P , P>
x can137

be interpreted as projecting x from the original space into the subspace corresponding to the matrix138

P , while PP
>
x can be viewed as projecting P

>
x from the subspace back into the original space.139

Therefore, we can use x� PP
>
x to measure whether the vector x belongs to the subspace.140

Eq. 6 is equivalent to the following equation, the proof of which is shown in Appendix B.141

argmin
P

kX � PP
>
Xk2F s.t. P

>
P = I, (7)

where142

X =
⇥
L
(1)

(x1),· · ·, L(1)
(xM), L

(1⇠2)
(x1),· · ·, L(1⇠2)

(xM), L
(1⇠N)

(x1),· · ·, L(1⇠N)
(xM)

⇤
. (8)

Let lm denote the sequence length of the m-th data instance, and d denote the hidden size. Conse-143

quently, the shape of X can be expressed as d⇥ (N ⇥
PM

m=1 lm), where N is the number of layers,144

and M is the number of the sampled data instances.145

4

Such an optimization problem in Eq. 7 can be well solved by SVD [37].146

U,⌃, V
>
= SVD(X), (9)

where U and V are two orthogonal matrices, and ⌃ is a diagonal matrix.147

Then, the first k columns of the matrix U (i.e., the top-k important eigenvectors of the feature matrix148

X) compose the desired projection matrix P .149

P = U:,:k (10)

Appendix G.1 describes the process of generating the projection matrix P . Notably, although we150

sample a subset of data instances for computing feature matrix X , the size of X is still large, resulting151

in a significant overhead of SVD. To mitigate this, we only select a subset of columns from X to152

create a submatrix for SVD. Following previous work [14, 8], we approximate the SVD by sampling153

2,000 tokens, which corresponds to the number of columns in matrix X . In the experiments, we154

examine the impact of the number of sampled tokens on the performance of TCSP.155

4.2 Fusing Projection and Weight Matrix156

Once the projection matrix P for the the transformer model has been obtained, we can construct an157

approximation of the original model within the subspace using the projection matrix. The basic idea158

behind this is to fuse the projection matrix with the weight matrices of the transformer.159

Given an input x, we pass it through the transformer model starting from the first layer to the last160

N -th layer, resulting in the corresponding feature vector L(1⇠N)
(x). According to Eq.6, we can use161

the projection matrix P to add dimensionality reduction and dimensionality enhancement operations162

between each layer, while preserving the final outcome, as shown in the following equation,163

L
(1⇠N)

(x) = L
(N) � · · · � L(2) � L(1) (11)

⇡ U �D � L(N) � · · · � L(2) � U �D � L(1) � U �D(x) (12)

⇡ U � L̂(N) � · · · � L̂(2) � L̂(1) �D(x) (13)

⇡ PL̂
(1⇠N)

(P
>
x), (14)

where U(x) = Px represents the dimensionality enhancement operation, D(x) = P
>
x represents164

the dimensionality reduction operation, L̂i = D � Li � U is the projected layer, and L̂
(1⇠N)

=165

L̂
(N) � · · · � L̂(2) � L̂(1) is the projected model.166

According to Section 3.1, any original layer L(i)
(x) can be formulated as:167

L(x) = x+ Layer(norm(x)), (15)

where the function “Layer” can be instantiated by various components such as MHA, CA, and FFN.168

The projected layer L̂ operates on a k-dimensional feature x̂ as input and produces a corresponding169

k-dimensional feature L̂(x̂), i.e.170

L̂(x̂) = P
>
(Px̂+ Layer(norm(Px̂)) = x̂+ P

>
Layer(norm(Px̂). (16)

Compared with the d-dimensional input and output vectors of the original layer L(x), the projected171

layer L̂(x̂) in Eq.16 reduces the dimensions of the layer’s input and output to k. However, this172

reduction in dimensionality does not alleviate the computational effort. Therefore, we propose two173

methods to compress the parameters within the projected layer: (1) Matrix fusion, which merges174

the multiple consecutive matrix multiplications into a single matrix. (2) Normalization function175

reconstruction, which is used to swap the computational order of matrix operations and normalized176

functions to increase the chance of matrix fusion. Next, we first explain the normalization function177

5

reconstruction and then discuss how the matrix fusion technique can be employed to compress the178

MHA and FFA layers.179

Normalization Function Reconstruction. Within the projected layer L̂ as shown in Eq.16, we180

encounter the computation of norm(Px̂). Additionally, we know that the operation following181

norm(Px̂) is a matrix multiplication. Thus, if we can find a new matrix P̂ along with a normalization182

function ˆnorm that satisfies norm(Px̂) = P̂ ˆnorm(x̂), we can compress the parameters of the183

transformer model by fusing the matrix P̂ with the subsequent matrix.184

The normalization function in T5 is RMSNorm [38]:185

norm(x) = �
x

1p
d
kxk

. (17)

Therefore, we have186

norm(Px̂) = �
Px̂

1p
d
kPx̂k

= (

r
d

k
�P)I

x̂

1p
k
kx̂k

= P̂ ˆnorm(x̂), (18)

where P̂ =

q
d
k�P , ˆnorm(x̂) = I x̂

1p
k
kx̂k (note that kx̂k = kPx̂k).187

By incorporating Eq.18 into Eq.16, we can define188

ˆLayer(x̂) = P
>
Layer(P̂ ˆnorm(x̂)) = P

>
Layer(P̂ x̂n), (19)

where ˆnorm(x̂) is abbreviated as as x̂n.189

For detailed information on reconstructing other normalization functions such as LayerNorm [39]190

and BatchNorm [40], please refer to the appendix D. The post-normalization reconstruction is also191

explained in appendix D.192

MHA Layer Compression. We can compress the transformer model’s parameters by fusing multiple193

consecutive matrix multiplications into a single matrix. For the MHA layer, we have194

ˆMHA(x̂n) =

HX

i=1

P
>
W

(i)>
O W

(i)
V P̂ x̂n · Softmax((W

(i)
K P̂ x̂n)

>
(W

(i)
Q P̂ x̂n)/

p
d) (20)

=

HX

i=1

Ŵ
(i)>
O Ŵ

(i)
V x̂n · Softmax((Ŵ

(i)
K x̂n)

>
(Ŵ

(i)
Q x̂n)/

p
d), (21)

where Ŵ
(i)
O = W

(i)
O P, Ŵ

(i)
V = W

(i)
V P̂ , Ŵ

(i)
K = W

(i)
K P̂ , Ŵ

(i)
Q = W

(i)
Q P̂ . The shape of these195

matrices is transformed from dh ⇥ d to dh ⇥ k, resulting in a reduction of k/d of the original number196

of parameters. We introduce the CA layer compression in Appendix E.197

FFN Layer Compression. For the FFN layer, we have198

ˆFFN(x̂n) = P
>
W

>
D�(WU P̂ x̂n) = Ŵ

>
D�(ŴU x̂n), (22)

where ŴD = WDP, ŴU = WU P̂ , which has the same compression rate as the MHA Layer. The199

complete compression process is shown in Appendix G.2.200

4.3 Combining TCSP with Other Compression Algorithms201

TCSP compresses the hidden size d, and we can further compress the number of filters df and202

attention head size dh by the prior pruning and low-rank factorization methods.203

6

Filter Pruning. We can remove the filters in the FFN layer by pruning. Following prior work [13, 8],204

we introduce mask variables diag(m) into the FFN layer, where m indicates which filters in the FFN205

layer are to be retained.206

FFN(x;m) = W
>
Ddiag(m)�(WUx). (23)

Then the pruning problem can be formalized as an optimization problem on the mask.207

argmin
m

L(m) s.t. cost(m)  C. (24)

Our proposed TCSP method only involves the forward computation process of the model. However,208

most prior methods find the optimal mask by leveraging the derivative of the loss function with respect209

to the mask variable @L
@m . As a result, TCSP cannot be directly integrated into the same framework as210

previous pruning algorithms. To address this, we propose TCSP-pruning, a filter pruning algorithm211

that exclusively relies on the forward process of the model, enabling the unifying of the pruning212

algorithm into the TCSP framework.213

TCSP-pruning employs a greedy algorithm to remove the least important filter at each step based on214

the following score function:215

score(i) = |WD,i| ⇤ (E[�(WU,ix)] + std[�(WU,ix)]), (25)

where score(i) represents the significance of the i-th filter. We believe that the importance of the i-th216

filter is influenced by the factors such as the norm of WD,i (the weight matrix associated with the217

i-th filter), the average activation value, and the variance of activation values. The pseudo-code of218

TCSP-pruning is shown in the Appendix G.3.219

Head Size Compression. Based on the low-rank property of data distribution, we can further220

compress the head size of the MHA layer. The objective can be expressed as:221

argmin
M

E
x
k(WKx)

>
(WQx)� (WKx)

>
M(WQx)k2F s.t. rank(M) = k, (26)

argmin
M

E
x
kW>

OWV x�W
>
OM

0
WV xk2F s.t. rank(M

0
) = k. (27)

DRONE [14] gives the solution to the above two optimization problems. Assuming that the optimal222

solution obtained from the first optimization problem is M⇤. Afterward, we decompose M
⇤ into the223

product of two matrices M⇤
= U

>
MVM through SVD. Then, we can compress matrices WQ,WK224

through UM and VM (ŴK = UMWK , ŴQ = VMWQ). The second problem is addressed in the225

same way. We can also formalize Eq.7 as argminM kX � MXk2F s.t. rank(M) = k, but the226

optimal solution obtained by both formulas is the same.227

5 Experiment228

5.1 Experimental Setup229

To evaluate our method, we first fine-tune T5base and BERTbase on the training data of each task230

of the GLUE[41] and SQuAD [42] benchmarks to obtain the baseline models, and then adopt the231

proposed TCSP or the comparison compression methods to compress these baseline models. On each232

task, for TCSP, we sample 2000 instances from its training data to produce the project matrix, using it233

to compress the baseline models and finally fine-tune the compressed models using the entire training234

data. For the GLUE benchmark, We report accuracy for the MNLI [43], QQP [44], QNLI [41], and235

SST2 [45] tasks, as well as F1 score and spearman correlation for the MRPC [46] and STSB [41]236

tasks. For the SQuAD benchmark, we report the F1 score. For more comprehensive information237

regarding the experimental setup, please refer to Appendix F.238

7

Table 1: Performance of TCSP on T5base and BERTbase with various compression rate. “Avg. Diff”
refers to the average accuracy difference observed before and after applying model compression on
the GLUE and SQuAD datasets. “Speed Up” represents the rate of inference time speedup achieved
by “w TCSP{25%, 25%}” compared to the baseline model. “ft.” denotes fine-tuning.

MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0 Avg. Diff

T5base 86.8 91.4 93.2 94.5 90.0 91.9 88.6 79.3
w TCSP {25%, 0%} 85.0 90.1 91.4 93.0 88.9 89.1 83.9 71.9
w TCSP {25%, 0%} + ft. 86.2 91.2 92.5 93.2 90.1 91.3 86.8 78.0 -0.6/-1.3
w TCSP {25%, 25%} 83.5 88.0 90.8 91.4 86.6 90.4 79.2 66.9
w TCSP {25%, 25%} + ft. 85.5 90.7 91.8 92.8 89.5 91.5 87.3 77.7 -1.0/-1.5

Speed Up ⇥1.25 ⇥1.06 ⇥1.08 ⇥1.36 ⇥1.22 ⇥1.25 ⇥1.15 ⇥1.20

BERTbase 84.4 91.1 91.4 92.2 88.4 89.9 88.5 75.8
w TCSP {25%, 0%} 31.8 68.7 49.5 49.2 68.5 1.0 13.5 11.2
w TCSP {25%, 0%} + ft. 83.7 91.0 91.0 92.2 88.5 90.1 86.7 76.6 -0.2/-0.5
w TCSP {25%, 25%} 31.8 67.6 49.8 49.1 67.5 0.0 12.9 10.6
w TCSP {25%, 25%} + ft. 83.5 90.8 90.6 91.9 87.7 89.1 87.7 76.0 -0.6/-0.3

Speed Up ⇥1.16 ⇥1.02 ⇥1.62 ⇥2.36 ⇥1.96 ⇥3.93 ⇥1.36 ⇥1.36

Table 2: Performance comparison with prior compression methods using BERTbase as the baseline.

Sajjad et al.(33.3%) Kwon et al.(40%) DRONE(-) FWSVD(40%) TFWSVD(40%) TCSP(40%)

QQP 90.6(-0.5) 90.4(-0.6) 90.1(-0.8) 87.6⇤(�0.2) 86.9⇤(�0.9) 90.8(-0.3)
QNLI 89.7(-1.4) 90.0(-1.4) 89.3(-2.1) 89.5(-1.8) 90.3(-1.0) 90.6(-0.8)
SST-2 90.6(-1.8) 92.5(-1.1) 90.8(-1.5) 91.2(-1.8)) 91.1(-1.9) 91.1(-1.1)
MRPC 79.4(-8.6) 85.3(-1.0) 88.0(-1.5) 88.0(+0.6) 89.0(+1.6) 89.1(-0.8)

5.2 Performance Evaluation239

Table 1 shows the accuracy results of T5base and BERTbase with different compression rates. The240

proposed TCSP can reduce the hidden size d. Additionally, in Section 4.3, we introduce a filter241

pruning method that can reduce the number of filers df . Moreover, the existing DRONE [14] can242

compress the attention head size dh. In TCSP{a%, b%}, the notation a% denotes the compress rate243

of hidden size, while b% denotes the compress rate of the attention head size plus the number of244

filters. Consequently, the overall compression rate of the model is a% + b% - a% * b%.245

When employing TCSP with a compression rate of {25%, 0%} which retains 75% hidden size while246

preserving the original attention head size and number of filters, we observe that the compressed247

T5base and BERTbase models exhibit a maximum drop in accuracy of only 1.3% on the GLUE and248

SQuAD datasets. Building upon this, We further apply filter pruning and compress the head size,249

resulting in a model denoted as TCSP {25%, 25%}. Remarkably, this additional compression does250

not negatively impact the baseline performance, highlighting the compatibility of TCSP with the251

filter pruning and attention head size compression methods. Overall, we achieve a compression252

rate of 44% for both T5base and BERTbase models with only a 1.6% loss in accuracy. Like prior253

work [14, 15, 16], fine-tuning is necessary for ensuring performance. For more detailed information254

on model performance at various compression rates, please refer to Appendix F.5.255

5.3 Comparison with Prior Methods256

We conduct a comprehensive comparison of TCSP with prior methods, considering both their257

performance and compression time cost.258

Following the setting adopted by Kwon et al. [8], we compare TCSP with prior pruning methods and259

low-rank factorization methods. The evaluation involves compressing models with compression rate260

constraints on four tasks within the GLUE benchmark: QQP, QNLI, SST-2, and MRPC. Notably, we261

conduct this evaluation without employing knowledge distillation. The comparison methods include262

Sajjad et al. [47], Kwon et al. [8], DRONE [14], FWSVD [15], and TFWSVD [16]. To ensure a fair263

comparison, we select BERTbase as the baseline model, as it is commonly employed across all the264

comparison methods. To assess the impact of compression, we compare the amount of accuracy drop265

8

Table 3: Compression time cost comparison with prior compression methods using BERTbase as
the baseline evaluated on the MNLI dataset. “# Epochs” represents the number of epochs to fien-tune
the model weights on the entire training data.

DynaBERT [23] EBERT [11] BMP [12] CoFi [13] Kwon et al. [8] TCSP

Time cost (hr) 12 5 17 33 0.01 2.16 (0.16 + 2.00)
Epochs 4 6 20 40 0 2

Table 4: Effect of sampled tokens.

Number of tokens QQP QNLI SST-2 MRPC

1K 91.2 92.3 93.8 91.5
2K 91.2 92.5 93.2 91.3
4K 91.2 92.5 93.7 91.8

Table 5: Effect of SVD

Method QQP QNLI SST-2 MRPC

TCSP-SVD 91.2 92.5 93.2 91.3
TCSP-Random 63.1 49.4 49.0 0.0

experienced by each method since the absolute accuracy of the baseline BERTbase may vary slightly266

across different papers. The compression rate is indicated in parentheses after each method’s name,267

except for DRONE, as their paper does not explicitly report the compression rate.268

Table 2 presents the performance of the compressed models and the difference from their correspond-269

ing baselines for all the compression methods under comparison. The performance of FWSVD and270

TFWSVD is marked with an asterisk since they use the F1 metric instead of accuracy specifically on271

the QQP dataset. However, this metric does not impact the comparison of the metric difference. Our272

method TCSP demonstrates comparable or superior results compared to the prior methods (A lower273

accuracy drop indicates better performance).274

To assess the time cost, we evaluate the performance on the MNLI dataset, which is larger than other275

datasets in GLUE. Table 3 shows that TCSP requires only 0.16 hours for model compression and an276

additional 2 hours to model fine-tuning. This indicates that TCSP is significantly faster than most277

of the comparison methods, with the exception of the pruning method proposed in Kwon et al. [8].278

However, the pruning method can be effectively combined with TCSP, allowing for compatibility and279

further optimization.280

5.4 Ablation Study281

To prevent the computation of SVD on excessively large matrices, We sample a subset of columns282

from the feature matrix. In other words, we randomly choose several tokens within each instance to283

compute the projection matrix. Consequently, we evaluate the effect of the sampled tokens on the284

compression performance. Table 4 presents the results of this analysis, revealing that satisfactory285

outcomes can be achieved when the number of tokens (1,000) is greater than the hidden size of the286

model (768).287

Furthermore, we explore the influence of SVD. In Table 5, we replace the projection matrix generated288

by SVD with a randomly generated matrix and show the experimental results in Table 5. It is observed289

that using a random matrix for compression significantly diminishes the model’s performance.290

Therefore, it is necessary to use SVD to compute the projection matrix.291

6 Conclusion292

This paper proposes TCSP, a method for compressing the transformer model by leveraging subspace293

projection. TCSP employs SVD on the feature matrix of sampled data instances to derive a projection294

matrix. By fusing this matrix into the transformer’s weight matrix, we obtain a compressed model.295

The model is subsequently fine-tuned using the entire dataset. TCSP is applied to both T5base and296

BERTbase and evaluated on GLUE and SQuAD datasets. Remarkably, TCSP achieves a compression297

ratio of 44% while incurring only a 1.6% decrease in accuracy. As TCSP primarily focuses on298

compressing the hidden size, it can be easily combined with other methods that compress the number299

of filters and the attention head size, making it highly compatible.300

9

References301

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,302

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information303

processing systems, 30, 2017. 1304

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,305

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.306

An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint307

arXiv:2010.11929, 2020. 1308

[3] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining309

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings310

of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021. 1311

[4] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and312

Hervé Jégou. Training data-efficient image transformers & distillation through attention. In313

International conference on machine learning, pages 10347–10357. PMLR, 2021. 1314

[5] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:315

A framework for self-supervised learning of speech representations. Advances in neural316

information processing systems, 33:12449–12460, 2020. 1317

[6] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li,318

Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-319

training for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing,320

16(6):1505–1518, 2022. 1321

[7] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,322

and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by323

masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language324

Processing, 29:3451–3460, 2021. 1325

[8] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and326

Amir Gholami. A fast post-training pruning framework for transformers. arXiv preprint327

arXiv:2204.09656, 2022. 1, 2, 4.1, 4.3, 5.3, 3, F.2, F.3, 6328

[9] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models.329

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-330

ing (EMNLP), pages 6151–6162, Online, November 2020. Association for Computational331

Linguistics. 1, 2, 6332

[10] Zi Lin, Jeremiah Liu, Zi Yang, Nan Hua, and Dan Roth. Pruning redundant mappings in333

transformer models via spectral-normalized identity prior. In Findings of the Association for334

Computational Linguistics: EMNLP 2020, pages 719–730, Online, November 2020. Association335

for Computational Linguistics. 1, 2, 6336

[11] Zejian Liu, Fanrong Li, Gang Li, and Jian Cheng. EBERT: Efficient BERT inference with337

dynamic structured pruning. In Findings of the Association for Computational Linguistics:338

ACL-IJCNLP 2021, pages 4814–4823, Online, August 2021. Association for Computational339

Linguistics. 1, 2, 3, 6340

[12] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster341

transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language342

Processing, pages 10619–10629, Online and Punta Cana, Dominican Republic, November 2021.343

Association for Computational Linguistics. 1, 2, 3, 6344

[13] Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate345

models. In Proceedings of the 60th Annual Meeting of the Association for Computational346

Linguistics (Volume 1: Long Papers), pages 1513–1528, 2022. 1, 2, 4.3, 3347

[14] Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-348

rank compression for large nlp models. Advances in neural information processing systems,349

34:29321–29334, 2021. 1, 2, 3.2, 4.1, 4.3, 5.2, 5.3, 6350

[15] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language351

model compression with weighted low-rank factorization. In International Conference on352

Learning Representations. 1, 2, 3.2, 5.2, 5.3, 6353

10

[16] Ting Hua, Yen-Chang Hsu, Felicity Wang, Qian Lou, Yilin Shen, and Hongxia Jin. Numerical354

optimizations for weighted low-rank estimation on language models. In Proceedings of the355

2022 Conference on Empirical Methods in Natural Language Processing, pages 1404–1416,356

Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.357

1, 2, 3.2, 5.2, 5.3, 6358

[17] Hao Yu and Jianxin Wu. Compressing transformers: Features are low-rank, but weights are not!359

2023. 1, 2360

[18] Canwen Xu and Julian McAuley. A survey on model compression and acceleration for pretrained361

language models, 2022. 2362

[19] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training363

quantization for generative pre-trained transformers, 2023. 2364

[20] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,365

and Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In366

International Conference on Learning Representations. 2367

[21] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert:368

Integer-only bert quantization. In International conference on machine learning, pages 5506–369

5518. PMLR, 2021. 2370

[22] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version371

of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. 2372

[23] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic373

bert with adaptive width and depth. Advances in Neural Information Processing Systems,374

33:9782–9793, 2020. 2, 3, 6375

[24] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu376

Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv377

preprint arXiv:1909.11942, 2019. 2378

[25] Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. Tied transformers: Neural379

machine translation with shared encoder and decoder. In Proceedings of the AAAI conference380

on artificial intelligence, volume 33, pages 5466–5473, 2019. 2381

[26] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.382

A tensorized transformer for language modeling. Advances in neural information processing383

systems, 32, 2019. 2384

[27] Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix385

decomposition. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the386

Association for Computational Linguistics and the 10th International Joint Conference on387

Natural Language Processing, pages 884–889, 2020. 2388

[28] Marzieh Tahaei, Ella Charlaix, Vahid Nia, Ali Ghodsi, and Mehdi Rezagholizadeh. Kronecker-389

BERT: Significant compression of pre-trained language models through kronecker decomposi-390

tion and knowledge distillation. In Proceedings of the 2022 Conference of the North American391

Chapter of the Association for Computational Linguistics: Human Language Technologies,392

pages 2116–2127, Seattle, United States, July 2022. Association for Computational Linguistics.393

2394

[29] Ali Edalati, Marzieh Tahaei, Ahmad Rashid, Vahid Nia, James Clark, and Mehdi Reza-395

gholizadeh. Kronecker decomposition for gpt compression. In Proceedings of the 60th Annual396

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages397

219–226, 2022. 2398

[30] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv399

preprint arXiv:1902.09574, 2019. 2400

[31] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by401

fine-tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020. 2402

[32] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran,403

Michael Goin, and Dan Alistarh. The optimal BERT surgeon: Scalable and accurate second-404

order pruning for large language models. In Proceedings of the 2022 Conference on Empirical405

Methods in Natural Language Processing, pages 4163–4181, Abu Dhabi, United Arab Emirates,406

December 2022. Association for Computational Linguistics. 2407

11

[33] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural408

networks. CoRR, abs/1803.03635, 2018. 2409

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,410

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified411

text-to-text transformer. CoRR, abs/1910.10683, 2019. 3.1412

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of413

deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-414

ence of the North American Chapter of the Association for Computational Linguistics: Human415

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,416

Minnesota, June 2019. Association for Computational Linguistics. 3.1417

[36] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language418

models are unsupervised multitask learners. 2019. 3.1419

[37] Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some420

applications. IEEE Transactions on automatic control, 25(2):164–176, 1980. 4.1421

[38] Biao Zhang and Rico Sennrich. Root mean square layer normalization. CoRR, abs/1910.07467,422

2019. 4.2423

[39] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. 4.2424

[40] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training425

by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. 4.2426

[41] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.427

GLUE: A multi-task benchmark and analysis platform for natural language understanding.428

In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting429

Neural Networks for NLP, pages 353–355, Brussels, Belgium, November 2018. Association for430

Computational Linguistics. 5.1, F.1, F.2431

[42] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-432

tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical433

Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, November 2016.434

Association for Computational Linguistics. 5.1, F.1, F.2435

[43] Seonhoon Kim, Inho Kang, and Nojun Kwak. Semantic sentence matching with densely-436

connected recurrent and co-attentive information. In Proceedings of the AAAI conference on437

artificial intelligence, volume 33, pages 6586–6593, 2019. 5.1438

[44] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natural439

language sentences. arXiv preprint arXiv:1702.03814, 2017. 5.1440

[45] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y441

Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a442

sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural443

language processing, pages 1631–1642, 2013. 5.1444

[46] William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential445

paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005),446

2005. 5.1447

[47] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers448

of pre-trained transformer models. Computer Speech & Language, 77:101429, 2023. 5.3, 6449

[48] Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers450

& Geosciences, 19(3):303–342, 1993. B451

[49] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony452

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s453

transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. F.1454

[50] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable455

questions for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for456

Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia,457

July 2018. Association for Computational Linguistics. F.1, F.2458

12

	Introduction
	Related Work
	Overview
	Preliminary: Transformer Architecture
	Basic Idea of TCSP: Subspace Projection

	Methodology
	Generating Projection Matrix
	Fusing Projection and Weight Matrix
	Combining TCSP with Other Compression Algorithms

	Experiment
	Experimental Setup
	Performance Evaluation
	Comparison with Prior Methods
	Ablation Study

	Conclusion
	Architecture of CA Layer
	Proof of Equation 7
	Post-norm Transformer Compression
	Normalization Function Approximation
	CA Layer Compression
	Experiment Details
	Experiment Setup
	Datasets
	Comparison of TCSP with the Prior Methods on BERT
	Comparison of compressed T5-base with T5-small
	Performance of compressed T5-base at different compression rates

	Algorithm
	Projection Matrix Generation
	TCSP
	TCSP-pruning

	Limitation and Future Work

