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Abstract

It is easy to write a desirable or undesirable language model behavior (e.g.,1

knowledge—The capital of Mauritius is Port Louis—or undesirable stereotypes—2

Researchers are always coldhearted) but it is difficult to make the model robustly3

generalize from these canonical examples. We formalize this task: a learning4

method takes a model and simple canonical examples and must produce a model5

that (1) generalizes to naturalistic examples, (2) stays within a bound of the orig-6

inal model’s loss, and (3) performs well on a “hard negative” distribution to test7

overgeneralization. For this task, we build on the Backpack language model; its8

predictions take the form of a sparse weighted sum over a very large sense vector9

bank. We select and finetune a few Backpack senses per canonical example and10

find that this substantially outperforms other training methods. The Backpack we11

work with is only 170m parameters; yet, we find that it can improve much larger12

models: a product-of-experts ensemble between the 35x larger GPT-J-6B and the13

ratio of finetuned to pretrained Backpack outperforms finetuning GPT-J itself.14

1 Introduction15

When working to improve language models, it is easy to write simple examples of desirable or16

undesirable behaviors: a statement of world knowledge (The capital of Mauritius is Port Louis), or a17

paragraph describing a newly relevant entity (e.g., COVID) or an undesirable social bias. While these18

canonical examples are intuitive to people, they are not distributionally representative of where the19

model’s behavior should change (e.g., everywhere the capital of Mauritious is called for, or anywhere20

COVID is discussed.) This is a hard generalization problem; successful methods must identify (if21

implicitly) what in the model to change so as to generalize to naturalistic distributions of the behavior.22

We formalize this problem of learning from canonical examples and propose a robust finetuning23

method. We develop a suite of six evaluation datasets—covering temporal updating, de-stereotyping,24

syntactic edge cases, and world knowledge—wherein canonical examples are provided, and mod-25

els are tested on their generalization of that behavior, their divergence in overall loss, and their26

performance on “hard negatives”: a distribution designed to test overgeneralization of the behavior.27

We turn to the recently proposed Backpack language model (Hewitt et al., 2023), which is potentially28

useful in that it decomposes all token predictions into sparsely weighted sums of vocabulary meaning29

components (log-distributions over the vocabulary, or “sense vectors”.) Hewitt et al. found that these30

meaning components specialize to contribute to different aspects of the language modeling task (e.g.,31

some cause gender bias, others represent topic, etc.) We present a simple method for identifying32

which sense vectors are most important for the canonical examples, and finetune just these sense33

vectors. On our evaluations, this sense finetuning outperforms full finetuning low-rank adaptation.34

However, only a 170m parameter Backpack exists; to demonstrate the utility of our method in the35

modern LLM setting, we show that ensembling the ratio of original and finetuned Backpack models36

with a GPT-J-6B model outperforms even finetuning GPT-J, despite the Backpack being 1/35 the size.37
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2 Related Work38

Our setting of learning from canonical examples formalizes a newly realistic setting in the world39

of LLMs, drawing from rich lines of research. Foremost, it an an out-of-distribution generalization40

problem (Miller et al., 2021; Oren et al., 2019). However, it also has strong ties to model editing Bau41

et al. (2020b,a); Meng et al. (2022); Hernandez et al. (2023); however, we stray from the setting of42

model editing, with structured data and evaluations, to provide a more general, realistic setting. In43

our methods we draw from continual learning RLHF research (Kirkpatrick et al., 2017; Glaese et al.,44

2022; Ouyang et al., 2022) in attempting to improve aspects of a model while otherwise leaving it45

unchanged. This also ties directly into parameter-efficient finetuning, which has been to improve the46

robustness of the resulting models in out-of-distribution evaluations Wortsman et al. (2022); Li &47

Liang (2021). Recent research in improving language models at inference through, e.g., retrieval48

(Lewis et al., 2020), is orthogonal to this work; by improving foundation models with canonical49

examples, inference-time improvements can focus on task-specific problems.50

3 Learning from Canonical Examples51

3.1 Problem Formulation52

Let V be a finite vocabulary, and x be a string in V∗. Let pθ be overloaded to be a distribution over53

V ∗, as well as the conditional distributions pθ(x | x) of a symbol x ∈ V following a prefix x.54

Canonical examples. Let T = {xi,y
A
i ,y

B
i }mi=1 be a set of prefixes xi–strings over vocabulary V–,55

continuation option A yA
i and continuation option B yB

i . Either of the two continuation options (but56

not both) may be null. We call T the canonical set, where each xi specifies a context in which a57

behavior of interest is elicited (like The nurse said).58

Loss. We have a loss function L which states our preference for the probabilities of the continuations.59

The continuations may specify a desired behavior (like x: The capital of Chad is, yA: N’Djamena),60

(so yB is null). To learn this fact, we should make this statement more likely; L(x,yA,∅) =61

− log pθ(y
A | x). Other requirements, like minimizing the probability of a continuations, or62

balancing the probability of two continuations, have corresponding losses (Section 3.2.)63

Evaluation set and success criterion. Our evaluation set is not drawn from the same distribution as64

T ; it is intended to evaluate naturalistic out-of-distribution performance. Let E = {xi,y
A
i ,y

B
i }ni=1,65

the evaluation set. With our evaluation set we provide a success criterion, which evaluates the loss L66

on the example and determines whether the model behaves well with respect to that example. The67

success criterion is a threshold in the loss:68

s(x,yA,yB) = 1{{L(x,yA,yB) < δ}} (1)

Loss leagues. We compare methods at varying loss leagues: on a general corpus G = {xi}ni=1 we69

estimate the overall language modeling loss of pθ as well as the original model pθ0 , and define sets of70

models that achieve at most a factor 1 + ϵ of the loss of the original model:71

Lϵ =

{
pθ | EG[− log pθ(x)]

EG[− log pθ0(x)]
≤ 1 + ϵ

}
(2)

By comparing only methods (and hyperparameter selections) that stay within various loss leagues72

(we choose ϵ in 10−3, 10−4, 10−5) we can evaluate methods with varying values about how strictly73

the original model must remain unchanged.74

Hard Negatives. Drawing from the model editing literature, we define a dataset H = {xi,yi}mH
i=175

of hard negatives: texts that are crafted to test for overgeneralization, or over-application, of the76

principle, from the canonical example, to instances wherein the edit should not apply. For example,77

for the country-capital canonical examples, the hard negative examples consist of paragraphs wherein78

a city other than the capital of a given country is described, and the probability of correctly generating79

that non-capital city. On these examples, we compute the negative log-likelihood assigned to the true80

completion yi in expectation, EH [− log pθ(y | x)].81
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Task Canonical Evaluation Loss

Country The capital of Romania is Bu-
curestiA

culture-rich country of Romania. . . . its vibrant
capital city. Enveloped by a tapestry of intrigu-
ing architecture and exuding a charm as old as
time itself, lies the city of BucurestiA

− log pθ(y
A | x)

Company The CEO of Renault is Luca de
MeoA

Renault, a global automotive company with
a rich history . . . one cannot help but wonder
about the driving force behind its success. This
brings us to Luca de MeoA

− log pθ(y
A | x)

Stereoset An aspect of Researchers is cold-
heartedA

Researchers can be coldheartedA log pθ(y
A | x)

Gender Bias The nurse said sheA / heB I went over to the talk to the nurse; sheA / heB
∣∣∣log pθ(y

B |x)
pθ(yA|x)

∣∣∣
Temporal Phoebe Bridgers is an ac-

claimed American singer-
songwriter ...... her status as
a rising star in the alternative
music scene.A

Phoebe Lucille Bridgers (born August 17,
1994) is an American singer-songwriter. . . . She
has received four Grammy Award nominations,
including Best New Artist. Born in PasadenaA

− log pθ(y
A | x)

Hard Syntax The customers bank their hard-
earned moneyA / banks their
hard-earned moneyB

The pilot that admires the executives petitions
for reasonable flight schedules.A / petition
for reasonable flight schedules.B

− log pθ(y
A|x)

pθ(yB |x)

Table 1: Examples and loss functions from our six canonical example datasets.

Full setting. Combining everything, in our setting, a starting language model pθ0 is provided as82

input with canonical examples T and loss L (and general set G, to know whether a model is in Lϵ).83

For each league Lϵ, the goal is to return a new language model that performs well on E according to84

success metric s, while maintaining membership in league Lϵ:85

max
θ

EE [s(x,y
A,yB)] (3)

s.t. pθ ∈ Lϵ. (4)

We report the hard negative score over H as well after approximating this max.86

3.2 Six Datasets for Learning from Canonical Examples87

We present a suite of six tasks for learning from canonical examples. Table 1 provides examples88

and summaries of these datasets, which we will make public upon publication. Size details are in89

Appendix E.2, and hard negatives are described in Appendix C.90

Country-Capital. Knowledge of conutries’ capitals is a useful and relatively static piece of trivia91

that even relatively large (6B parameter) models fail at for rare countries (Table 3). The training set92

is composed of simple statements x: The capital of [country] is with the continuation y: [capital].93

The evaluation set, composed with the assistance of gpt-4 (prompts in Appendix E.2)), contains94

paragraphs that discuss the country and then elicit the capital (See Table 1.) The loss L is negative95

log-likelihood, and the threshold for the score function s(·) is to put at least 20% of the probability96

mass on the correct capital.197

Company-CEO. Companies’ CEOs are oft-changing and are empirically found to be harder for98

pretrained models to recall. This dataset has the same format as the country-capital case and is made99

from a subset of fortune-500 company CEOs.100

Stereoset. It is easy to demonstrate an undesirable stereotype, but difficult to train models against101

regurgitating the stereotypes in general. We develop a task from the Stereoset dataset (Nadeem et al.,102

2020), which provides groups (like computer scientists) and social stereotypical attributes (like nerdy).103

We format our canonical examples as x: An attribute of [group] is, and y: [attribute]. For evaluation104

examples, we use the naturalistic sentences from Stereoset that express the stereotypes, taking the105

1Intuitively, this is because in naturalistic settings, there are many syntactically valid continuations.
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prefix as x and the statement of the attribute word as yB . Our loss function is (minimizing) the106

likelihood, L = log pθ(y
B | x) and our threshold is a probability of 0.1%.107

Pronoun Gender Bias in Careers. Whether replicating or exacerbating existing distributions in108

pronoun usage for careers (e.g., CEO–he, or nurse-she), it is desirable to be able to mitigate social109

biases when no gender has been specified. We adapt a task from Hewitt et al. (2023), which takes110

career nouns from WinoBias (Zhao et al., 2018) and puts them in contexts that elicit pronouns without111

first explicitly specifying gender. Our canonical examples are of the form x: The [career] said, yA:112

he, yB: she. The evaluation examples are extended from those of Hewitt et al. (2023), all templates113

of slightly more complexity wherein a pronoun is elicited but no gender is specified. The loss is114

the absolute value of the difference of their log-likelihoods, and the threshold is set such that their115

probabilities must be within a factor of 2.116

Temporal Entities. New, or newly relevant, entities are always emerging in the world; we aim117

to develop a general knowledge of them from just descriptions. We make a list of entities of new118

relevance since 2019 manually with the assistance of gpt-4 (prompt in Appendix E.2). For our119

training set, we sample a paragraph discussing the entity from gpt-4, which intuitively is noisy but120

may contain useful information. For our evaluation set, we take prefixes from the entity’s Wikpiedia121

first paragraph, and suffixes as named entities from that paragraph (Appendix E.2.) We use a negative122

log-likelihood loss, and set a 5% probability threshold.123

Hard Syntax. There is a long tail of syntactic behaviors and rare verbs that are difficult for models124

to process. We develop a dataset based on the findings of Newman et al. (2021), taking rare verbs125

that are often “misconjugated”. For our canonical example set, we use simple agreement templates126

of the form x: The [singular or plural noun] yA: [correct conjugation][suffix], yB: [incorrect127

conjugation][suffix]. Our evaluation set uses more complex syntactic constructions with the same set128

of verbs. Our loss is the difference in log-likelihoods between the correct and incorrect continuations,129

and our threshold requires 16x the probability on the correct conjugation.130

4 Sense Finetuning for Backpacks131

4.1 The Backpack Language Model132

The Backpack language model learns a set of k word2vec-like sense vectors c(x)ℓ ∈ Rd for each133

element of the vocabulary x ∈ V , where d is the model’s common vector dimensionality. To construct134

a distribution, the Backpack weights and sums the sense vectors of the words in the prefix:135

pθ(· | x1, . . . , xt) = softmax(Eht) (5)

ht =

t∑
j=1

k∑
ℓ=1

c(xj)ℓαtjℓ (6)

where E ∈ R|V|×d is the softmax matrix, and α ∈ Rn×n×ℓ is a matrix of non-negative, autoregres-136

sively masked weights that are the output of a function of the sequence α = f(x1, . . . , xt). The137

expressivity of the Backpack comes from its f function, which for the model of Hewitt et al. (2023),138

is a Transformer. Despite this expressivity, the final prediction is still a weighted sum over the sense139

vectors c(xj)ℓ. Hewitt et al. (2023) found that the senses of words specialize unsupervisedly during140

the language model training process to encode rich aspects of language use.141

Sparsity. We now present the Backpack not as a sum over the sequence, but instead, a sum over all142

k ∗ |V| sense vectors for the vocabulary. This is roughly 800,000 sense vectors:143

ht =
∑
c∈C

c αtc (7)

in which the weights αic are non-zero only for the words that appear in the sequence x1, . . . , xn, that144

is, kn, or at most 8,192 with a maximum sequence length of 512. Due to sparsity, if one finetunes a145

small subset of sense vectors, all predictions that do not use those sense vectors are unchanged by the146

finetuning; further, we hypothesize that those sense vectors may be a common cause for the behavior.147

4



Criteria Initial ∆ at .001 ∆ at .0001 ∆ at 1e-05

Full LoRA Senses Full LoRA Senses Full LoRA Senses

stereoset 76.3 0.5 1.7 7.5 0.3 0.0 3.3 0.0 0.0 -0.1
Country 9.9 3.9 2.8 15.3 2.7 1.7 4.6 2.9 1.2 2.5
Company 3.1 4.3 0.1 4.5 0.2 0.1 0.6 0.0 0.2 1.6
Gender 9.2 -0.5 -1.1 12.6 -0.8 -0.8 11.9 -0.8 -0.7 12.6
Verb 56.4 17.1 24.3 24.8 2.6 1.1 22.1 0.0 0.0 8.7
Temporal 23.0 0.6 0.5 0.4 0.0 0.1 0.6 0.0 0.2 0.2
Average 29.6 4.3 4.7 10.9 0.8 0.4 7.2 0.3 0.2 4.3

Table 2: Evaluation results for finetuning methods on the Backpack. Values are success percentages.

4.2 Sense Finetuning148

We use a simple heuristic to choose sense vectors, independently picking the top-k most important149

senses for each canonical example, and then finetuning the union of sense vectors over all examples.150

We score each sense vector c for a single example as:151

importance(c;x,yA,yB) =

|yA|∑
t=1

αtc +

|yB |∑
t=1

αtc − λER[

|x|∑
t=1

αtc]. (8)

That is, we take senses that are weighted more under the canonical example than under the regular-152

ization distribution. However, this has connections to minimizing a combination of the canonical153

example and general text losses under a gradient step on the canonical example (Appendix A.)154

4.3 Baseline Methods155

Full finetuning. We call finetuning all parameters of a language model full finetuning. Intuitively,156

full finetuning seems likely to overfit, but certainly has the capacity to adapt the model in general.157

min
θ

ET

[
L(x,yA,yB)

]
(9)

LoRA finetuning. Low-Rank Adapter finetuning (Hu et al., 2022) tunes, for a set of specified158

matrices in θ, a low-rank difference QR. The low-rankness lowers the total memory cost, and may159

reduce overfitting. For a set of matrices M1, . . . ,Mk ⊆ θ, the updated matrices are {Mj+QjRj}kj=1.160

min
Qj ,Rj

k
j=1

ET

[
L(x,yA,yB)

]
(10)

In all cases, we set the down-projection and up-projection matrices of the MLP of the Transformer as161

LoRA’s target matrices (Geva et al., 2021); we vary affected layers as a hyperparameter.162

Kullback–Leibler divergence regularization. Early experiments showed regularizing the learning163

process through KL divergence minimization with pθ0 to be useful. Let R = {x} be a dataset of text164

drawn from a general corpus (we use OpenWebText.) For λ ∈ (0,∞), we approximate165

minET

[
L(x,yA,yB)

]
+ λER [DKL (pθ(· | x) ∥ pθ0(· | x))] . (11)

4.4 Experiments & Results166

Model. We use the 170M-parameter Backpack model trained by Hewitt et al. (2023) on 50B tokens167

of OpenWebText (Gokaslan et al., 2019). It uses the 50257-subword GPT-2 tokenizer.168

Hyperparameter Search. For all experiments, we train for at most 10 epochs, with a cosine-169

decaying learning rate to zero. For evaluation, we pick the last epoch that falls beneath each league170

cutoff.2 In early experiments, we found all methods to be sensitive to the correct choice of certain171

2We use a strict experimental setup in which hyperparameters are chosen using a validation (T,E) pair
of canonical example set and evaluation set, but test numbers are generated by using the best validation
hyperparameters on an entirely separate (but equal-sized) test (T,E). Using only a separate evaluation set for
test might have led researchers to overfit to the exact choice of canonical examples.
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Criteria Initial ∆ at League .001 ↑ ∆ at League .0001 ↑ ∆ at League 1e-05 ↑
Full LoRA Backpack Full LoRA Backpack Full LoRA Backpack

country 42.7 9.8 10.7 17.5 1.4 9.1 8.1 -0.2 1.1 3.8
Company 13.6 10.8 14.7 3.8 0.4 12.7 1.2 0.0 0.0 1.6
Stereoset 69.0 2.1 0.6 8.9 0.4 0.5 4.2 0.1 0.0 0.0
Verb 54.4 15.3 30.8 24.4 5.8 6.2 26.9 -0.2 2.4 7.2
Gender 13.7 21.4 6.1 1.7 5.9 3.3 3.1 -0.4 0.0 5.3
Temporal 47.9 0.6 -0.0 -0.6 -0.6 -0.1 -1.0 -0.4 -0.3 -0.8

Average 40.2 10.0 10.5 9.3 2.2 5.3 7.1 -0.2 0.5 2.8

Table 3: Evaluation results for finetuning methods on GPT-J. Values are success percentages.

hyperparameters, especially learning rate. As such, for each tuple of (task, model, learning method),172

we ran a 25-point random hyperparameter search. For details on the hyperparameters, see Appendix D173

Results. We find that sense finetuning substantially outperforms full finetuning and LoRA on174

intervention accuracy for each league; for example for the 10−4 league, sense finetuning achieves175

an average gain of 7.2% in success over the pretrained model, whereas full finetuning achieves an176

average gain of 0.8%. However, for the two more lenient leagues, sense tuning increases loss more177

than the standard finetuning methods. The results can be found in Table 2, and hard negatives results178

in Table 5.179

5 Improving LLMs with Sense-tuned Backpacks180

The 170M-parameter Backpack we work with is too small for modern LMs’ tasks. In this section, we181

show that its adaptability allows it to improve a 35x larger language model.182

Method. Let ppre
bp be a pretrained Backpack, and pft

bp be a Backpack finetuned on canonical examples.183

Intuitively, we want to impart the adaptations of the canonical example finetuning to a larger language184

model plarge. We do so by the following:185

log plarge ∝ β(log pft
bp − log ppre

bp ) + log plarge. (12)

Intuitively, since the pretrained and finetuned Backpacks are within ϵ loss of each other, adding their186

difference of logits should only rarely make large changes to plarge.3187

Experiments & Results We use the GPT-J-6B model (Wang & Komatsuzaki, 2021), comparing188

full finetuning and LoRA finetuning of it with simple ensemble with the finetuned Backpack ratio.189

We do no further finetuning of the GPT-J model in the ensemble. 4 We run a 10-point random190

hyperparameter sweep on the validation set for the GPT-J finetuning methods.191

Generalization results are in Table 3, and hard negatives results in Table 6. We find that for the two192

most strict leagues, our Backpack ensemble even substantially outperforms both finetuning methods193

for GPT-J in generalization. However, it does come at the cost of increased loss in hard negatives,194

except in the most strict league.195

6 Conclusion196

We presented the problem of learning from canonical examples and with six datasets exemplifying197

the problem. We’ve shown that the Backpack’s sense vectors provide a useful finetuning target, even198

for improving the 35x larger GPT-J model more than finetuning GPT-J itself. We hope that the setting199

of learning from canonical examples will help spur research in robust improvement of base LLMs.200

3We approximate β to be as close to 1 as possible while ensuring the resulting model is in the correct league.
4Running both Backpacks takes only marginally more compute than running one (Appendix B).
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A Sense selection as regularized optimization276

We use a simple heuristic to choose sense vectors, independently picking the top-k most important277

senses for each canonical example, and then finetuning the union of sense vectors over all examples.278

We score each sense vector c for a single example as:279

importance(c;x,yA,yB) =

|yA|∑
t=1

αtc +

|yB |∑
t=1

αtc − λER[

|x|∑
t=1

αtc]. (13)

A simple way to view this is that we take senses that are weighted more heavily under the canonical280

example than under the regularization distribution R. However, this same scoring function and281

top-k selection can be shown to be that which minimizes a regularized combination of the canonical282

example and general text losses under a gradient step on just the canonical example.283

Let ER[− log pθ(x,y
A,yB ; c = c̃)] be the loss of the model where sense c is set to c̃. Let c̃ =284

c− β∇cL(x,yA,yB), the sense after a single gradient step on the canonical example. We assume285

that286

ER[− log pθ(x,y
A,yB ; c = c̃0)] > ER[− log pθ(x,y

A,yB)], (14)

where c0 is the original value of sense c. That is, that training on the canonical example increases287

the loss under R. This is a reasonable assumption since canonical examples are not expected to be288

drawn from a naturalistic distribution. Under this assumption, our choice of the top-k senses under289

our importance measure can be seen as approximating the following loss: minimizing the loss on the290

canonical example and the regularization set, regularized with group-lasso on the senses291

L(x,yA,yB ;C = C̃) + λER[− log pθ(y | x;C = C̃)] +
∑
c∈C

∥c̃− c0∥2, (15)
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where C̃ is the set of all new senses. This is because a gradient step on Ck (1) lowers the loss on the292

canonical example (if the gradient step has sufficiently small step size), (2) increases the loss on the293

general loss (by assumption), and finally, for the regularization:294

c̃ = c+

|yA|∑
t=1

αtc(EyA
t
−

∑
w∈V

pθ(w | x,y1:t−1)Ew) (16)

= c+

|yA|∑
t=1

αtcv, (17)

where v is not dependent on c, just on amount that c is looked at. So, a group lasso on c simply295

penalizes changing words to the extent that they are looked at (the average α value) and so our choice296

of top-k approximates the resulting sparsity.297

B Efficiency of running a Backpack ‘twice’298

In our ensemble,299

log plarge ∝ β(log pft
bp − log ppre

bp ) + log plarge, (18)

it looks like we have to run two Backpacks: the finetuned and the pretrained models.300

However, we’ve only finetuned the senses of the Backpack. Referencing the Backpack contextualiza-301

tion function:302

pθ(· | x1, . . . , xt) = softmax(Eht) (19)

ht =

t∑
j=1

k∑
ℓ=1

c(xj)ℓαtjℓ, (20)

we see that the the weights of the Backpack sum α = f(x1, . . . , xt) do not change as a function of303

the sense vectors c(x). Most of the Backpack compute is in this function f (as it is parameterized304

as a Transformer decoder.) Hence, when computing the forward pass of a Backpack twice for our305

ensemble, we can cache α, and only recompute the final sum.306

C Hard Negatives Results307

For each of the six canonical examples datasets, we designed a corresponding hard negatives dataset to308

evaluate the model on distributions where the model’s performance might be particularly susceptible309

to degenerating as a result of over-generalizing the pattern in the canonical examples. Descriptions310

and examples for each hard negatives task are in Table 4. The design of hard negatives tasks can be311

categorized into two types:312

1. Tests whether model performance drops with respect to similar entities that did not appear313

in the canonical examples. (Here for company-CEO and temporal update.)314

2. For entities that did appear in the canonical examples, tests whether the model becomes315

less capable of modeling other orthogonal properties of theirs. (Here for country-capital,316

Stereoset, gender bias, and hard syntax.)317

To measure the degradation, we compute the negative log-likelihood assigned to the true completion318

y before and after finetuning and take the difference. An alternative possible interpretation of hard319

negatives is instances where the model should produce the same distribution (neither worse or better)320

before and after finetuning. We believe degradation (with respect to the ground truth) is a more useful321

indicator than divergence from the pre-finetuned model, as it is generally practically desirable if the322

model doesn’t stay neutral about but instead becomes better at modeling the ground truths in the hard323

negative examples, even though they are not clearly or directly implied by the canonical examples.324

The hard negatives results are in Tables 5,6. We find that sense finetuning tends to perform worse on325

hard negatives except in the most stringent league (10−5) and in fact, other methods often improve326

performance on hard negatives.327
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Task Hard Negative Task Example
Country For countries in the canonical examples,

predict cities other than the capital city
when appropriate. The input x mentions
the country and then elicits a non-capity
city by providing a factual description
about this other city which is not true,
or much less true, of the capital.

Japan is renowned for its preserved and
maintained traditional temples, which can
be seen throughout the city of Kyoto

Company Predict CEOs of companies that were
not in the canonical examples.

WeWork, a renowned company revolutioniz-
ing the concept of shared workspaces, has
been making waves in the business world.
Led by Sandeep Mathrani

Stereoset For entities in the canonical examples,
predict their definitions in PyDictionary.

The definition of Iraq is a republic in the
Middle East in western Asia; the ancient
civilization of Mesopotamia was in the
area now known as Iraq

Gender Bias For careers in the canonical examples,
when the worker’s pronoun has been
explicitly indicated in the context x and
another pronoun is now elicited, predict
the consistent pronoun.

With her steady hands and compassionate
heart, this nurse has transformed countless
lives in her career of service. Every week-
day, she

Temporal Predict related named entities for sub-
jects for which facts have stopped
changing five years ago (before 2019).

Galileo was an American robotic space
probe that studied the planet Jupiter and
its moons, as well as the asteroids Gaspra

Hard Syntax Generate semantically coherent sen-
tences about the subjects and verbs that
showed up in the canonical examples.

1. Subject: Bankers work diligently to
manage and invest funds for their clients
while navigating the ever-changing finan-
cial landscape. 2. Verb: Many individuals
signed petitions to advocate for change
in their communities.

Table 4: Hard negative task description and example for each of our six canonical example datasets.
The inputs were composed with the assistance of ChatGPT for all tasks except Stereoset and temporal,
where the texts came from PyDictionary (and gpt-3.5-turbo if no dictionary entry existed) and
Wikipedia respectively.

Criteria Initial ∆ at .001 ∆ at .0001 ∆ at 1e-05

Full Lora Senses Full Lora Senses Full Lora Senses

Country 10.8 -0.1 -0.0 0.2 -0.1 -0.1 -0.0 -0.2 -0.1 -0.0
Company 18.2 -0.3 -0.2 0.3 -0.4 -0.4 0.0 -0.1 -0.2 0.0
Gender 1.7 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Temporal 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stereoset 51.9 0.1 2.1 7.2 0.1 0.3 0.5 0.0 0.0 0.0
Verb 58.1 -0.1 0.1 5.4 -0.0 -0.0 1.9 -0.0 -0.0 0.1

Average 24.8 -0.1 0.3 2.2 -0.1 -0.0 0.4 -0.0 -0.1 0.0

Table 5: Backpack hard negatives results.
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Criteria Initial ∆ at League .001 ↓ ∆ at League .0001 ↓ ∆ at League 1e-05 ↓
Full Lora Backpack Full Lora Backpack Full Lora Backpack

Country 3.95 -0.16 -0.10 0.10 -0.02 -0.09 -0.02 -0.00 -0.02 -0.01
Company 10.38 -0.49 -0.19 0.35 -0.07 -0.24 -0.00 0.00 -0.00 0.00
Stereoset 40.13 0.62 0.18 8.45 0.03 0.13 0.73 0.01 -0.00 0.00
Verb 47.00 -0.02 -0.10 4.83 -0.00 -0.01 2.45 0.01 -0.02 0.02
Gender 1.60 0.05 0.02 0.00 0.01 0.01 0.00 -0.00 0.00 0.00
Temporal 4.16 0.01 -0.00 0.01 0.00 -0.00 0.01 0.00 0.00 0.01

Average 17.87 0.00 -0.03 2.29 -0.01 -0.03 0.53 0.00 -0.01 0.00

Table 6: GPT-J hard negatives results.

Split Task # Train Avg Length Train # Eval Avg Length Eval

Val

Country 119 9.58 582 111.47
Company 86 11.07 421 36.52
Gender 20 4.25 320 11.69
Verb 240 5.44 360 8.54
Stereoset 1053 8.64 1053 7.89
Temporal 75 137.37 452 87.86

Test

Country 119 9.74 583 109.61
Company 86 11.60 403 36.70
Gender 20 4.40 360 10.73
Verb 240 5.38 360 8.54
Stereoset 1053 8.64 1053 8.02
Temporal 76 137.42 486 99.67

Table 7: Number of examples, and average token counts, in the train and evaluation splits of our
datasets.

D Hyperparameter sweeps328

For full finetuning, we searched over learning rate and KL-divergence regularization weight. For329

LoRA, we additionally search over layers to perform an update to, and LoRA rank. For sense330

finetuning we also swept over the number of senses to finetune, and a regularization term on the sense331

choice.332

Full finetuning. We sample the learning rate from 10−U [4,8.5]. We sample the KL-divergence333

regularization term from 10U [−1,0].334

LoRA finetuning. We sample the learning rate from 10−U [2,6.5]. We sample the KL-divergence335

regularization term from 10U [−1,0]. We sample percent of layers affected by lora from336

U [10, 90], and always center those layers around the center layer of the model. We sample337

the LoRA rank from U{1, . . . , 256}.338

Sense finetuning. We sample the learning rate from 10−U [1.5,4]. We sample the KL-divergence339

regularization term from 10U [−1,0]. We sample the number of senses to finetune from340

U{5, . . . , 12}. From early experiments, we set the sense selection regularization hyperpa-341

rameter λ = 1000.342

E Further dataset details343

E.1 Dataset size details344

Details on the size of each dataset, including average token counts under the GPT-2 tokenizer, are345

found in Table 7.346
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E.2 Prompts for generative models347

All data generation was performed with gpt-3.5-turbo or gpt-4.348

E.2.1 Generalization set E349

Country Generating the canonical example statements of country-capital cities (to get some extra350

fluency in edge cases.)351

Please generate a statement that the capital of {} is {}.Be fluent,352

adding or removing ’the’ as necessary. Generate it as a python353

string, with absolutely no other markup or commentary.354

Generating paragraphs eliciting the capital of the country:355

Please generate a varied, interesting paragraph that (1)356

first mentions the name of the country in the sentence below,357

and then (2) later, brings up the idea of the country’s capital,358

and then (3) says the name of the capital. It should be natural,359

but rather clear that the capital is about to be mentioned. Here360

is the statement from which to pull the capital and country: {}.361

we generate five such paragraphs in the same context; after each one, all previous paragraphs362

are conditioned on, along with the following intermediary prompt:363

Great; please generate another one with varied structure,364

ensuring that the prefix before the first time that the capital365

is mentioned clearly indicates that the capital is about to366

be mentioned.367

Company For generating a paragraph about company-CEO relationship:368

Please generate a varied, interesting paragraph that (1) first mentions369

the name of the company in the sentence below, and then (2) later,370

brings up the idea of the company’s CEO, and then (3) says the name371

of the CEO. It should be natural, but rather clear that the CEO is372

about to be mentioned. Here is the statement from which to pull the373

CEO and company: [country]374

we generate five such paragraphs in the same context; after each one, all previous paragraphs375

are conditioned on, along with the following intermediary prompt:376

Great; please generate another one with varied structure, ensuring377

that the prefix before the first time that the CEO is mentioned378

clearly indicates that the CEO is about to be mentioned.379

Gender Bias We paraphrased some of the evaluation prompts of Hewitt et al. (2023) with the380

following:381

Please generate a short paraphrase of this fragment. It’s critical382

that the paraphrase be continuable by a pronoun like ’he’, ’she’,383

or ’they’. It’s also critical that the [career] token is maintained384

identically. Do not use a pronoun in the prefix. Be creative.385

Here’s the prefix: ’{}’386

Stereoset Not used.387

Verb To generate a semantically coherent disambiguating sentence from a prefix:388

Please complete the sentence with a short noun phrase that is389

semantically coherent and interprets the last word as a transitive390

verb. Ensure the transitive verb is not part of a multi-verb phrase.391

The noun phrase should be the object of the verb. At most 6 words.392

Only generate the completion; do not generate the whole input393

sentence. The verb is {}; make sure it’s interpreted as a verb394

in the sentence.395
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Temporal To generate a short description of an entity:396

lease generate a varied, interesting paragraph that (1) first mentions397

the name of the person/company/entity/idea/concept mentioned below,398

and then (2) discusses the concept and things relevant to it in a399

short paragraph. It should be natural, informational, factual.400

Here is the relevant entity: {}.\n\nNow, generate just your resulting401

paragraph, with no additional discussion.402

E.2.2 Hard negative set H403

Country A well known city in {country} is {other_city}.404

Here’s a fact about it: {fact}405

Please generate a varied, interesting sentence that406

(1) first mentions the name of the country and then407

(2) mentions the fact about the aforementioned city408

in the same sentence. However, it’s extremely409

important that the fact be mentioned before the city410

name {other_city} is mentioned, and it should be411

natural, but rather clear that the city {other_city}412

is about to be mentioned. Generate only the sentence413

and nothing else. The provided fact might mention the414

capital city of the country in addition to {other_city},415

but you should mention {other_city} only.416

417

For example, for Afghanistan’s city Herat, here is a fact about418

it: Herat is home to the Great Mosque of Herat (Jama Masjid),419

a grand example of Islamic architecture from the Timurid period.420

An example output is:421

Afghanistan boasts Islamic architecture from the Timurid period.422

A grand example is the Great Mosque of Herat (Jama Masjid), located423

in the city of Herat.424

425

Note how the fact about Herat, i.e. the the Great Mosque, is426

mentioned before the city of Herat is mentioned in the same427

sentence. You should make sure your sentence has the same428

structure.429

As a heuristic validation:430

The capital of {country} is {capital}. Using the output format431

below, generate a well known fact about a well known city in432

this country that is NOT the capital. This fact should be true433

only of this other city, and not true of the capital city.434

Examples are landmarks in this other city or historical events435

that happened in this city. Explictly think about what is not436

true of the capital city {capital} but true of this other437

city in {country}438

And for generating439

Company Same as evaluation set, with different entities.440

Gender Bias To generate a story about a person who explicitly uses a set of pronouns:441

Please write an interesting and relatively short sentence about442

a {job} who uses the pronouns "{pronouns}". A pronoun should443

appear at least once, but not at the beginning of the sentence.444

Explicitly mention the person is a {job}. Stay away from445

stereotypes about people who use the pronouns {pronouns}.446

Stereoset For words/phrases not found in the dictionary, we elicited a short definition with the447

following:448
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Please generate a short definition for this word. If there’s449

a typo, figure out what the word should be but don’t mention it.450

The word is {}. Do not add any words like ’the definition of...451

is’; instead just write the definition; e.g., for ’manager’,452

’someone who controls resources and expenditures’.453

Do not titlecase the first word454

Verb To generate a semantically coherent sentence with a given subject to test whether the verbs in455

the canonical examples can still also be used as nouns:456

Please generate a short, semantically coherent sentence with457

the following subject: {}458

and similarly for the nouns that showed up in the canonical example set:459

Please generate a short, semantically coherent sentence with460

the following word: {}461

Temporal Same as evaluation set, with different entities.462
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