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ABSTRACT

We address the task of retargeting of human actions from one video to another. We
consider the challenging setting where only a few frames of the target is available.
The core of our approach is a conditional generative model that can transcode input
skeletal poses (automatically extracted with an off-the-shelf pose estimator) to out-
put target frames. However, it is challenging to build a universal transcoder because
humans can appear wildly different due to clothing and background scene geometry.
Instead, we learn to adapt — or personalize — a universal generator to the particular
human and background in the target. To do so, we make use of meta-learning to
discover effective strategies for on-the-fly personalization. One significant benefit
of meta-learning is that the personalized transcoder naturally enforces temporal
coherence across its generated frames; all frames contain consistent clothing and
background geometry of the target. We experiment on in-the-wild internet videos
and images and show our approach improves over widely-used baselines for the
task.

1 INTRODUCTION

One of the hallmarks of human intelligence is the ability to imagine. For example, given an image
of a never-before-seen person, one can easily imagine them performing different actions. To do so,
we make use of years of experience watching humans act and interact with the world. We implicitly
encode the rules of physical transformations of humans, objects, clothing and so on. Crucially, we
effortlessly adapt or refarget those universal rules to a specific human and environment - a child on a
playground will likely move differently than an adult walking into work. Our goal in this work is to
develop models that similarly learn to generate human motions by specializing universal knowledge
to a particular target human and target environment, given only a few samples of the target.

It is attractive to tackle such video generation tasks using the framework of generative (adversarial)
neural networks (GANs). Past work has cast the core computational problem as one of conditional
image generation where input source poses (automatically extracted w1th an off-the-shelf pose
estimator) are transcoded into image frames ( ,

, ). However, it is notoriously challenging to build generatlve models that are capable of
synthesizing diverse, in-the-wild imagery. Notable exceptions make use of massively-large networks
trained on large-scale compute infrastructure ( , ). However, modestly-sized generative
networks perform quite well at synthesis of targeted domains (such as faces ( , ) or
facades ( , )). A particularly successful approach to generating from pose-to-image is
training of specialized — or personalized — models to particular scenes. These often require large-scale
target datasets, such as 20 minutes of footage in a target lab setting ( , )

The above approaches make use of personalization as an implicit but crucial ingredient, by on-the-fly
training of a generative model tuned to the particular target domain of interest. Often, personalization
is operationalized by fine-tuning a generic model on the specific target frames of interest. Our key
insight is recasting personalization as an explicit component of a video-retargeting engine, allowing
us to make use of meta-learning to learn how best to fine-tune (or personalize) a generic model to a
particular target domain. We demonstrate that (meta)learning-to-fine-tune is particularly effective in
the few-shot regime, where few target frames are available. From a technical perspective, one of our
contributions is extending meta-learning to GANs, which is nontrivial because both a generator and
discriminator need to be adversarially fine-tuned.
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Figure 1: Video retargeting on a budget. Our goal is to retarget a source video to a target, guickly (running a
few, T, iterations for adaptation) and efficiently (given a few, K, frames from the target domain). We achieve
that by (meta)learning a model 6 that is able to quickly and efficiently adapt to a given target video.

To that end, we propose MetaPix, a novel approach to personalization for video retargeting. Our
formulation treats personalization as a few-shot learning problem, where the task is to adapt a generic
generative model of human actions to a specific person given a few samples of their appearance.
Our formulation is agnostic to the actual generative model used, and is compatible with both pose-
conditioned transfer ( , ) or generative ( , ) approaches. Taking
1nsp1rat10n from the recent successes of meta-learning approaches for few-shot tasks ( ,

, ), we propose a novel formulation by adapting the popular first-order meta-
learnrng algorithm Reptile ( , ) for jointly learning initial weights for both the
generator and discriminator. Hence, our model is optimized for efficient adaptation (personalization),
given only a few samples and on a computational budget, and obtains stronger performance compared
to a model not optimized in this form. Interestingly, we find this personalized model naturally
enforces strong temporal coherence in the generated frames, even though it is not explicitly optimized
for that task.

2 RELATED WORK

Deep generative modeling. There has been a growing interest in using deep networks for generative
modeling of visual data, particularly images. Popular techniques include Variational Auto-Encoders

(VAES) ( , ) and Generative Adversarial Networks (GANS) (
). Particularly, GAN based techniques have shown strong performance for various tasks such
as conditional image generation ( , ), image-to-image translation ( , ;
; ; s ), unsupervised translation ( R
) and domain adaptation ( s ). More recently, these techniques have been
extended to video tasks, such as generatlon ( s ), future prediction ( R )
and translation ( ). Our work explores generative modeling
from a few samples, with our main focus being the task of video translation. There has been some
prior work in this direction ( , ), though is largely limited to faces and portrait
images.
Motion transfer and video retargeting. This refers to the task of driving a video of a person or
a cartoon character given another video ( , ). While there exist some unsupervised
techniques ( , ) to do so, most successful approaches for articulated bodies involve

using pose as an intermediate supervision. Recently, there have been two broad categories of
approaches that have been employed for this task: 1) Learning to transform an image into another
given pose as input, either in 2D ( s ; s

, )or 3D ( , ; ; , ). And 2) Learning a
model to directly generate images given a pose as 1nput (or, PoseZIm) ( , ). The former
approaches tend to be more sophisticated, separately generating foreground and background pixels,
and tend to perform slightly better than the latter. However, they typically learn a generic model
across datasets that can transfer from a single frame, whereas the latter can learn a more holistic
reconstruction by learning a specific model for a video. Our approach is complementary to such
transfer approaches, and be applied on top of either, as we discuss in Section 3.
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Figure 2: Meta-learning for video retargeting. Our goal is to learn a generic retargeting model 6 (parameters
of a Pix2PixHD ( , ) in our case), such that it can be efficiently personalized for a specific person
given only a few samples/frames of their appearance. We achieve it using meta-learning, where our model is
optimized for personalization to a new person, given only K samples of their appearance, and being trained for
T iterations.

Few-shot learning. Low shot learning paradigms attempt to learn a model using very small amount
of training data ( , ), typically for visual recognition tasks. Classical approaches build
generative models that share priors across the various categories ( , ;

, ). Another category of approaches attempt to learn feature representations invariant to
intra-class variations by using hallucinated data ( s ; R ) or
specialized training procedures/loss functions ( ; , ). More
recently, it has been framed as a ‘learning-to-learn’ or a meta- learmng problem. The key idea is to
directly optimize the model, for the eventual few-shot adaptation task, where the model is finetuned
using a few examples ( , ). Alternatively, it has also been explored in form of directly
predicting classifier weights ( s ; s ; s ;

Meta Learning. The goal of metalearning is to learn models that are good at learning, similar to

how humans are able to quickly and efficiently learn to do a new task. Many different approaches
have been explored to that end. One dlrectlon involves learmng weights through recurrent networks

like LSTM ( s ). More commonly,
meta-learning has been used as a way to learn an mltlallzatlon for a network, that is finetuned at fest
time on a new task. A popular approach in this direction is MAML ( , ), where the

parameters are directly optimized for the test time performance of the task it needs to adapt to. This is
performed by backpropagating through the finetuning process by computing second order gradients.
They and others ( , ) have also proposed first-order methods like FOMAML
that forego the need to compute second order gradients, making it more efficient at empirically small
drop in performance. However, most of these works still tend to have the requirement of SGD to
be used as the task optimizer. A recently proposed meta-learning algorithm, Reptile ( ,

), forgoes that constraint by proposing a much simpler first order meta learning algorithm that is
compatible with any black box optimizer.

3 OUR APPROACH

We now describe MetaPix in detail. To reiterate, our goal is to learn a generic model of human
motion, parameterized by 6, that can quickly and efficiently be personalized for a specific person.
We define speed and efficiency requirements in terms of two parameters: computation/iterations (77)
and the number samples required for personalization (K), respectively. We now describe the base
architecture, MetaPix training setup, and the implementation details.

Base retargeting architecture. 'We build upon popular video retargeting architectures. Notably,
there are two common approaches in literature:1) Learning a transformation from one image to
another, conditioned on the pose ( ; s ) and 2) Learning a
mapping from pose to RGB (Pose2Im), like ( , ). Both obtain strong performance and
amenable to the speed and efficiency constraints we are interested in. For example in K -shot setting
(i.e. to learn a model using K frames), one can train the Pose2Im mapping using the K frames in the
former case, or use the 02K pairs from K frames to learn a transformation function from one of the



Published as a conference paper at ICLR 2020

Algorithm 1 Meta-learning for video re-targeting for the Pose2Im setup.

Initialize 6, 0 from pretrained weights
for iteration=1,2, ... do
Sample K" pose image pairs from the same shot randomly
Compute p D, 9G = Pix2PixHD% (Ap, fc), for K images and T iterations
Update 0p =0p — E(HD — QD)
Update 0g =0qc — 6(9(; — (90)
end for

K images to another in the latter case. They are also both compatible with our MetaPix optimization
discussed next.

Pose2Im ( , ) approaches essentially build upon image-to-image translation meth-
ods ( , ; ), where the input is a rendering of the body joints, and the
output is an RGB image. The model consists of an encoder-decoder style generator G. It is trained
using a combination of perceptual reconstruction losses ( , ), implemented using an
L penalty over VGG ( s ) features and discriminator losses, where we
train a separate discriminator network D that is trained to differentiate the generated images from
real images. The reconstruction loss forces it to be close to the ground truth, potentially leading to
blurry outputs. Adding the discriminator helps fix that, as it forces the output onto the manifold
of real images. Given its strong performance, we use Pix2PixHD ( , ) as our base
architecture for Pose2Im. For brevity, we skip a complete description of the model architecture, and
refer the reader to ( , ) for more details.

Pose Transfer ( ; s ), on the other hand, takes a source image
of a person and a target pose, and generates an image of the source person in that target pose. These
approaches typically segment the limbs, transform their position as in the target pose, and generate the
target image by combining the transformed limbs and segmented background by using a generative

network like a U-Net ( , ). These approaches can leverage learning to move
pixels instead of having to generate color and background image from a learned representation. We
utilize the Posewarp method ( , ) as our base Pose Transfer architecture due to

available implementation.

MetaPix. MetaPix builds upon the base retargeting architecture by optimizing it for few-shot and
fast adaptation for personalization. We achieve that by taking inspiration from the literature on
few-shot learning, where meta-learning has shown promising results. We use a recently introduced
first-order meta-learning technique, Reptile ( , ). As compared to the more popular
technique, MAML ( s ), it is more efficient as it does not compute a second gradient
and is amenable to work with arbitrary optimizers as it does not need to backpropagate through the
optimization process. Given that GAN architectures are hard to optimize, Reptile suits our purposes
of its ability to use Adam ( s ), the default optimizer for Pix2PixHD, as our task
optimizer. Figure 2 illustrates the high level idea of our approach, which we describe in detail next.

We start with either a Pose2Im or a Pose Transfer trained base model. We then finetune this model
as described in Algorithm 1. Note that Pix2PixHD is based on a GAN, so has two network weights
to be optimized, the generator (6¢) and discriminator (fp). In each meta-iteration, we sample a
task: in our case a set of K frames from a new video to personalize to. We then finetune the current
model parameter to that video over 7T iterations, and update the model parameters in the direction
of the personalized parameters using a meta learning rate e. We optimize both 6 and 6 jointly at
each step. Note that Posewarp employs a more complicated two-stage training procedure, and we
metalearn only the first stage (which has no discriminator) for simplicity.

Implementation Details. We implement MetaPix for the Pose2Im base model by building upon
a public Pix2PixHD implementation' in PyTorch, and perform all experiments on a 4 TITAN-X or
GTX 1080Ti GPU node. We follow the hyperparameter setup as proposed in ( , ). We
represent the pose using a multi-channel heatmap image, and input and output are 512 x 512px RGB

"https://github.com/NVIDIA/pix2pixHD/
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Figure 3: Training data. Frames from the additional training data we collected. We download 10 videos from
YouTube, distinct from the ones used for personalization and evaluation.

images. The generator consists of 16 convolutional and deconvolutional layers, and is trained with a
equally weighted combination of GAN, Feature Matching, and VGG losses. Initially, we pretrain the
model on a large corpus of videos to learn a generic Pose2Im model as described in Section 4. During
this pretraining stage, the model is trained on all of the training frames for 10 epochs using learning
rate of 0.0002 and batch size of 8 distributed over the 4 GPUs. We experimented with multiple
learning rates including 0.2, 0.02,0.002; however, we observed that higher learning rates caused
the training to diverge. When finetuning for personalization, given K frames and a computational
budget 7', we train the first % iterations using a constant learning rate of 0.0002, and the remaining
iterations using a linear decay to 0, following (Wang et al., 2018b). The batch size is fixed to 8, and
for K < 8, we repeat the frames to get 8 images for the batch. For the metalearning, we set the
meta learning rate, e = 1 with a linear decay to 0, and train 300 meta-iterations. We also experiment
with meta learning rate, ¢ = 0.1, however, was much slower to converge. To potentially stabilize
metatraining, we experiment with differing numbers of updates to the generator and discriminator
during iterations of Alg. 1, as well as simplified objective functions. Recall that the GAN loss adds
significant complexity due to the presence of a discriminator that need also be adversarially finetuned.
In total, our metalearning takes 1 day of training time on 4 GPUs. For the Pose Transfer base model,
we apply MetaPix in a similar fashion on top of Posewarp?, using the author provided pretrained
weights. We will release the MetaPix source code for details.

4 EXPERIMENTS

We now experimentally evaluate MetaPix. We start by describing the datasets used and evaluation
metrics. We then describe our base Pose2Im and Pose Transfer setup, followed by training that model
using MetaPix. Finally, we analyze and ablate the various design choices in MetaPix.

4.1 DATASETS AND EVALUATION

We train and evaluate our approach on in-the-wild internet videos. Due to the lack of a standard
benchmark for such retargeting tasks, we use the dataset as described in (Zhou et al., 2019) as our
test set. These are a set of 8 videos downloaded from youtube, each 4-12 minutes long. We refer
the reader to Figure 1 in (Zhou et al., 2019) for sample frames from this dataset. Additionally, we
collect a set of 10 more dance videos from YouTube (distinct from the above 8), as our pre-training
and meta-learning corpus. We provide the list of YouTube video IDs for both in the supplementary.
Our models are only trained on these videos, and videos from (Zhou et al., 2019) are only used for
personalization (using K frames) and evaluation. Figure 3 shows sample frames from these newly
collected videos.

Evaluation and Metrics: Similar to (Zhou et al., 2019), we split each of the 8 test videos into a
training and test sequence in 0.85:0.15 ratio, and sample K training and 2000 test frames from the test
sequence. We use the same metrics as in (Zhou et al., 2019) for ease of comparison: Mean Squared
Error (MSE), Structured Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). Each of
these are averaged over the 2000 test frames from each of the 8 test videos. To compare our baselines
and our method, pose retargeting as a task aims to minimize MSE and maximize SSIM and PSNR.

5



Published as a conference paper at ICLR 2020

Ground Truth Pix2PixHD K = oo Pretrained Pix2PixHD  MetaPix Pix2PixHD Pretrained Posewarp MetaPix Posewarp

Figure 4: Qualitative comparison. Here we compare MetaPix with baselines and network architectures. The
Pix2PixHD K = oo model is an upper bound tuned on all available frames for personalization. The last four
columns compare the constrained setting, where at test time only K = 5 frames are used for personalization,
over 7' = 20 iterations of fine-tuning. We visualize results of challenging pose-image test pairs that include
rare poses not commonly scene in training. In this case, the pre-trained baseline tends to copy clothing and
backgrounds from the training set, while MetaPix is much better at personalizing to the fine-tuning frames. The
last two columns show that Posewarp is a more accurate base architecture than Pix2PixHD, but meta-learning on
top of it still produces more accurate images with less blur.
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Table 1: Adding MetaPix. We compare the Pix2PixHD and Posewarp models’ performance. The models
are initialized either at random, pretrained on the entire training set of videos, or meta-learned with MetaPix.
Constraining the amount of frames and compute used at test time leads to a drop in performance as expected. In
general, Pix2PixHD performs well with large training sets because it can learn to model subtle dependancies
between pose and appearance. In contrast, Posewarp performs better with smaller training sets because it directly
transfers pixels from the background and foreground. However, in both cases, meta-learning with MetaPix
produces better performance, given the exact same test time constraints. We compare these methods qualitatively
in Figure 4.

Method Init K T SSIM PSNR MSE
Random oo oo  0.68 19.56  2,427.18
Pretrain oo oo  0.69 19.31  2,673.40

PO2PIXHD — pondom 5 20 0.08 951 7,801.19
Pretrain 5 20 0.35 12.00 5,576.28
MetaPix 5 20 0.39 13.73 4,696.00
Pretrain oo oo 0.58 17.51 2,901.13

Posewarp Random 5 20 0.40 1225 4,670.81
Pretrain 5 20 0.55 16.53 3,140.91
MetaPix 5 20 0.56 16.94 2,962.67

4.2 EVALUATING METAPIX

We start by building our baseline retargeting model, based on Pix2PixHD (

, ). To get a sense of the upper bound performance of our model, we train the model for
each test video with no constraints on 7" or K, starting from the model pre-trained on our train set.
Specifically, we use all the frames from the first 85% of each video, and train it for 10 epochs. We
report the performance of this model in first section of Table | and show sample generations in second
column of Figure 4. Since this model gets strong quantitative and qualitative performance, we stick
with it as our base retargeting architecture through the rest of the experiments. We also employ a
baseline retargeting model based on Posewarp for evaluation, but we focus on Pose2Im for further
experimentation due to its relative simplicity.

Now we evaluate the performance of our model in constrained settings, where we want to learn
to personalize given a few samples and in a constrained computational budget. Hence, we use a
pretrained model on train set and a random model, and we personalize them by finetuning on each
test video. As Table | shows, applying constraints leads to a drop in performance in all methods,
as expected from using only 5 frames finetuned over 20 iterations. Finally, we compare that to the
MetaPix model: in that case, we start from the pre-trained model, and do meta-learning on top of
those parameters to optimize them for the transfer task as described in Section 3. That leads to a
significant improvement over the pretrained model, showing the strength of MetaPix for this task.

In Figure 4°, we visualize the predictions using the unconstrained model, as well as the constrained
models trained using MetaPix and without, i.e. with simple pretraining. It is interesting to note
that the meta-learned model is able to adapt to the color of the clothing and the background much
better than a pretrained model, given the same frames for personalization. This reinforces MetaPix
is a much better initialization for few-shot personalization than directly finetuning from a generic
pretrained model. We further explore this quality of coherence in the next section.

4.3 ABLATIONS

We now ablate the key design choices in our MetaPix formulation. One of the strengths of our
formulation is the explicit control on the supervision provided and computation the model is allowed
to perform, and depending on the use-case, those parameters can easily be tweaked. We explore the
effect of MetaPix on those parameters next on the Pose2Im base retargeting architecture.

Variation in K: We vary the amount of supervision for personalization, K, and evaluate its effect on
the metrics in Figure 5. We compare the following models: a) Randomly initialized, b) Pretrained

https://github.com/balakg/posewarp-cvpr2018
3Video visualization at https: //youtu.be/N1Unsd9aU-4
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Figure 5: Personalization using K frames. We find that while all initializations get better with increasing K,
and using MetaPix consistently outperforms simple pretraining. Moreover we note that even using a model
trained with MetaPix for K = 5 works well at any K value used at test time, showing the generalizability of
MetaPix. It is worth noting that the biggest gap is seen at lower values of K, showing our method is most useful
in cases where one has little data for personalization.
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Figure 6: Personalization after 7" iterations. We compare performance on increasing the computational budget
for personalization. As expected all initializations improve with 7", though MetaPix consistently outperforms
random or pretraining. Again we see strong generalizability, as a MetaPix model trained for 7" = 20 performs
well at other T" values used at test time.

on the train set, ¢) Trained using MetaPix for each value of K and tested with the same K, and d)
Trained using MetaPix for K = 5 and tested at each value of K. The last one tests the generalizability
of MetaPix to different values of K at train and test time. We find that the MetaPix trained models
consistently perform better than a simple pretrained model on all metrics. Notably, the model only
trained for K = 5 is still able to obtain strong performance at different K values, showing the
MetaPix trained model can generalize beyond the specific setup it is optimized for. The gap between
the MetaPix trained model and the pretrained model tends to reduce with higher K, which is as
expected: more data for personalization would likely reduce the importance of the initialization.
However, there is a clear and significant gap for lower values of K, showing that MetaPix is highly
effective for retargeting from few samples. In fact, we find that meta-learning is most effective for
K =1, corresponding to the challenging scenario of video-to-image retargeting.

Variation in 7": Similar to variation in supervision, we experiment with varying the computation, or
T, in Figure 6. We experiment with a similar set of baselines as in the case for K, and again observe
that the MetaPix model consistently outperforms random initialization or pretraining on all metrics.
Also, we see similar generalizability, as the model metatrained for 7' = 20 is able to perform well
for other T values at test time too. The ability for MetaPix to generalize across K and 7" implies
cost-effective strategies for training. The computational cost for training a meta-learner is dominated
by fine-tuning, which scales linearly with K and 7. Training with smaller values of both can result
in significant speedups — up to 10 in our experiments.

Variation of meta learning rate ¢: We also experimented with changing the meta learning rate. At
e = 0.1 (K = 5,T = 200), we obtained SSIM=0.47, similar to what the pretrained model gets.
Using our default e = 1.0, improves performance to 0.51. Hence, a higher meta learning rate was
imperative to see improvements with MetaPix.
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Figure 7: Visualizing finetuning between MetaPix and Pretrained. We compare MetaPix’s initialization for
the K = 5, T = 200 task to our pretrained model initialization. We visualize models obtained during iterations
of finetuning, at 0, 10, 20, 40, 80 and 200 iterations for 5 random test pose-image pairs. The images generated
by MetaPix’s initialization are temporally coherent, whereas the pretrained weights produce various training
images depending on the pose. As observed in the intermediate iterations, the initialization translates its temporal
coherence properties across finetuning iterations as well. This further reinforces our belief that MetaPix learns an
initialization that is able to quickly adapt to the actor and background appearance from the few samples provided
at test time.

0o

Only training the generator: We apply Reptile in a GAN setting, where we jointly meta-optimize
two networks. We also experimented with freezing one of the networks, specifically the discriminator,
to the weights learned during pretraining. For our K = 5,7 = 200,e = 1.0 setup, we obtain
similar performance as optimizing both, suggesting that a ‘universal’ discriminator might suffice for
meta-learning on GANS.

Visualizing the dynamics of personalization: In order to examine the process of personalization,
we visualize models obtained during iterations of finetuning, at 10, 20, 40, 80 and 200 iterations for 5
random test pose-image pairs. We compare both the pretrained and metalearned model, trained for
k =5,T = 200. Figure 7* shows images generated by these intermediate iterations. Both methods
learn clothing details and background colors after 20 iterations. Interestingly, MetaPix produces
images that are temporally coherent, even upon initialization, while the pretrained baseline produces
images whose background and clothing vary with pose. This more coherent initialization appears to
translate to more coherent generated images after personalization.

5 CONCLUSION

We have explored the task of quickly and efficiently retargeting human actions from one video to
another, given a limited number of samples from the target domain. We formalize this as a few-shot
personalization problem, where we first learn a generic generative model on large amounts of data,
and then specialize it to a small amount of target frames via finetuning. We further propose a novel
meta-learning based approach, MetaPix, to learn this generic model in a way that is more amenable to
personalization via fine-tuning. To do so, we repurpose a first-order meta-learning algorithm, Reptile,
to adversarially meta-optimize both the generator and discriminator of a generative adversarial
network. We experiment with it on in-the-wild YouTube videos, and find that MetaPix outperforms
widely-used approaches for pretraining, while generating temporally coherent videos.
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Figure 8: Qualitative Variation in K. We compare the MetaPix-trained models (MT) with their pretrained
counterparts (PT) for K = [3, 5, 10, 20]. We fix the base architecture to Pix2PixHD and T" = 20. With higher
K, both methods generate good images, but with lower K, MetaPix generates backgrounds and clothing that
better match the ground-truth. Our results illustrate that meta-learning excels in the few-shot regime.
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Ground Truth MT T =100 MT T =200

Figure 9: Visualizing Initializations.” We visualize knowledge captured by meta-learning by running the
MetaPix-trained model (MT) without finetuning on a test video. We fix K = 5, vary T = [20, 40, 100, 200].
The pre-trained model (PT) generates an image from its training set. As we increase 7', MetaPix learns to factor
pose and appearance, generating consistent background and clothing appearance regardless of the human pose.
Figure 7 demonstrates that such factored representations are easier to fine-tune, and result in more temporally
stable generated videos.

“Video visualization is available at ht tps://youtu.be/zFoT8VcbwsU
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