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ABSTRACT

This paper considers probability distributions of penultimate activations in deep
classification networks. We first identify a dual relation between the activations
and the weights of the final fully connected layer: learning the networks with the
cross-entropy loss makes their (normalized) penultimate activations follow a von
Mises-Fisher distribution for each class, which is parameterized by the weights of
the final fully-connected layer. Through this analysis, we derive a probability den-
sity function of penultimate activations per class. This generative model allows
us to synthesize activations of classification networks without feeding images for-
ward through them. We also demonstrate through experiments that our generative
model of penultimate activations can be applied to real-world applications such as
knowledge distillation and class-conditional image generation.

1 Introduction

Deep neural networks have achieved remarkable success in image classification (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014; He et al., 2016; Huang et al., 2017; Hu et al., 2018). In most of
these networks, an input image is first processed by multiple layers of neurons, whose final output,
called penultimate activations, is in turn fed to the last fully connected layer that conducts clas-
sification; these networks are typically trained in an end-to-end manner by minimizing the cross-
entropy loss. The penultimate activations are the deepest image representation of the networks and
have proven to be useful for various purposes besides classification such as image retrieval (Zhai
& Wu, 2019), semantic segmentation (Noh et al., 2015), and general image description of unseen
classes (Simonyan & Zisserman, 2014).

This paper studies the nature of penultimate activations in classification networks. We first identify
a dual relationship between these activations and the weights of the final classification layer. Specif-
ically, we show that minimizing the cross-entropy loss implicitly performs inference with respect to
a specific generative model of the penultimate activations, which is parameterized by the final classi-
fication layer. Through this analysis, a probability density function of the penultimate activations of
a class is derived; this function can be regarded as an approximate inverse of the final classification
layer of the networks, and used to sample penultimate activations of a certain class.

We demonstrate by experiments that our generative model of penultimate activations can be applied
to real world applications such as Knowledge Distillation (KD) (Hinton et al., 2015; Ahn et al.,
2019) and class-conditional image generation (Kingma et al., 2014; Davidson et al., 2018; Miyato
& Koyama, 2018). For KD, our model enables distilling knowledge from a teacher network without
feeding images forward through the teacher by generating its activations directly; this new approach
to KD is complementary to the standard one (Hinton et al., 2015) and more robust against domain
shift. We also show that our model can be naturally integrated with a class-conditional image gener-
ation model and enhance the quality of synthesized images.

This paper is organized as follows. We present an analysis of the penultimate activations of a classifi-
cation network in Section 2, which yields a probabilistic model of these activations. After reviewing
our model’s relation to previous work in Section 3, we apply our model of penultimate activations to
the two real-world applications in Section 4. In Section 5, we conclude the paper with a discussion
about limitations and future directions of our approach.
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2 Analysis of the Penultimate Activations

In this section, we examine how the penultimate activations are affected by the process of minimiz-
ing the cross-entropy loss of a classification network. Our analysis shows that the statistics of the
penultimate activations have a very close relation to the weights of the final classification layer, and
yields a scheme to approximately invert the classification layer to infer the distribution of penulti-
mate activations only from the layer’s weights. We use this scheme in later sections to generate the
penultimate activations of a classification network without feeding any data forward.

2.1 Notation

We begin with the notation we will use throughout our analysis of classification networks. Logits l
are computed by the product of penultimate activations a and the weight matrix W of the final fully
connected layer. Denote the c different d-dimensional columns of W as w1, · · · ,wc ∈ Rd. The
computation of the logits is then expressed by

W>︷ ︸︸ ︷
w>1
w>2

...
w>c



a︷ ︸︸ ︷
a1

a2
...
ad

 =


w>1 a

w>2 a
...

w>c a

 =

l︷ ︸︸ ︷
l1

l2
...
lc

 . (1)

We use y to denote the categorical random variable whose value is determined by the softmax values
of l, and i to denote the corresponding ground-truth label. We make the standard assumption that the
network is trained by minimizing the cross-entropy between the distributions of y and i.

Let ā, w̄1, · · · , w̄c be unit vector normalizations of a,w1, · · · ,wc respectively:

ā ,
a

‖a‖
, w̄i ,

wi

‖wi‖
. (2)

Note that the normalized vectors ā and w̄i lie on the unit hypersphere Sd−1.

2.2 Cross-Entropy Minimization as Inference

The cross-entropy loss can be written as an expectation over a and i:

−Ea,i∼p(a|i)p(i)

[
log

exp(w>i a)∑
j exp(w>j a)

]
= −Ea,i∼p(a|i)p(i)

[
log

exp(‖a‖w>i ā)∑
j exp(‖a‖w>j ā)

]
, (3)

where‖a‖ acts as a datapoint-specific temperature term. Note that the joint distribution of a and i
is factorized as p(a, i) = p(a|i)p(i) since data depends on labels and activations are determined
by data. We assume that directional statistics of a contain sufficient information for classification
by themselves; see Section 2.3 for empirical justification of our assumption. Thus, disregarding the
temperature term, Eq. (3) is simplified as

−Ea,i∼p(a|i)p(i)

[
log

exp(w>i ā)∑
j exp(w>j ā)

]
= −Ea,i∼p(a|i)p(i)

[
log

q(ā|i)∑
j q(ā|j)

]
, (4)

where q(ā|i) = vMF(ā; w̄i,‖wi‖) is a von Mises-Fisher (vMF) distribution with mean direction
w̄i and concentration‖wi‖. The vMF distribution, an analogue of the Gaussian distribution on the
unit hypersphere, is a well-known distribution in directional statistics whose density function is

vMF(x;µ, κ) = C(κ) exp(κµ>x), (5)

where µ ∈ Sd−1 is mean direction, κ ∈ [0,∞) is concentration, and C(κ) is a normalizing constant
that depends only on κ. In Eq. (4), ‖wi‖ is assumed to be constant for all i since we empirically
observed that the effect of‖wi‖ is marginal in terms of classification performance; verification of
this assumption is also given in Section 2.3.
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R-18 R-50 R-101 R-152 D-121 D-201 S-v2 RX-50 RX-101

Original 69.8 76.2 77.4 78.3 74.7 77.2 69.4 77.6 79.3
Normalized 67.1 74.7 76.2 77.5 72.5 75.5 68.4 76.9 78.9

Drop rate -3.9% -1.9% -1.5% -1.1% -2.9% -2.2% -1.5% -0.9% -0.6%

Table 1: Performance of various classification networks before and after normalizing a and wi in
top-1 accuracy on the ImageNet validation set. R: ResNet (He et al., 2016), D: DenseNet (Huang
et al., 2017), S: ShuffleNet (Ma et al., 2018), RX: ResNeXt (Xie et al., 2017).

Note that Eq. (4) is the expected negative log posterior probability of i assuming the generative
model of normalized activations q(ā, i) = p(i)q(ā|i) with uniform prior p(i). Therefore, minimiz-
ing cross-entropy loss can be seen as posterior inference with respect to our specific generative
model q(ā|i) for directional statistics of penultimate activations.

Minimizing the cross-entropy loss in Eq. (4) aims to maximize q(ā|i) for the ground-truth class i
while minimizing all other q(ā|j). The maximization of q(ā|i) is expanded into

min−Ea,i

[
log q(ā|i)

]
= minEa,i

[
DKL(p(ā|i) || q(ā|i)) +H(p(ā|i))

]
, (6)

where DKL(· || ·) is the Kullback-Leibler (KL) divergence. Therefore, the cross-entropy loss di-
rectly encourages normalized penultimate activations ā for images of class i to follow our generative
model q(ā|i) by minimizing the KL divergence between p(ā|i) and q(ā|i). We additionally have an
entropy term H(p(ā|i)) which encourages ā to be more concentrated, but it does not cause p(ā|i) to
collapse to a point mass because of the KL divergence term.

2.3 Empirical Verification

We provide empirical support for our analysis in Section 2.2 by verifying

• Our core assumption that directional statistics of penultimate activations contain sufficient
information for classification by themselves,

• The conclusion of Eq. (4) and Eq. (6) that, for a trained network, p(ā|i) follows a von
Mises-Fisher distribution for all i.

Directional statistics are sufficient for classification. When deriving the generative model of ā
in a form of vMF distribution, the magnitudes of a and wi are ignored as we assume that their direc-
tional statistics are already sufficient for classification. To verify our assumption, we examine how
much the performance of pretrained classification networks drop by normalizing their a and wi.
Specifically, we choose 9 networks pretrained for the ImageNet classification task (Russakovsky
et al., 2015), and apply them to the ImageNet validation set to measure their performance. As sum-
marized in Table 1, the performance drop by the normalization is marginal, especially when the
network is deeper and more powerful. This result supports our assumption that directional statistics
of a is sufficient for classification and the effect of‖wi‖ is marginal.

Penultimate activations follow vMF distributions. For qualitative verification of our assertion,
we visualize in Figure 1 penultimate activations of a classification network trained on the MNIST
dataset (LeCun & Cortes, 2010) and the vMF distributions derived from its final classification layer.
The network consists of 4 convolution layers followed by the final fully connected layer, and is de-
signed to produce 2-dimensional penultimate activations for ease of visualization. As shown in Fig-
ure 1, normalized penultimate activations are not well aligned with vMF distributions in early stages
of training, but become grouped for each class and following the corresponding distributions tightly
as training progresses. Additionally, from the density of original penultimate activations in Figure 1,
one can observe that their directions are sufficient for classification as demonstrated also in the
previous paragraph.
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Figure 1: Visualization of penultimate activations and vMF distributions derived from the classifi-
cation layer on the MNIST dataset. (top) Kernel density estimates of a. (bottom) Distributions of ā
represented by dots and vMF distributions q(ā|i) drawn by solid lines.

3 Related Work

Understanding deep neural networks. Understanding what a neural network learns about data
is a fundamental problem in deep learning. Previous approaches have analyzed classification net-
works by optimizing an image to maximally activate a specific neuron (Erhan et al., 2009; Yosinski
et al., 2015) or to maximize the predicted probability of a specific class (Simonyan et al., 2013).
Mahendran & Vedaldi (2015) uses a similar technique to visualize the entire feature map of an
image. Instead of generating representative images, Zhou et al. (2016); Selvaraju et al. (2017) lo-
cates the most salient region within an image for each class by computing a weighted average of
each activation channel. While such techniques offer high-level insights into the characteristics of
learned activations, there is no obvious way to use these insights to facilitate the learning of other
models. In contrast, our generative model allows us to sample activations from, and quantify the re-
lationship between, different classes. Our experiments demonstrate that these features of our model
can be applied to real-world problems such as knowledge distillation and accelerating the training
of a generative model. Besides the tasks we considered in this paper, our approach of modeling
the behavior of a trained network has many other potential applications such as domain adaptation,
anomaly detection, and uncertainty calibration.

vMF distributions in deep learning. The von Mises-Fisher (vMF) distribution is a common com-
ponent of models of directional data. Mixtures of vMFs have been studied for the task of clustering
such directional data (Banerjee et al., 2005; Gopal & Yang, 2014). For Bayesian inference of neural
network weights, Oh et al. (2019) consider a decomposition of model weights into radial and di-
rectional components, and use vMF distributions to model the directional component. Hasnat et al.
(2017) learn a vMF embedding space for deep metric learning. Such hyperspherical embedding
spaces have the desirable property that the total surface area decreases as dimension increases be-
yond 8 (see Figure 2 of Hasnat et al. (2017)), unlike Euclidean embedding spaces for which volume
increases exponentially with dimension. Kumar & Tsvetkov (2019) parameterize word embeddings
as vectors on a unit hypersphere and uses the negative log likelihood of a vMF distribution as an
objective, reducing the large computations involved in normalizing the softmax in sequence-to-
sequence models. Our use of directional statistics differs from these previous methods in that we
use it as a tool for explaining the behavior of standard classification models rather than for special-
ized purposes such as constructing a compact embedding space or reducing computation.

4 Applications

In this section, we demonstrate that our generative model of penultimate activations can be applied
to two practical applications, knowledge distillation (Hinton et al., 2015; Ahn et al., 2019; Romero
et al., 2014) and class-conditional image generation (Davidson et al., 2018).
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4.1 Class-wise Knowledge Distillation

4.1.1 Algorithm Details

Our generative model is first applied to Knowledge Distillation (KD), the task of distilling knowl-
edge from a teacher network T to a student network S (Hinton et al., 2015). Unlike most of the
existing approaches, our model enables KD without feeding images forward through T by directly
generating activations of a certain class. Specifically, our model is used to approximate the average
prediction of T per class, which is represented as the probability of T ’s prediction y given class i
and estimated by

pT (y|i) =

∫
pT (ā|i)pT (y|ā) dā ≈ 1

N

N∑
j=1

pT (y|āj), (7)

where we employ Monte Carlo integration since the exact integral is intractable. Also, each āj is an
i.i.d. sample from vMF(w̄i, κ), where κ is set to 85 for all experiments on KD.

The estimated pT (y|i) in Eq. (7) quantifies the relationship between two classes y and i that is
captured by T , and is employed as a target for KD in our approach. Recall that the standard KD loss
(Hinton et al., 2015) is

LKD = −Ei,x,y∼p(i,x)pT (y|x)
[
log pS(y|x)

]
, (8)

where y denotes prediction and x and i are data and label, respectively. The loss in Eq. (8) is designed
to minimize the KL divergence between pT (y|x) and pS(y|x) for each data x. Unlike this data-wise
KD, our approach is a Class-wise KD (CKD) whose objective is

LCKD = −Ei,x,y∼p(i,x)pT (y|i)
[
log pS(y|x)

]
, (9)

where the categorical distribution pT (y|i) is given by Eq. (7). Note again that while the standard KD
objective in Eq. (8) requires a forward pass through the teacher network T to compute pT (y|x), ours
in Eq. (9) utilizes the pre-computed distribution pT (y|i) without exploiting T during training of S.
This property of CKD is useful especially when it is hard to conduct forward propagation through T
(e.g., online learning of S with limited memory and computation power) or if there is domain shift
between training datasets for T and S as demonstrated by experiments in Section 4.1.4.

The overall procedures of the standard KD and our CKD are described below in Algorithm 1 and 2,
respectively, where the main differences between the two methods are colored in red.

Algorithm 1 KD (Hinton et al., 2015)

Require: teacher network x 7→ pT (y|x)
Require: student network x 7→ pS(y|x)

1: while not converged do
2: x, i ∼ p(x, i)
3: pT ⇐ pT (y|x)
4: pS ⇐ pS(y|x)
5: LKD ⇐ −pT · log pS
6: end while

Algorithm 2 Class-wise KD (ours)

Require: teacher network x 7→ pT (y|x)
Require: student network x 7→ pS(y|x)

1: pT (y|i)⇐ 1
N

∑N
j=1 pT (y|āj)

2: while not converged do
3: x, i ∼ p(x, i)
4: pT ⇐ pT (y|i)
5: pS ⇐ pS(y|x)
6: LCKD ⇐ −pT · log pS
7: end while

4.1.2 Qualitative Analysis on the Effect of CKD

To investigate which kind of information of T is transfered to S through CKD, we qualitatively
examine penultimate activations and their generative models of the two networks on the MNIST
dataset. In this experiment, T consists of 4 convolution layers followed by the final fully connected
layer, and produces 2-dimensional penultimate activations. S has the same architecture but with half
the number of convolution kernels. From the visualization results in Figure 2, one can observe that
T and S have the same cyclic order of classes in the space of their penultimate activations. This
demonstrates that Eq. (9) encourages S to follow the inter-class relationships captured by T .

Note also that the activation distributions of S are substantially more concentrated compared to those
of T . This is similar with the observation of Müller et al. (2019) that embedding vectors of neural
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Figure 2: Visualization of penultimate activations and their vMF distributions on the MNIST dataset.
For both of the teacher and student, (left) kernel density estimates of a, (right) distributions of ā
represented by dots and vMF distributions q(ā|i) drawn by solid lines.

(a) ResNet-18 (b) ResNet-101 (c) DenseNet-121 (d) VGG-16 (e) ResNeXt-50

Figure 3: Visualization of log pT (j|i) of all pairs of classes calculated as Eq. (7) using 5 different
networks pretrained on the ImageNet dataset. Best viewed zoomed in.

networks are more tightly clustered when they are trained with label smoothing. However, instead of
the uniform label smoothing of Müller et al. (2019), our CKD objective in Eq. (9) smoothes labels
by considering the inter-class relationships in T .

To further investigate whether our CKD objective in Eq. (9) can capture inter-class relations learned
by large-scale neural networks, we compare those relations extracted from various Imagenet pre-
trained networks. Specifically, we compute log pT (j|i) as in Eq. (7) for every pair of classes using
5 different ImageNet pretrained networks. The results are represented as 1000 × 1000 matrices as
shown in Figure 3, where one can find that all the 5 matrices exhibit similar inter-class relations
although their corresponding network architectures vary widely. This implies that the inter-class re-
lations extracted from Eq. (7) and Eq. (9) reflect the similarity among the groups of data belonging
to different classes, to which we attribute the capability of CKD to transfer knowledge from T to S.

4.1.3 Network Compression and Self Distillation

The effectiveness of CKD is first evaluated on the CIFAR-100 dataset (Krizhevsky et al., 2009) in
the scenario of network compression. Following the protocol of Ahn et al. (2019), we use WRN-
40-2 as T and WRN-16-2 as S, both presented in Zagoruyko & Komodakis (2016). As summarized
in Table 2, CKD outperforms the baseline “Label” that does not utilize T , and is as competitive as
previous distillation techniques like “FitNet” (Romero et al., 2014) and “VID-I” (Ahn et al., 2019).
This result demonstrates that CKD is capable of extracting useful knowledge from T . On the other
hand, the performance of CKD is worse than that of the standard “KD” (Hinton et al., 2015) since
the data-wise approach can extract a larger amount of knowledge than CKD by feeding individual
datapoints forward through T . However, CKD and the standard KD are complementary to each other
and the performance is further enhanced by integrating them. We further demonstrate the efficacy of
CKD in the self distillation scenario where S has the same architecture with T (i.e., WRN-40-2). In
this setting, the same tendency has been observed.

4.1.4 KD in the Presence of Domain Shift

Most KD techniques assume that T and S are trained with the same dataset or, at least, on the same
domain. However, this assumption does not hold always in real world settings, e.g., when the dataset
used to train T is not available due to privacy issues or S is trained with streaming data that can be
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Label Label† KD KD† FitNet† VID-I† CKD CKD+KD

WRN-16-2 73.3 70.4 74.1 72.9 70.9 73.3 73.7 74.0
WRN-40-2 76.2 74.2 77.7 75.8 74.3 75.3 76.6 77.7

Table 2: Top-1 test accuracy of the student networks on the CIFAR-100 dataset when using WRN-
40-2 as the teacher. The scores of the approaches with † are taken directly from Ahn et al. (2019).

Photometric Transform Downsampling

0.2 0.4 0.6 0.8 ×0.75 ×0.5 ×0.25

Label 73.53 73.37 72.01 71.24 69.46 63.29 49.69
KD 74.05 73.05 69.96 66.14 65.63 57.53 44.96

CKD (ours) 73.86 73.92 73.55 71.86 70.32 63.53 50.02

Table 3: Top-1 test accuracy of the student networks on the CIFAR-100 dataset with various degrees
of photometric transform and image downsampling.

corrupted by sensor noises. In those cases, the quality of knowledge extracted from T in a data-wise
manner could be degraded since T assumes a different data distribution from what S observes.

We argue that our CKD is more robust against domain shift since it can perform KD without tak-
ing input data explicitly. To validate the advantage of CKD, it is evaluated and compared to the
standard KD (Hinton et al., 2015) on the CIFAR-100 dataset (Krizhevsky et al., 2009) while simu-
lating domain shift. Specificlly, we consider two different types of domain shift: photometric trans-
form and downsampling. For the photometric transform, we randomly alter brightness, contrast,
and saturation of input image with 5 different degrees of alteration; degree 0 means no alteration.
Also, for the image downsampling, we reduce the resolution of input image with 3 different rates
(×0.75,×0.5,×0.25) using nearest neighbor interpolation. Furthermore, as in the setting of Sec-
tion 4.1.3, we employ WRN-40-2 as T and WRN-16-2 as S.

In this experiment, CKD consistently enhances the performance of the baseline using only ground
truth labels (“Label”) while the standard KD (“KD”) even deteriorates when the domain shift is
significant, as summarized in Table 3. We believe this result is mainly due to the fact that the standard
KD strongly depends on the data distribution. On the other hand, the knowledge captured by CKD
can still be useful in the presence of domain shift since it extracts inter-class relationships directly
from the weights of the final classification layer rather than relying on the data.

4.2 Class-Conditional Image Generation

We apply our generative model of penultimate activations to class-conditional image generation by
modifying the Hyperspherical Variational Auto Encoder (HVAE) of Davidson et al. (2018), a latent
variable model with a hyperspherical latent space. This section first describes our approach along
with two baselines, then demonstrates its efficacy by experiments on the MNIST dataset.

4.2.1 Baselines and Our Approach

Baseline 1 – Hyperspherical VAE (HVAE): HVAE is a latent variable model, which first maps
the given data x to a latent variable z ∈ Sd with a prior p(z) by an encoder q(z|x), then reconstructs
x from z by a stochastic decoder p(x|z). Especially, HVAE assumes that p(z) is a uniform distri-
bution on the unit hypersphere Sd. Specifically, the encoder of HVAE is trained by maximizing the
following lower bound of the evidence:

Eq(z|x)[log p(x|z)]−DKL(q(z|x) || p(z)). (10)

Baseline 2 – HVAE Conditioned by Concatenation (HVAE-C): For HVAE, a straightforward
way to model the distribution of x while taking label i into account is to attach i to the end of
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Log-Likelihood ELBO

z dim 3 5 10 20 3 5 10 20

HVAE −135.0 −115.3 −97.7 −95.0 −138.3 −120.3 −105.5 −106.3
HVAE-C −139.4 −119.6 −98.4 −94.7 −141.7 −123.5 −105.5 −105.5

HVAE-L (ours) −133.0 −114.3 −95.6 −92.8 −136.2 −119.1 −103.6 −104.0

Table 4: Comparison on the MNIST generative modeling task.

the latent vector z. Specifically, whereas HVAE assumes that x is generated from z alone (i.e.,
p(x, z) = p(z)p(x|z)), HVAE-C assumes that x is generated from both z and i (i.e., p(x, z, i) =
p(i)p(z)p(x|z, i)). We train HVAE-C by maximizing the following lower bound of the evidence
considering i:

Eq(z|x,i)
[
log p(x|i, z) + log p(i)

]
−DKL(q(z|x) || p(z)). (11)

Ours – HVAE Conditioned by Learned Prior (HVAE-L): Recall from Section 2.2 that we can
utilize the weights of the final fully-connected layer of a classifier network to model a distribution
of penultimate activations per class i. We employ this activation distribution conditioned on i as a
learned prior for z of HVAE. This approach is similar to HVAE-C in that i is involved in the process
of generating x, but the two models differ in where i is integrated; in our HVAE-L, x is generated
from z alone, where the distribution of z is determined by i (i.e., p(x, z, i) = p(i)p(z|i)p(x|z)).
HVAE-L is trained by optimizing the following objective:

Eq(z|x,i)
[
log p(x|z) + log p(i)

]
−DKL(q(z|x) || p(z|i)). (12)

Also, the above objective differs from that of HVAE in Eq. (10) since the two models assume differ-
ent generation procedures.

4.2.2 Experiments

Our model (HVAE-L) is compared against the two baseline models (HVAE, HVAE-C) on the
MNIST generative modeling task. The experimental setup including network architecture and hy-
perparameter setting follows directly that of Davidson et al. (2018). In addition, we ensure that the
dimensionality of the latent vector z is the same for all the models. Also, our prior distribution for
HVAE-L is learned by a classification network with the same architecture as the encoder, and its hy-
perparameter κ is set to 5. Quantitative results of the three models are summarized in Table 4, where
our HVAE-L outperforms both of the baselines, demonstrating that our model of class-conditional
activations is a useful prior for class-conditional image generation.

5 Discussion and Future Work

Our analysis focuses on standard classification networks that are trained to convergence, and our
modelling assumptions do not necessarily hold in settings that don’t satisfy those conditions. An
obvious counterexample is a randomly initialized network: the classifier holds no information about
the dataset at initialization. As another example, Hoffer et al. (2018) uses a fixed projection matrix
as the final layer with no impairment on accuracy at convergence. The final layer of such a network
obviously cannot reflect class relations since the weights were determined independently of data.

Next on our agenda includes (1) more precise modeling of penultimate activations of classification
network than vMF distributions, and (2) investigating and implementing more applications of our
activation generation model such as domain adaptation, data augmentation, and uncertainty cali-
bration. We also plan to develop a new architecture for image classification networks based on the
observations in this work.
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