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ABSTRACT

While progress has been made in crafting visually imperceptible adversarial exam-
ples, constructing semantically meaningful ones remains a challenge. In this paper,
we propose a framework to generate semantics preserving adversarial examples.
First, we present a manifold learning method to capture the semantics of the inputs.
The motivating principle is to learn the low-dimensional geometric summaries of
the inputs via statistical inference. Then, we perturb the elements of the learned
manifold using the Gram-Schmidt process to induce the perturbed elements to
remain in the manifold. To produce adversarial examples, we propose an efficient
algorithm whereby we leverage the semantics of the inputs as a source of knowl-
edge upon which we impose adversarial constraints. We apply our approach on toy
data, images and text, and show its effectiveness in producing semantics preserving
adversarial examples which evade existing defenses against adversarial attacks.

1 INTRODUCTION

In response to the susceptibility of deep neural networks to small adversarial perturbations (Szegedy
et al., 2014), several defenses have been proposed (Liu et al., 2019; Sinha et al., 2018; Raghunathan
et al., 2018; Madry et al., 2017; Kolter & Wong, 2017). Recent attacks have, however, cast serious
doubts on the robustness of these defenses (Athalye et al., 2018; Carlini & Wagner, 2016). A standard
way to increase robustness is to inject adversarial examples into the training inputs (Goodfellow
et al., 2014a). This method, known as adversarial training, is however sensitive to distributional shifts
between the inputs and their adversarial examples (Ilyas et al., 2019). Indeed, distortions, occlusions
or changes of illumination in an image, to name a few, do not always preserve the nature of the image.
In text, slight changes to a sentence often alter its readability or lead to substantial differences in
meaning. Constructing semantics preserving adversarial examples would provide reliable adversarial
training signals to robustify deep learning models, and make them generalize better. However, several
approaches in adversarial attacks fail to enforce the semantic relatedness that ought to exist between
the inputs and their adversarial counterparts. This is due to inadequate characterizations of the
semantics of the inputs and the adversarial examples — Song et al. (2018) and Zhao et al. (2018b)
confine the distribution of the latents of the adversarial examples to a Gaussian. Moreover, the search
for adversarial examples is customarily restricted to uniformly-bounded regions or conducted along
suboptimal gradient directions (Szegedy et al., 2014; Kurakin et al., 2016; Goodfellow et al., 2014b).

In this study, we introduce a method to address the limitations of previous approaches by constructing
adversarial examples that explicitly preserve the semantics of the inputs. We achieve this by char-
acterizing and aligning the low dimensional geometric summaries of the inputs and the adversarial
examples. The summaries capture the semantics of the inputs and the adversarial examples. The
alignment ensures that the adversarial examples reflect the unbiased semantics of the inputs. We
decompose our attack mechanism into: (i.) manifold learning, (ii.) perturbation invariance, and (iii.)
adversarial attack. The motivating principle behind step (i.) is to learn the low dimensional geometric
summaries of the inputs via statistical inference. Thus, we present a variational inference technique
that relaxes the rigid Gaussian prior assumption typically placed on VAEs encoder networks (Kingma
& Welling, 2014) to capture faithfully such summaries. In step (ii.), we develop an approach around
the manifold invariance concept of (Roussel, 2019) to perturb the elements of the learned manifold
while ensuring the perturbed elements remain within the manifold. Finally, in step (iii.), we propose
a learning algorithm whereby we leverage the rich semantics of the inputs and the perturbations as a
source of knowledge upon which we impose adversarial constraints to produce adversarial examples.
Unlike (Song et al., 2018; Carlini & Wagner, 2016; Zhao et al., 2018b; Goodfellow et al., 2014b) that
resort to a costly search of adversarial examples, our algorithm is efficient and end-to-end.
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The main contributions of our work are thus: (i.) a variational inference method for manifold learning
in the presence of continuous latent variables with minimal assumptions about their distribution, (ii.)
an intuitive perturbation strategy that encourages perturbed elements of a manifold to remain within
the manifold, (iii.) an end-to-end and computationally efficient algorithm that combines (i.) and (ii.)
to generate adversarial examples in a black-box setting, and (iv.) illustration on toy data, images and
text, as well as empirical validation against strong certified and non-certified adversarial defenses.

2 PRELIMINARIES & ARCHITECTURE

Notations. Let x be a sample from the input space X , with label y from a set of possible labels
Y , and D = {xn}Nn=1 a set of N such samples x. Also, let d be a distance measure on X capturing
closeness in input space, or on Z , the embedding space of X , capturing semantics similarity.

Adversarial Examples. Given a classifier g, and its loss function `, an adversarial example of x is
produced by maximizing the objective below over an ε-radius ball around x (Athalye et al., 2017).

x′ = arg max
x′∈X

`(g(x′), y) such that x′ ∈ B(x; ε)

Above, the search region for adversarial examples is confined to a uniformly-bounded ball B(x; ε).
In reality, however, the shape imposed on B is quite restrictive as the optimal search region may have
a different topology. It is also common practice to produce adversarial examples in the input space
X — via an exhaustive and costly search procedure (Shaham et al., 2018; Song et al., 2018; Zhao
et al., 2018b; Athalye et al., 2017; Carlini & Wagner, 2016; Goodfellow et al., 2014b). Unlike these
approaches, however, we wish to operate in Z , the lower dimensional embedding space of X , with
minimal computational overhead. Our primary intuition is that Z captures well the semantics of D.
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Figure 1: Architecture. The set of model parameters
Θ = {θm}Mm=1 and Θ′ = {θ′m}Mm=1 are sampled from
the recognition networks fη and fη′ . Given an input x ∈
D, we use E to sample the latent codes z1, ..., zM via
Θ. These codes are passed to E′ to learn their perturbed
versions z′1, ..., z′M using Θ′. The output x′ ∼ pφ(x′|z′)
is generated via posterior sampling of a z′ (in red).

Attack Model. Given a sample x ∈ D and its
class y ∈ Y , we want to construct an adversarial
example x′ that shares the same semantics as
x. We assume the semantics of x (resp. x′) is
modeled by a learned latent variable model p(z)
(resp. p′(z′)), where z, z′ ∈ Z . In this setting,
observing x (resp. x′) is conditioned on the
observation model p(x|z) (resp. p(x′|z′)), that
is: x ∼ p(x|z) and x′ ∼ p(x′|z′), with z ∼ p(z)
and z′ ∼ p′(z′). We learn this model in a way
that d(x, x′) is small and g(x) = y ∧ g(x′) 6= y
while ensuring also that d(z, z′) is small.

Intuitively, we get the latent z ∼ p(z) which en-
codes the semantics of x. Then, we perturb z in
a way that its perturbed version z′ ∼ p′(z′) lies
in the manifold that supports p(z). We define
a manifold as a set of points in Z where every
point is locally Euclidean (Roussel, 2019). We
devise our perturbation procedure by generaliz-
ing the manifold invariance concept of (Roussel,

2019) to Z . For that, we consider two embedding maps h : X → Z and h′ : X → Z , parameterized
by θ and θ′, as surrogates for p(z) and p(z′). We assume θ and θ′ follow the implicit distributions p(θ)
and p(θ′). In the following, we consider M such embedding maps h and h′.1 If we let z = h(x; θ)
and z′ = h′(x; θ′), we ensure that z′ is in the manifold that supports p(z) by constraining d(z, z′) to
be small. Then, given a map decφ : Z → X , we craft x′ = decφ(z′) in a way that d(x, x′) is small
and g(x) = y ∧ g(x′) 6= y. Then, we say that x′ is adversarial to x and preserves its semantics.

Model Architecture. To implement our attack model, we propose as a framework the architecture
illustrated in Figure 1. Our framework is essentially a variational auto-encoder with two encoders E
and E’ that learn the geometric summaries of D via statistical inference. We present two inference
mechanisms — implicit manifold learning via Stein variational gradient descent (Liu & Wang, 2016)
and Gram-Schmidt basis sign method (Dukes, 2014) — to draw instances of model parameters from

1The reason why we consider M instances of h and h′ will become apparent in Section 3.

2



Under review as a conference paper at ICLR 2020

the implicit distributions p(θ) and p(θ′) that we parameterize E and E’ with. Both encoders optimize
the uncertainty inherent to embedding D in Z while guaranteeing easy sampling via Bayesian
ensembling. Finally, the decoder pφ acts as a generative model for constructing adversarial examples.

Threat Model. We consider in this paper a black-box scenario where we, as an attacker, have only
access to the predictions of a classifier g. As the attacker, we want to construct adversarial examples
not knowing the intricacies of g such as its loss function, nor having access to its gradient. We focus
on this scenario because it is challenging and more plausible in real-life than the white-box case. This
threat model serves to evaluate both certified defenses and non-certified ones under our attack model

3 IMPLICIT MANIFOLD LEARNING

Manifold learning is based on the assumption that high dimensional data lies on or near lower
dimensional manifolds in a data embedding space. In the variational auto-encoder (VAE) (Kingma &
Welling, 2014) setting, the datapoints xn ∈ D are modeled via a decoder xn ∼ p(xn|zn;φ). To learn
the parameters φ, one typically maximizes a variational approximation to the empirical expected
log-likelihood 1/N

∑N
n=1 log p(xn;φ), called evidence lower bound (ELBO), defined as:

Le(φ, ψ;x) = Ez|x;ψ log

[
p(x|z;φ)p(z)

q(z|x;ψ)

]
= −KL(q(z|x;ψ)‖p(z|x;φ)) + log p(x;φ). (1)

The expectation Ez|x;ψ can be re-expressed as a sum of a reconstruction loss, or expected negative
log-likelihood of x, and a KL(q(z|x;ψ)‖p(z)) term. The KL term acts as a regularizer and forces
the encoder q(z|x;ψ) to follow a distribution similar to p(z). In VAEs, p(z) is defined as a spherical
Gaussian. That is, VAEs learn an encoding function that maps the data manifold to an isotropic Gaus-
sian. However, Jimenez Rezende & Mohamed (2015) have shown that the Gaussian form imposed on
p(z) leads to uninformative latent codes; hence to poorly learning the semantics of D (Zhao et al.,
2017). To sidestep this issue, we minimize the divergence term KL(q(z|x;ψ)‖p(z|x;φ)) using Stein
Variational Gradient Descent (Liu & Wang, 2016) instead of explicitly optimizing the ELBO.

Stein Variational Gradient Descent (SVGD) is a nonparametric variational inference method that
combines the advantages of MCMC sampling and variational inference. Unlike ELBO (Kingma
& Welling, 2014), SVGD does not confine a target distribution p(z) it approximates to simple or
tractable parametric distributions. It remains yet an efficient algorithm. To approximate p(z), SVGD
maintains M particles z = {zm}Mm=1, initially sampled from a simple distribution, it iteratively
transports via functional gradient descent. At iteration t, each particle zt ∈ zt is updated as follows:

zt+1 ← zt + αtτ(zt) where τ(zt) =
1

M

M∑
m=1

[
k(zmt , zt)∇zmt log p(zmt ) +∇zmt k(zmt , zt)

]
,

where αt is a step-size and k(., .) is a positive-definite kernel. In the equation above, each particle
determines its update direction by consulting with other particles and asking their gradients. The
importance of the latter particles is weighted according to the distance measure k(., .). Closer particles
are given higher consideration than those lying further away. The term ∇zmk(zm, z) is a regularizer
that acts as a repulsive force between the particles to prevent them from collapsing into one particle.
Upon convergence, the particles zm will be unbiased samples of the true implicit distribution p(z).

Manifold Learning via SVGD. To characterize the manifold of D, which we denote M, we
learn the encoding function q(.;ψ). Similar to Pu et al. (2017), we optimize the divergence
KL(q(z|x;ψ)‖p(z|x;φ)) using SVGD. As an MCMC method, SVGD, however, induces inher-
ent uncertainty we ought to capture in order to learn M efficiently. To potentially capture such
uncertainty, Pu et al. (2017) use dropout. However, according to Hron et al. (2017), dropout is not
principled. Bayesian methods, on the contrary, provide a principled way to model uncertainty through
the posterior distribution over model parameters. Kim et al. (2018) have shown that SVGD can be
cast as a Bayesian approach for parameter estimation and uncertainty quantification. Since SVGD
always maintains M particles, we introduce thus M instances of model parameters Θ = {θm}Mm=1,
where every θm ∈ Θ is a particle that defines the weights and biases of a Bayesian neural network.

For large M , however, maintaining Θ can be computationally prohibitive because of the memory
footprint. Furthermore, the need to generate the particles during inference for each test case is
undesirable. To sidestep these issues, we maintain only one (recognition) network fη that takes as
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Algorithm 1 Inversion with one particle θ.
Require: Input x ∈ D
Require: Model parameters η

1: Sample ξ ∼ N (0, I)
2: Sample θ ∼ fη(ξ)
3: Given x, sample z ∼ p(z|x;θ)
4: Sample x̃ ∼ p(x|z,φ)
5: Sample z̃ ∼ p(z|x̃,θ)
6: Use x and z̃ to compute p(z̃|x;θ)

Figure 2: Inversion. Process for computing the likelihood p(D|θ). As the decoder pφ gets accurate,
the error ‖x− x̃‖2 becomes small (see Algorithm 2), and we get closer to sampling the optimal z̃.

input ξm ∼ N (0, I) and outputs a particle θm. The recognition network fη learns the trajectories of
the particles as they get updated via SVGD. fη serves as a proxy to SVGD sampling strategy, and is
refined through a small number of gradient steps to get good generalization.

ηt+1 ← arg min
η

M∑
m=1

∥∥∥ f(ξm; ηt)︸ ︷︷ ︸
θtm

− θt+1
m

∥∥∥
2

with θt+1
m ← θtm + αtτ(θtm),

where τ(θt) =
1

M

M∑
j=1

[
k(θtj , θ

t)∇
θ
j
t

log p(θtj) +∇
θ
j
t
k(θtj , θ

t)
]
.

(2)

We use the notation SVGDτ (Θ) to denote an SVGD update of Θ using the operator τ(.). As
the particles θ are Bayesian, upon observing D, we update the prior p(θtj) to obtain the posterior
p(θtj |D) ∝ p(D|θtj)p(θtj) which captures the uncertainty. We refer the reader to Appendix A for a
formulation of p(θtj |D) and p(D|θtj). The data likelihood p(D|θtj) is evaluated over all pairs (x, z̃)
where x ∈ D and z̃ is a dependent variable. However, z̃ is not given. Thus, we introduce the inversion
process described in Figure 2 to generate such z̃ using Algorithm 1. For any input x ∈ D, we sample
its latent code z from p(z|x;D), which we approximate by Monte Carlo over Θ; that is:

p(z|x;D) =

∫
p(z|x; θ)p(θ|D)dz ≈ 1

M

M∑
m=1

p(z|x; θm) where θm ∼ p(θ|D). (3)

4 PERTURBATION INVARIANCE

Here, we focus on perturbing the elements ofM. We want the perturbed elements to reside inM and
exhibit the semantics of D thatM captures. Formally, we seek a linear mapping h′ : M→M such
that for any point z ∈M, a neighborhood U of z is invariant under h′; that is: z′ ∈ U ⇒ h′(z′) ∈ U .
In this case, we say thatM is preserved under h′. Trivial examples of such mappings are linear
combinations of the basis vectors of subspaces S ofM called linear spans of S.

Rather than finding a linear span h′ directly, we introduce a new set of instances of model parameters
Θ′ = {θ′m}Mm=1. Each θ′m denotes the weights and biases of a Bayesian neural network. Then,
for any input x ∈ D and its latent code z ∼ p(z|x;D), a point in M, we set h′(z) = z′ where
z′ ∼ p(z′|x;D). We approximate p(z′|x;D) by Monte Carlo using Θ′, as in Equation 3. We leverage
the local smoothness ofM to learn each θ′m in a way to encourage z′ to reside inM in a close
neighborhood of z using a technique called Gram-Schmidt Basis Sign Method.

Gram-Schmidt Basis Sign Method (GBSM). Let X be a batch of samples of D, Zm a set of latent
codes zm ∼ p(z|x; θm) where x ∈ X, and θm ∈ Θ. For any m ∈ {1..,M}, we learn θ′m to generate
perturbed versions of zm ∈ Zm along the directions of an orthonormal basis Um. AsM is locally
Euclidean, we compute the dimensions of the subspace Zm by applying Gram-Schmidt (Dukes,
2014) to orthogonalize the span of representative local points. We formalize GBSM as follows:

arg min
δm, θ′m

%(δm, θ
′
m) :=

∑
zm

∥∥∥z′m − [zm + δm � sign(uim)
]∥∥∥

2
where z′m ∼ p(z′|xi; θ′m).
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The intuition behind GBSM is to utilize the fact that topological spaces are closed under their basis
vectors to renderM invariant to the perturbations δm. To elaborate more on GBSM, we first sample
a model instance θ′m. Then, we generate z′m ∼ p(z′|x; θ′m) for all x ∈ X. We orthogonalize Zm and
find the perturbations δm that minimizes % along the directions of the basis vectors uim ∈ Um. We
want the perturbations δm to be small. With δm fixed, we update θ′m by minimizing % again. We use
the notation GBSM(Θ′,∆) where ∆ = {δm}Mm=1 to denote one update of Θ′ via GBSM.

Manifold Alignment. Although GBSM confers us latent noise imperceptibility and sampling speed,
Θ′ may deviate from Θ; in which case the manifolds they learn will mis-align. To mitigate this issue,
we regularize each θ′m ∈ Θ′ after every GBSM update. In essence, we apply one SVGD update on
Θ′ to ensure that Θ′ follows the transform maps constructed by the particles Θ (Han & Liu, 2017).

θ′t+1 ← θ′t + αtπ(θ′t) whereπ(θ′t) =
1

M

M∑
m=1

[
k(θ′t, θ

m
t )∇θmt log p(θmt ) +∇θmt k(θ′t, θ

m
t )
]

(4)

We use the notation SVGDπ(Θ′) to refer to the gradient update rule in Equation 4. In this rule, the
model instances Θ′ determine their own update direction by consulting only the particles Θ instead
of consulting each other. Maintaining Θ′ = {θ′m}Mm=1 for large M is, however, computationally
prohibitive. Thus, as in Section 3, we keep only one (recognition) network fη′ that takes as input
ξ′m ∼ N (0, I) and outputs θ′m ∼ f(ξ′m; η′). Here too we refine η′ through a small number of gradient
steps to learn the trajectories that Θ′ follows as it gets updated via GBSM and SVGDπ .

η′t+1 ← arg min
η′

M∑
m=1

∥∥∥ f(ξ′m; η
′t)︸ ︷︷ ︸

θ′tm

− θ
′t+1
m

∥∥∥
2

where θ
′t+1
m ← θ

′t
m + αtπ(θ

′t
m). (5)

5 GENERATING ADVERSARIAL EXAMPLES

In this paper, a black-box scenario is considered. In this scenario, we have only access to the
predictions of the classifier g. We produce adversarial examples by optimizing the loss below. The
first term is the reconstruction loss inherent to VAEs. This loss accounts here for the dissimilarity
between any input x ∈ D and its adversarial counterpart x′, and is constrained to be smaller than
εattack so that x′ resides within an εattack-radius ball of x. Unless otherwise specified, we shall use
norm L2 as reconstruction loss. The second term is an auxiliary log-likelihood loss (for g) of a target
class y′ ∈ Y \ {y} where y is the class of x. This loss defines the cost incurred for failing to fool g.

Lx′ = ‖x− x′‖2 + min
y′∈Y

[
1y=y′ · log (1− P (y′|x′))

]
such that ‖x− x′‖2 ≤ εattack. (6)

In Algorithm 2, we show how we unify our manifold learning and perturbation strategy into one
learning procedure to generate adversarial examples without resorting to an exhaustive search.

6 RELATED WORK

Manifold Learning. VAEs are generally used to learn manifolds (Yu et al., 2018; Falorsi et al.,
2018; Higgins et al., 2016) by maximizing the ELBO of the data log-likelihood (Alemi et al.,
2017; Chen et al., 2017). Optimizing the ELBO entails reparameterizing the encoder to a Gaussian
distribution (Kingma & Welling, 2014). This reparameterization is, however, restrictive (Jimenez
Rezende & Mohamed, 2015) as it may lead to learning poorly the manifold of the data (Zhao et al.,
2017). To alleviate this issue, we use SVGD, similar to Pu et al. (2017). While our approach and that
of Pu et al. (2017) may look similar, ours is more principled. As discussed in (Hron et al., 2017),
dropout which Pu et al. (2017) use is not Bayesian. Since our model instances are Bayesian, we are
better equipped to capture the uncertainty. Capturing the uncertainty requires, however, evaluating the
data likelihood. As we are operating in latent space, this raises the interesting challenge of assigning
target-dependent variables to the inputs. We overcome this challenge using our inversion process.

Adversarial Examples. Studies in adversarial deep learning (Athalye et al., 2018; Kurakin et al.,
2016; Goodfellow et al., 2014b; Athalye et al., 2017) can be categorized into two groups. The first
group (Carlini & Wagner, 2016; Athalye et al., 2017; Moosavi-Dezfooli et al., 2016) proposes to
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Algorithm 2 Generating Adversarial Examples. Lines 2 and 4 compute distances between sets
keeping a one-to-one mapping between them. x′ is adversarial to x when Lx′ ≤ εattack and y 6= y′.

1: function INNERTRAINING(Θ,Θ′,η,η′,∆, x̃) . local gradient updates of fη , fη′ , ∆
Require: Learning rates β,β′

2: η ← η − β∇η‖Θ− SVGDτ (Θ)‖2 . apply inversion on x̃ and update η
3: ∆,Θ′ ← GBSM(Θ′,∆) . update ∆ and Θ′ using GBSM
4: η′ ← η′ − β′∇η′‖Θ′− SVGDπ(Θ′)‖2 . align Θ′ with Θ and update η′
5: return η,η′,∆

Require: Training samples (x, y) ∈ D ×Y
Require: Number of model instances M
Require: Number of inner updates T
Require: Initialize weights η, η′, φ . recognition nets fη , fη′ , decoder pφ
Require: Initialize perturbations ∆ := {δm}Mm=1 . latent (adversarial) perturbations
Require: Learning rates ε,α,α′, and noise margin εattack

6: Sample ξ1, ..., ξM from N (0, I) . inputs to recognition nets fη , fη′
7: for t = 1 to T do
8: Sample Θ = {θm}Mm=1 where θm ∼ fη(ξm)
9: Sample Θ′ = {θ′m}Mm=1 where θ′m ∼ fη′(ξm)

10: Use Θ and Θ′ in Equation 3 to sample z and z′
11: Sample x̃ ∼ p(x|z,φ) and x′ ∼ p(x′|z′,φ) . clean and perturbed reconstructions
12: η,η′,∆←InnerTraining(Θ,Θ′,η,η′,∆, x̃)
13: Lx̃ := ‖x− x̃‖2; Lx′ := ‖x− x′‖2 . reconstruction losses on x̃ and x′

14: Lx′ :=

{Lx′ , if Lx′ > εattack

Lx′ + min
y′∈Y

[
1y=y′ · log (1− P (y′|x′))

]
, otherwise

15: η ← η −α∇ηLx̃; η′ ← η′ −α′∇η′Lx′ . SGD update using Adam optimizer
16: φ← φ− ε∇φ(Lx̃ + Lx′) . SGD update using Adam optimizer

generate adversarial examples directly in the input space of the original data by distorting, occluding
or changing illumination in images to cause changes in classification. The second group (Song et al.,
2018; Zhao et al., 2018b), where our work belongs, uses generative models to search for adversarial
examples in the dense and continuous representations of the data rather than in its input space.

Adversarial Images. Song et al. (2018) propose to construct unrestricted adversarial examples in the
image domain by training a conditional GAN that constrains the search region for a latent code z′ in
the neighborhood of a target z. Zhao et al. (2018b) use also a GAN to map input images to a latent
space where they conduct their search for adversarial examples. These studies are the closest to ours.
Unlike in (Song et al., 2018) and (Zhao et al., 2018b), however, our adversarial perturbations are
learned, and we do not constrain the search for adversarial examples to uniformly-bounded regions.
In stark contrast to Song et al. (2018) and Zhao et al. (2018b) approaches also, where the search for
adversarial examples is exhaustive and decoupled from the training of the GANs, our approach is
efficient and end-to-end. Lastly, by capturing the uncertainty induced by embedding the data, we
characterize the semantics of the data better, allowing us thus to generate sound adversarial examples.

Adversarial Text. Previous studies on adversarial text generation (Zhao et al., 2018a; Jia & Liang,
2017; Alvarez-Melis & Jaakkola, 2017; Li et al., 2016) perform word erasures and replacements
directly in the input space using domain-specific rules or heuristics, or they require manual curation.
Similar to us, Zhao et al. (2018b) propose to search for textual adversarial examples in the latent
representation of the data. However, in addition to the differences aforementioned for images,
the search for adversarial examples is handled more gracefully in our case thanks to an efficient
gradient-based optimization method in lieu of a computationally expensive search in the latent space.

7 EXPERIMENTS & RESULTS

Before, we presented an attack model whereby we align the semantics of the inputs with their
adversarial counterparts. As a reminder, our attack model is black-box, restricted and non-targeted.
Our adversarial examples reside within an εattack−radius ball of the inputs as our reconstruction
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loss, which measures the amount of changes in the inputs, is bounded by εattack (see Equation 6).
We validate the adversarial examples we produce based on three evaluation criteria: (i.) manifold
preservation, (ii.) adversarial strength, and (iii.) soundness via manual evaluation. We provide in
Appendix A examples of the adversarial images and sentences that we construct.

7.1 MANIFOLD PRESERVATION

We experiment with a 3D non-linear Swiss Roll dataset which comprises 1600 datapoints grouped in
4 classes. We show in Figure 3, on the left, the 2D plots of the manifold we learn. In the middle, we
plot the manifold and its elements that we perturbed and whose reconstructions are adversarial. On
the right, we show the manifold overlaid with the latent codes of the adversarial examples produced
by PGD (Goodfellow et al., 2014b) with εattack ≤ 0.3. Observe in Figure 3, in the middle, how the
latent codes of our adversarial examples espouse the Swiss Roll manifold, unlike the plot on the right.

Figure 3: Invariance. Swiss Roll manifold learned with our encoder E (left), and after perturbing its
elements with our encoder E′ (middle) vs. that of PGD adversarial examples (right) learned using E.

7.2 ADVERSARIAL STRENGTH

Setup. As argued in (Athalye et al., 2018), the strongest non-certified defense against adversarial
attacks is adversarial training with Projected Gradient Descent (PGD) (Goodfellow et al., 2014b).
Thus, we evaluate the strength of our MNIST, CelebA and SVHN adversarial examples against
adversarially trained ResNets (He et al., 2015) with a 40-step PGD and noise margin εattack ≤ 0.3.
The ResNet models follow the architecture design of Song et al. (2018). Similar to Song et al.
(2018) — whose attack model resembles ours2 —, for MNIST, we also target the certified defenses
(Raghunathan et al., 2018; Kolter & Wong, 2017) with εattack = 0.1 using norm L∞ as reconstruction
loss. For all the datasets, the accuracies of the models we target are higher than 96.3%. Next, we
present our attack success rates and give examples of our adversarial images in Figure 4.

Attack Success Rate (ASR) is the percentage of examples misclassified by the adversarially trained
Resnet models. For εattack = 0.3, the publicly known ASR of PGD attacks on MNIST is 88.79%.
However, our ASR for MNIST is 97.2%, higher than PGD. Also, with εattack ≈ 1.2, using norm L∞
as reconstruction loss in Equation 6, we achieve an ASR of 97.6% against (Kolter & Wong, 2017)
where PGD achieves 91.6%. Finally, we achieve an ASR of 87.6% for SVHN, and 84.4% for CelebA.

7.2.1 ADVERSARIAL TEXT

Datasets. For text, we consider the SNLI (Bowman et al., 2015) dataset. SNLI consists of sentence
pairs where each pair contains a premise (P) and a hypothesis (H), and a label indicating the
relationship (entailment, neutral, contradiction) between the premise and hypothesis. For instance,
the following pair is assigned the label entailment to indicate that the premise entails the hypothesis.
Premise: A soccer game with multiple males playing. Hypothesis: Some men are playing a sport.

2Note that our results are, however, not directly comparable with (Song et al., 2018) as their reported success
rates are for unrestricted adversarial examples, unlike ours, manually computed from Amazon MTurkers votes.
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Table 1: Test samples and their perturbed versions. See more examples in Appendix A.

True Input 1 P: A group of people are gathered together. H: There is a group here. Label: Entailment
Adversary 1 H’: There is a group there. Label: Contradiction
True Input 2 P: A female lacrosse player jumps up. H: A football player sleeps. Label: Contradiction
Adversary 2 H’: A football player sits. Label: Neutral
True Input 3 P: A man stands in a curvy corridor. H’: A man runs down a back alley. Label: Contradiction
Adversary 3 H’: A man runs down a ladder alley. Label: Neutral

(a) (b)

(c) (d)

(e) (f)

Figure 4: Inputs (left) - Adversarial exam-
ples (right, inside red boxes). MNIST: (a)-(b),
CelebA: (c)-(d), SVHN: (e)-(f). See Appendix
A for more samples with higher resolution.

Setup. We perturb the hypotheses while keeping
the premises unchanged. Similar to Zhao et al.
(2018b), we generate adversarial text at word level
using a vocabulary of 11,000 words. We also use
ARAE (Zhao et al., 2018a) for word embedding,
and a CNN for sentence embedding. To generate
perturbed hypotheses, we experiment with three
decoders: (i.) pφ is a transpose CNN, (ii.) pφ is a
language model, and (iii.) we use the decoder of a
pre-trained ARAE (Zhao et al., 2018a) model. We
detail their configurations in Appendix B.

The transpose CNN generates more meaningful
hypotheses than the language model and the pre-
trained ARAE model although we notice some-
times changes in the meaning of the original hy-
potheses. We discuss these limitations more in
details in Appendix A. Henceforward, we use the
transpose CNN to generate perturbed hypotheses.
See Table 1 for examples of generated hypotheses.

Attack Success Rate (ASR). We attack an SNLI
classifier that has a test accuracy of 89.42%. Given
a pair (P, H) with label l, its perturbed version (P,
H’) is adversarial if the classifier assigns the label
l to (P, H), (P, H’) is manually found to retain the
label of (P, H), and such label differs from the one
the classifier assigns to (P, H’). To compute the
ASR, we run a pilot study which we detail next.

7.3 MANUAL EVALUATION

To validate our adversarial examples and assess
their soundness vs. Song et al. (2018), Zhao et al.
(2018b) and PGD (Madry et al., 2017) adversarial
examples, we carry out a pilot study whereby we
ask three yes-or-no questions: (Q1) are the adver-
sarial examples semantically sound?, (Q2) are the
true inputs similar perceptually or in meaning to their adversarial counterparts? and (Q3) are there
any interpretable visual cues in the adversarial images that support their misclassification?

Pilot Study I. For MNIST, we pick 50 images (5 for each digit), generate their clean reconstructions,
and their adversarial examples against a 40-step PGD ResNet with εattack ≤ 0.3. We target also the
certified defenses of Raghunathan et al. (2018) and Kolter & Wong (2017) with εattack = 0.1. For
SVHN, we carry out a similar pilot study and attack a 40-step PGD ResNet. For CelebA, we pick 50
images (25 for each gender), generate adversarial examples against a 40-step PGD ResNet. For all
three datasets, we hand the images and the questionnaire to 10 human subjects for manual evaluation.
We report in Table 2 the results for MNIST and, in Table 4, the results for CelebA and SVHN.

We hand the same questionnaire to the subjects with 50 MNIST images, their clean reconstructions,
and the adversarial examples we craft with our method. We also handed the adversarial examples
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generated using Song et al. (2018), Zhao et al. (2018b) and PGD methods. We ask the subjects
to assess the soundness of the adversarial examples based on the semantic features (e.g., shape,
distortion, contours, class) of the real MNIST images. We report the evaluation results in Table 3.

Table 2: Pilot Study I. Note that against the certified defenses of Raghunathan et al. (2018) and Kolter
& Wong (2017), Song et al. (2018) achieved (manual) success rates of 86.6% and 88.6%.

QUESTIONNAIRE
MNIST

40-STEP PGD RAGHUNATHAN ET AL. (2018) KOLTER & WONG (2017)

QUESTION Q1: YES 100 % 100 % 100 %
QUESTION Q2: YES 100 % 100 % 100 %
QUESTION Q3: NO 100 % 100 % 100 %

Table 3: Pilot Study I. The adversarial images are generated against the adversarially trained Resnets.

QUESTIONNAIRE OUR METHOD SONG ET AL. (2018) ZHAO ET AL. (2018B) PGD

QUESTION Q1: YES 100 % 85.9 % 97.8 % 76.7 %
QUESTION Q2: YES 100 % 79.3 % 89.7 % 66.8 %
QUESTION Q3: NO 100 % 71.8 % 94.6 % 42.7 %

Pilot Study II - SNLI. Using the transpose CNN as decoder pφ, we generate adversarial hypotheses
for the SNLI sentence pairs with the premises kept unchanged. Then, we select manually 20 pairs of
clean sentences (premise, hypothesis), and adversarial hypotheses. We also pick 20 pairs of sentences
and adversarial hypotheses generated this time using Zhao et al. (2018b)’s method against their
treeLSTM classifier. We choose this classifier as its accuracy (89.04%) is close to ours (89.42%).
We carry out a pilot study where we ask two yes-or-no questions: (Q1) are the adversarial samples
semantically sound? and (Q2) are they similar to the true inputs? We report the results in Table 4.

Table 4: Pilot Studies. † Some adversarial images and original ones were found blurry to evaluate.

QUESTIONNAIRE
PILOT I PILOT II - SNLI

CELEBA SVHN OUR METHOD ZHAO ET AL. (2018B)

QUESTION Q1: YES 100 % 95† % 83.7 % 79.6%
QUESTION Q2: YES 100 % 97 % 60.4 % 56.3%
QUESTION Q3: NO 100 % 100 % N/A N/A

Takeaways. As reflected in the pilot study and the attack success rates, we achieve good results in
the image and text classification tasks. In the image classification task, we achieve better results than
PGD and Song et al. (2018) both against the certified and non-certified defenses. The other takeaway
is: although the targeted certified defenses are resilient to adversarial examples crafted in the input
space, we can achieve manual success rates higher than the certified rates when the examples are
constructed in the latent space, and the search region is unrestricted. In text classification, we achieve
better results than Zhao et al. (2018b) when using their treeLSTM classifier as target model.

8 CONCLUSION

Many approaches in adversarial attacks fail to enforce the semantic relatedness that ought to exist
between original inputs and their adversarial counterparts. Motivated by this fact, we developed a
method tailored to ensuring that the original inputs and their adversarial examples exhibit similar
semantics by conducting the search for adversarial examples in the manifold of the inputs. Our success
rates against certified and non-certified defenses known to be resilient to traditional adversarial attacks
illustrate the effectiveness of our method in generating sound and strong adversarial examples.

Although in the text classification task we achieved good results and generated informative adversarial
sentences, as the transpose CNN gets more accurate — recall that it is partly trained to minimize a
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reconstruction error —, generating adversarial sentences that are different from the input sentences
and yet preserve their semantic meaning becomes more challenging. In the future, we intend to build
upon the recent advances in text understanding to improve our text generation process.

REFERENCES

Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and Kevin Murphy.
An information-theoretic analysis of deep latent-variable models. CoRR, abs/1711.00464, 2017.
URL http://arxiv.org/abs/1711.00464.

David Alvarez-Melis and Tommi S. Jaakkola. A causal framework for explaining the predictions of
black-box sequence-to-sequence models. CoRR, abs/1707.01943, 2017. URL http://arxiv.
org/abs/1707.01943.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. CoRR, abs/1707.07397, 2017. URL http://arxiv.org/abs/1707.07397.

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. CoRR, abs/1802.00420, 2018. URL
http://arxiv.org/abs/1802.00420.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. CoRR, abs/1508.05326, 2015. URL
http://arxiv.org/abs/1508.05326.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. CoRR,
abs/1608.04644, 2016. URL http://arxiv.org/abs/1608.04644.

Liqun Chen, Shuyang Dai, Yunchen Pu, Chunyuan Li, Qinliang Su, and Lawrence Carin. Sym-
metric Variational Autoencoder and Connections to Adversarial Learning. arXiv e-prints, art.
arXiv:1709.01846, Sep 2017.

Kimberly A. Dukes. GramSchmidt Process. American Cancer Society, 2014. ISBN 9781118445112.
doi: 10.1002/9781118445112.stat05633. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781118445112.stat05633.

Luca Falorsi, Pim de Haan, Tim R. Davidson, Nicola De Cao, Maurice Weiler, Patrick Forré, and
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APPENDIX A: DISCUSSION & ADVERSARIAL EXAMPLES

Posterior Formulation. Similar to (Kim et al., 2018), we formalize p(θ|D) for every θ ∈ Θ as:

p(θ|D) ∝ p(D|θ)p(θ) =
∏
(x,z̃)

p(z̃|x; θ)p(θ) where x ∈ D and z̃ is generated using Algorithm 1

=
∏
(x,z̃)

N (z̃|fW (x), γ−1)N (W |fη(ξ), λ−1)Gamma(γ|a, b)Gamma(λ|a′, b′)

For every θ′ ∈ Θ′, we compute p(θ′|D) the same way. Note that θ (resp. θ′) consists in fact of
network parameters W ∼ fη (resp. W ′ ∼ fη′) and scaling parameters γ and λ. For notational
simplicity, we used before the shorthands θ ∼ fη and θ′ ∼ fη′ . The parameters γ and λ are initially
sampled from a Gamma distribution and updated as part of the learning process. In our experiments,
we set the hyper-parameters of the Gamma distributions a and b to 1.0 and 0.1, and a′ and b′ to 1.0.

Latent Noise Level. We measure the amount of noise ∆ we inject into the latent codes of our inputs
by computing the average spectral norm of the latent codes of their adversarial counterparts. The
input changes are captured by our reconstruction loss which is bounded by εattack (see Equation 6). For
MNIST, CelebA, and SVHN, the noise levels are 0.004± 0.0003, 0.026± 0.005, and 0.033± 0.008.
The takeaways are: (i.) they are imperceptible, and (ii.) the distributions that Θ and Θ′ follow are
similar. To validate (ii.), we compute the marginals of clean and perturbed latent codes randomly
sampled from Θ and Θ′. As shown in Figure 5, the marginal distributions overlap relatively well.

(a) MNIST (b) CelebA (c) SVHN (d) SNLI

Figure 5: Marginal distributions of clean (blue) and perturbed (red) latent codes over few minibatches.

Discussion. We discuss the choices pertaining to the design of our approach and their limitations.
We discuss also the evaluation process of our approach against (Song et al., 2018; Zhao et al., 2018b).

Space/Time Complexity. As noted in (Jimenez Rezende & Mohamed, 2015), the Gaussian prior
assumption in VAEs might be too restrictive to generate meaningful enough latent codes (Zhao
et al., 2017). To relax this assumption and produce informative and diverse latent codes, we used
SVGD. To generate manifold preserving adversarial examples, we proposed GBSM. Both SVGD and
GBSM maintain a set of M model instances. As ensemble methods, both inherit the shortcomings
of ensemble models most notably in space/time complexity. Thus, instead of maintaining 2 ∗M
model instances, we maintain only fη and fη′ from which we sample these model instances. We
experimented with M set to 2, 5, 10 and 15. As M increases, we notice some increase in sample
quality at the expense of longer runtimes. The overhead that occurs as M takes on larger values
reduces, however, drastically during inference as we need only fη′ to sample the model instances
θ′m ∈ Θ′ in order to construct adversarial examples. One way to alleviate the overhead during training
is to enforce weight-sharing for θm ∈ Θ and θ′m ∈ Θ′. However, we did not try this out.

Preserving Textual Meaning. To construct adversarial text, we experimented with three architecture
designs for the decoder pφ: (i.) a transpose CNN, (ii.) a language model, and (iii.) the decoder
of a pre-trained ARAE model (Zhao et al., 2018a). The transpose CNN generates more legible
text than the other two designs although we notice sometimes some changes in meaning in the
generated adversarial examples. Adversarial text generation is challenging in that small perturbations
in the latent codes can go unnoticed at generation whereas high noise levels can render the outputs
nonsensical. To produce adversarial sentences that faithfully preserve the meaning of the inputs, we
need good sentence generators, like GPT (Radford, 2018), trained on large corpora. Training such
large language models requires however time and resources. Furthermore, in our experiments, we
considered only a vocabulary of size 10,000 words and sentences of length no more than 10 words to
align our evaluation with the experimental choices of (Zhao et al., 2018b).
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Measuring Perceptual Quality is desirable when the method relied upon to generate adversarial
examples uses GANs or VAEs; both known to produce often samples of limited quality. As Song
et al. (2018) perform unrestricted targeted attacks — their adversarial examples might totally differ
from the true inputs — and Zhao et al. (2018b) do not target certified defenses, a fair side-by-side
comparison of our results and theirs using metrics like mutual information or frechet inception
distance, seems unachievable. Thus, to measure the quality of our adversarial examples and compare
our results with (Song et al., 2018) and (Zhao et al., 2018b), we carried out the pilot study.

ADVERSARIAL IMAGES: CELEBA

Table 5: CelebA samples, their clean reconstructions, and adversarial examples (in red boxes).

INPUTS

CLEAN
RECON-

STRUCTIONS

ADVERSARIAL
EXAMPLES
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ADVERSARIAL IMAGES: SVHN

Here, we provide few random samples of non-targeted adversarial examples we generate with our
approach on the SVHN dataset as well as the clean reconstructions.

Table 6: SVHN. Images in red boxes are all adversarial.

INPUTS

CLEAN
RECON-

STRUCTIONS

ADVERSARIAL
EXAMPLES
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ADVERSARIAL IMAGES: MNIST

Here, we provide few random samples of non-targeted adversarial examples we generate with
our approach on the MNIST dataset as well as the clean reconstructions. Both the reconstructed
and the adversarial images look realistic although we notice some artifacts on the latter. Basic
Iterative Methods (Kurakin et al., 2016), among others, also suffer from this. Because the marginal
distributions of the latent codes of the inputs and their perturbed versions overlap, we conclude that
indeed the adversarial images preserve the manifold of the inputs (see Figure 5).

Table 7: MNIST. Images in red boxes are all adversarial.

INPUTS

CLEAN
RECON-

STRUCTION

ADVERSARIAL
EXAMPLES
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ADVERSARIAL TEXT: SNLI

Table 8: Examples of adversarially generated hypotheses with the true premises kept unchanged.

TRUE INPUT 1
P: A white dog is running through the snow.
H: A CAT STALKING THROUGH THE SNOW.
Label: CONTRADICTION

ADVERSARY H’: A CAT HOPS IN THE SNOW. Label: NEUTRAL

TRUE INPUT 2
P: Three dogs are searching for something outside.
H: THERE ARE FOUR DOGS.
Label: CONTRADICTION

ADVERSARY H’: THERE ARE FIVE DOGS. Label: NEUTRAL

TRUE INPUT 3 P: A man waterskis while attached to a parachute.
H: A BULLDOZER KNOCKS DOWN A HOUSE.
Label: CONTRADICTION

ADVERSARY H’: A BULLDOZER KNOCKS DOWN A CAGE. Label: ENTAILMENT

TRUE INPUT 4
P: A little girl playing with flowers.
H: A LITTLE GIRL PLAYING WITH A BALL.
Label: CONTRADICTION

ADVERSARY H’: A LITTLE GIRL IS RUNNING WITH A BALL. Label: NEUTRAL

TRUE INPUT 5
P: People stand in front of a chalkboard.
H: PEOPLE STAND OUTSIDE A PHOTOGRAPHY STORE.
Label: CONTRADICTION

ADVERSARY H’: PEOPLE STAND IN FRONT OF A WORKSHOP. Label: NEUTRAL

TRUE INPUT 6
P: Musician entertaining his audience.
H: THE WOMAN PLAYED THE TRUMPET.
Label: CONTRADICTION

ADVERSARY
H’: THE WOMAN PLAYED THE DRUMS. Label: ENTAILMENT

TRUE INPUT 7
P: A kid on a slip and slide.
H: A SMALL CHILD IS INSIDE EATING THEIR DINNER.
Label: CONTRADICTION

ADVERSARY H’: A SMALL CHILD IS EATING THEIR DINNER. Label: ENTAILMENT

TRUE INPUT 8
P: A deer jumping over a fence.
H: A DEER LAYING IN THE GRASS. Label: CONTRADICTION

ADVERSARY
H’: A PONY LAYING IN THE GRASS.
Label: ENTAILMENT

TRUE INPUT 9
P: Two vendors are on a curb selling balloons.
H: THREE PEOPLE SELL LEMONADE BY THE ROAD SIDE.
Label: CONTRADICTION

ADVERSARY
H’: THREE PEOPLE SELL ARTWORK BY THE ROAD SIDE.
Label: ENTAILMENT
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Table 9: Some generated examples deemed adversarial by our method that are not.

TRUE INPUT 1
P: A man is operating some type of a vessel.
H: A DOG IN KENNEL.
Label: CONTRADICTION

GENERATED H’: A DOG IN DISGUISE. Label: CONTRADICTION

TRUE INPUT 2
P: A skier.
H: SOMEONE IS SKIING.
Label: ENTAILMENT

GENERATED H’: MAN IS SKIING. Label: NEUTRAL

TRUE INPUT 3 P: This is a bustling city street.
H: THERE ARE A LOT OF PEOPLE WALKING ALONG.
Label: ENTAILMENT

GENERATED H’: THERE ARE A LOT GIRLS WALKING ALONG. Label: NEUTRAL

TRUE INPUT 4
P: A soldier is looking out of a window.
H: THE PRISONER’S CELL IS WINDOWLESS.
Label: CONTRADICTION

GENERATED H’: THE PRISONER’S HOME IS WINDOWLESS. Label: CONTRADICTION

TRUE INPUT 5
P: Four people sitting on a low cement ledge.
H: THERE ARE FOUR PEOPLE.
Label: ENTAILMENT

GENERATED H’: THERE ARE SEVERAL PEOPLE. Label: NEUTRAL

TRUE INPUT 6
P: Three youngsters shovel a huge pile of snow.
H: CHILDREN WORKING TO CLEAR SNOW.
Label: ENTAILMENT

GENERATED
H’: KIDS WORKING TO CLEAR SNOW. Label: NEUTRAL

TRUE INPUT 7
P: Boys at an amphitheater.
H: BOYS AT A SHOW.
Label: ENTAILMENT

GENERATED H’: BOYS IN A SHOW. Label: NEUTRAL

TRUE INPUT 8
P: Male child holding a yellow balloon.
H: BOY HOLDING BIG BALLOON. Label: NEUTRAL

GENERATED
H’: BOY HOLDING LARGE BALLOON.
Label: NEUTRAL

TRUE INPUT 9
P: Women in their swimsuits sunbathe on the sand.
H: WOMEN UNDER THE SUN ON THE SAND.
Label: ENTAILMENT

GENERATED
H’: FAMILY UNDER THE SUN ON THE SAND.
Label: NEUTRAL
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APPENDIX B: EXPERIMENTAL SETTINGS

Table 10: Model Configurations + SNLI Classifier + Hyper-parameters.

NAME CONFIGURATION

RECOGNITION NETWORKS

fη
INPUT DIM: 50,

HIDDEN LAYERS: [60, 70],
OUTPUT DIM: NUM WEIGHTS & BIASES IN θm

f ′η
INPUT DIM: 50,

HIDDEN LAYERS: [60, 70],
OUTPUT DIM: NUM WEIGHTS & BIASES IN θ′m

MODEL INSTANCES

PARTICLES θm

INPUT DIM: 28× 28 (MNIST),
64× 64 (CELEBA),

32× 32 (SVHN), 300 (SNLI)
HIDDEN LAYERS: [40, 40]

OUTPUT DIM (LATENT CODE): 100

PARAMETERS θ′m

INPUT DIM: 28× 28 (MNIST),
64× 64 (CELEBA),

32× 32 (SVHN), 100 (SNLI)
HIDDEN LAYERS: [40, 40]

OUTPUT DIM (LATENT CODE): 100

FEATURE EXTRACTOR

INPUT DIM: 28× 28× 1 (MNIST), 64× 64× 3 (CELEBA),
32× 32× 3 (SVHN), 10× 100 (SNLI)

HIDDEN LAYERS: [40, 40]
OUTPUT DIM: 28× 28 (MNIST), 64× 64 (CELEBA),

32× 32 (SVHN), 100 (SNLI)

DECODER

TRANSPOSE CNN
FOR CELEBA & SVHN: [FILTERS: 64, STRIDE: 2,

KERNEL: 5]× 3
FOR SNLI: [FILTERS: 64, STRIDE: 1,

KERNEL: 5]× 3

LANGUAGE
MODEL

VOCABULARY SIZE: 11,000 WORDS
MAX SENTENCE LENGTH: 10 WORDS

SNLI CLASSIFIER INPUT DIM: 200, HIDDEN LAYERS: [100, 100, 100], OUTPUT DIM: 3

LEARNING RATES ADAM OPTIMIZER (δ = 5.10−4), α = 10−3, β = β′ = 10−2

MORE SETTINGS BATCH SIZE: 64, INNER-UPDATES: 3, TRAINING EPOCHS: 1000, M = 5
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