
Under review as a conference paper at ICLR 2019

HAPPIER: HIERARCHICAL POLYPHONIC MUSIC
GENERATIVE RNN

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating polyphonic music with coherent global structure is a major challenge
for automatic composition algorithms. The primary difficulty arises due to the in-
efficiency of models to recognize underlying patterns beneath music notes across
different levels of time scales and remain long-term consistency while compos-
ing. Hierarchical architectures can capture and represent learned patterns in dif-
ferent temporal scales and maintain consistency over long time spans, and this
corresponds to the hierarchical structure in music. Motivated by this, focusing on
leveraging the idea of hierarchical models and improve them to fit the sequence
modeling problem, our paper proposes HAPPIER: a novel HierArchical Poly-
Phonic musIc gEnerative RNN. In HAPPIER, A higher ‘measure level’ learns cor-
relations across measures and patterns for chord progressions, and a lower ‘note
level’ learns a conditional distribution over the notes to generate within a measure.
The two hierarchies operate at different clock rates: the higher one operates on a
longer timescale and updates every measure, while the lower one operates on a
shorter timescale and updates every unit duration. The two levels communicate
with each other, and thus the entire architecture is trained jointly end-to-end by
back-propagation. HAPPIER, profited from the strength of the hierarchical struc-
ture, generates polyphonic music with long-term dependencies compared to the
state-of-the-art methods.

1 INTRODUCTION

Drawing inspiration from aesthetic intuition and expressing it as music with specific domain knowl-
edge, composing is a marvelous artistic process for musicians. Due to this uniqueness of composing,
although not a new idea, automatic composing remains to be a challenging task. Recent advances
in machine learning, especially in sequence generative models, have greatly enabled novel insights
into algorithmic music generation and music data analysis (Boulanger-Lewandowski et al., 2012;
Gu et al., 2015; Chung et al., 2015; Chu et al., 2016; Engel et al., 2017; Hadjeres et al., 2017; Teng
et al., 2017; Jaques et al., 2017; Yu & Varshney, 2017; Thickstun et al., 2017; Roberts et al., 2018).

However, recognizing underlying patterns beneath music across different levels of temporal abstrac-
tion while training, and remaining long-term consistency while composing, is still a fundamental
challenge for automatic composition algorithms. Thus, most approaches suffer from the lack of co-
herent global structure of music generated: it lacks consistent theme or structure, and appears to be
random and wandering (Oord et al., 2016) (p. 8).

Designing hierarchical architectures to operate on different spatial and temporal resolution scales to
ameliorate these problems in machine learning algorithms is not a new idea, and has achieved great
success in various fields, including but not limited in the field of computer vision (Lazebnik et al.,
2006), reinforcement learning (Dayan & Hinton, 1993; Kulkarni et al., 2016), and in the field of
sequence modeling (Hihi & Bengio, 1995; Koutnik et al., 2014; Serban et al., 2016; Mehri et al.,
2017).

We note that these kinds of hierarchical architectures correspond with the hierarchical nature of
music: the composing of movements and phrases, the progression of chords, and the organization
of notes within a measure lie on different temporal resolution levels, from the lowest to the highest.
Although sharing some common traits, the patterns of them differ from each other significantly.
We present an analogy in writing articles here as an illustration: when writing an article, a mature

1



Under review as a conference paper at ICLR 2019

writer begins from organizing key ideas of each paragraph given the central idea of the whole article,
then he arranges the progression of sentences within a paragraph conditioning on the main idea of
the paragraph, and finally writes down words in each sentence given the idea of the sentence with
respect to grammar rules. Although the whole article is a unified entity, the patterns and rules within
each level, however, vary from each other. Thus, an efficient learning algorithm should be aware of
this difference and is supposed to utilize it.

Motivated by this intuition, we propose HAPPIER: a novel HierArchical PolyPhonic musIc gEnera-
tive RNN model to generate music sequentially. For simplicity, we model music as two hierarchies:
the higher level measure hierarchy and the lower level note hierarchy. We also assume that every
measure in music is specified with a corresponding chord while composing. Under these assump-
tions, HAPPIER contains a higher-level LSTM (Hochreiter & Schmidhuber, 1997), a variant of
RNN, learning correlations across measures and patterns for chord progressions, and a lower-level
LSTM learning a conditional distribution over notes. The two hierarchies operate at different clock
rates: the higher one updates every measure, while the lower one updates every unit duration. The
higher level LSTM gives guidance over the lower level by projecting conditioning vectors to the
lower one, meanwhile the lower level LSTM summarizes its cell states to the higher level LSTM
once a measure in order to keep the latter one informed. The entire architecture is trained jointly
end-to-end by back-propagation.

HAPPIER, gained strength from hierarchical architectures, generates polyphonic music which main-
tains long-term dependencies, and performs better in listening tests compared to the state-of-the-art
methods. Music samples generated by HAPPIER are provided in Appendix C.

2 RELATED WORKS

Designing automatic music generation algorithms always attracts great attention from researchers,
even dating back to the 80s last century. Attempts include to compose with handcrafted constraints
(Ebcioglu, 1988) and to design machine learning algorithms, neural networks for instance (Todd,
1989). However, approaches merely with handcrafted rules generally have unsatisfactory perfor-
mance because of the lack of variety in the music they generate. Thus, we adopt the learning
approach in this work. Analyzing music data also gains great attention in the machine learning
community especially recently (Yu & Varshney, 2017; Thickstun et al., 2017; Roberts et al., 2018).
These works contribute much either in the perspective of datasets or learning hidden representations
for music.

There are two approaches to generate music with respect to the type of data representation: one
approach generating raw audio (Oord et al., 2016; Engel et al., 2017), and the other composing music
notes, e.g. in the form of MIDI or piano-roll (Boulanger-Lewandowski et al., 2012; Hadjeres et al.,
2017; Jaques et al., 2017). Our work belongs to the latter one. In this approach, most works consider
monophonic composing (Jaques et al., 2017), but advances have also been made recently in the
more challenging polyphonic composing task (Chu et al., 2016). In the light of data representation,
our work is similar to the work of Yang et al. (2017), both including simplified polyphonic MIDI
representations of a chord track and a melody track.

Recent advances in deep learning have enabled great progress in automatic music generation. Dif-
ferent network architectures and training algorithms have been designed, including Convolutional
Neural Networks (Oord et al., 2016; Engel et al., 2017; Yang et al., 2017), Recurrent Neural Net-
works (RNN) (Boulanger-Lewandowski et al., 2012; Chu et al., 2016; Hadjeres et al., 2017; Jaques
et al., 2017; Liang et al., 2017; Lim et al., 2017; Mehri et al., 2017; Teng et al., 2017; Ycart & Bene-
tos, 2017), and Generative Adversarial Nets (Goodfellow et al., 2014) (Yang et al., 2017). However,
as most of these works have pointed out themselves, generating music with coherent global structure
still remains to be a major challenge for automatic composition algorithms. This difficulty may be
primarily attributed to the inefficiency of models to learn long-term consistency in music, which is
actually one of the fundamental challenges for most of sequence modeling tasks.

Some of these works have made attempts to tackle this problem. Dating back to the 90s last century,
the LSTM (Hochreiter & Schmidhuber, 1997) architecture was proposed to encourage long-term
memory in recurrent networks by presenting shortcut connections with gating functions. However,
the melodies it generates still remain somewhat random (Jaques et al., 2017) (p. 1). Oord et al.

2



Under review as a conference paper at ICLR 2019

(2016) designed dilated causal convolution architectures to enlarge the receptive fields of neurons
in CNN to learn long-range consistencies. However, the generated samples still vary second-to-
second (p. 8). Jaques et al. (2017) regarded the generating process as a sequential decision making
process, and adopted a reinforcement learning approach, combining data prior with domain specific
knowledge as reinforcement learning rewards to enforce coherent global structures. However, this
approach requires handcrafted knowledge of musical theories into the system, which may involve
heavy efforts. Hadjeres et al. (2017) gained strength from pseudo-Gibbs sampling to iteratively
tune generated chorales. However, since iterative approaches are much more slower than sequential
approaches, this method has a rather low generating efficiency.

This paper adopt a hierarchical approach to ameliorate the problem. Our work is related to Sam-
pleRNN (Mehri et al., 2017), although their work does not consider automatic music composition
problem. Similar to their approach, we use LSTM and different parts of our model run at different
clock rates. Unlike their work, the higher hierarchy of our model operates on measures and chords,
instead of on frames (p. 2), which are mere concatenations of inputs of the lower hierarchy. We
remark that with the higher hierarchy operating on measures and chords, our model can explicitly
utilize the knowledge that there are significant differences between the patterns of chord progres-
sions and that of note organizations. Besides, if the number of hierarchies increases, the approach
of simply concatenating the inputs of the lower hierarchies as the inputs of the higher ones may not
be tractable, instead, some kind of dimension reduction is expected. In this way, we can regard our
input of chords as a summarizing of the notes within each measure. Our approach also differs from
SampleRNN in that summarizing paths from the lower hierarchy to the higher one is included. The
benefits of these paths will be discussed and measured in Section 3 and Section 4.

Chu et al. (2016) also design hierarchical LSTM architectures for composing. However, they first
generate melodies, and then accompany the melody with chords and percussion. Instead, we recom-
mend inversely, which is delighted by the remark of Teng et al. (2017) (p. 2) that ‘This mimics how
classical western Roman-numeral harmony is taught to beginners: only after one has the underlying
chord sequence, can one explain the melody in terms of chord tones, passing tones, appoggiaturas,
and so on.’ Besides, although hierarchical, their approach does not have different parts of the model
operating on various temporal resolution scales, and thus still cannot efficiently model the structures
of music at very different scales, which finally leads to the lack of hierarchical temporal structure in
the music they generate (Teng et al., 2017) (p. 1). While although Teng et al. (2017) first generate
chords, and then generate melody based on chords, their model is not end-to-end, and the subparts
of their model also do not operate on different clock rates.

3 METHOD

In this paper, we propose a hierarchical LSTM (Hochreiter & Schmidhuber, 1997) model HAPPIER
for polyphonic music generation. For simplicity, we show a two-level hierarchical LSTM as an
example of the model. The model can also be easily generalized to multiple hierarchies in the same
way as the two-level model is constructed. Here, we represent polyphonic music as a combination of
a chord track and a melody track, where every measure in the music is specified with a corresponding
chord. An example of the representation is shown in Figure 1.

Figure 1: An example of the described representation of polyphonic music. The piece of music is
extracted from the Nottingham Dataset (Boulanger-Lewandowski et al., 2012).

In previous works focusing on monophonic music generation e.g. (Jaques et al., 2017), composition
is generally modeled as a sequential process of generating notes. The process is modeled by a
conditional distribution over the next note ni to generate given all the previous notes generated so far,
a deep approximator f parametrized by θ, e.g. an LSTM, is used to approximate this distribution:

3



Under review as a conference paper at ICLR 2019

Figure 2: Illustration of the HAPPIER architecture. The loop of the recurrent net is unrolled over
time for visualization, and the figure contains 3 measure level loops. A higher-level LSTM learns
correlations between measures, and a lower-level LSTM learns a conditional distribution over the
notes to generate in each measure given conditioning vectors from the measure level LSTM as
guidance. The lower level LSTM summarizes its cell states to the higher one once a measure in order
to keep the latter one informed. Different hierarchies operate on different timescales and different
temporal resolution levels. The entire architecture is trained jointly end-to-end by back-propagation.

p(ni|n1, n2, .., ni−1) ≈ f(n1, n2, .., ni;θ) (1)

However, music composition is challenging to these approaches because music contains structures
at very different scales, and thus melody generated by approaches with mere LSTM tends to be
wandering and random, and lack of coherent global structures (Jaques et al., 2017) (p. 1).

HAPPIER ameliorates the problem by designing end-to-end hierarchical architectures, including a
measure level LSTM and a note level LSTM. The two hierarchies operate at different clock rates:
the higher one updates every measure, while the lower one updates every unit duration.

Our formulation of the problem is similar to Equation 1, except that we also adopt a hierarchical
representation of music. We denote the chord of the i-th measure ci, the j-th note in the i-th measure
nij , the number of notes in the i-th measureNi, and the total number of measures in a piece of music
N . The process is defined by jointly modeling Equation 2 via hierarchical LSTM:

p(nij |n11, n12, .., ni(j−1); c1, c2, .., ci−1)

p(ci|n11, n12, .., n(i−1)Ni−1
; c1, c2, .., ci−1)

(2)

Figure 2 gives an overview of the architecture. Details of the architecture will be presented in Section
3.1 and Section 3.2.

In correspondence with this hierarchical architecture, we use the following way to represent music
data. The way is inspired by the work of Hadjeres et al. (2017), which aligns different tracks well
for polyphonic music data representation. In this way, notes are represented by their MIDI pitches
and time ticks denoting their beginning and holding; while chords are represented by their pitch
encodings and time ticks. Figure 3 below explains this representation method.

One-hot vectors of these representations are used for network inputs. There are 129 types of notes
and 79 types of chords in total in the Nottingham dataset (Boulanger-Lewandowski et al., 2012).
Thus, the prediction problem can be formulated into combinations of classification problems. For
simplicity, we still denote notes as n and chords as c in the following sections, rather than separating
their pitch and time tick representations. Readers may refer to Appendix B for details.

To train the classifier, the sum of cross entropy losses of chords and notes between the predicted
distribution and the actual target distribution is minimized, as shown below:

min
θ

∑
i∈{1,2,..,N}

(−ci log(p̂ci |θ) +
∑

j∈{1,2,..,Ni}

(−nij log(p̂nij
|θ))) (3)

4



Under review as a conference paper at ICLR 2019

Figure 3: Illustration of the data representation. Boxes in the same color indicate the tokens and
their corresponding encodings in the data representation. The piece of music is extracted from the
Nottingham Dataset (Boulanger-Lewandowski et al., 2012).

While during the generating process, we sample from the predicted distribution to get the next token
given all the tokens generated so far. The process is repeated iteratively to generate complete music.

3.1 NOTE LEVEL LSTM

The note level LSTM (Note Cells in Figure 2) learns patterns for note generation in the melody track.
It operates at a shorter timescale and a higher temporal resolution level. For each unit duration tij ,
its hidden states Hij and cell states Cij are updated, given the previous note ni(j−1) and previous
state vectors Hi(j−1) and Ci(j−1), together with a conditioning vector condi from the measure level
LSTM as a guidance for maintaining long-term consistency:

Hij , Cij = LSTM([Hi(j−1), Ci(j−1), ni(j−1), condi]), j 6= 1

Hij , Cij = LSTM([H(i−1)(Ni−1), C(i−1)(Ni−1), n(i−1)(Ni−1), condi]), j = 1
(4)

A conditional distribution of notes D(nij) is predicted based upon Hij :

D(nij) = Softmax(Linear(Hij)) (5)

At the end of each measure i, the note level LSTM projects a summarizing vector sumi to the
measure level LSTM based upon its current cell state CiNi

:

sumi = Sigmoid(Linear(CiNi)) (6)

3.2 MEASURE LEVEL LSTM

The measure level LSTM (Measure Cells in Figure 2) learns long-term correlations between mea-
sures and also learns patterns of chord progressions. It operates at a longer timescale and a lower
temporal resolution level. For each measure ti, its hidden states Hi and cell states Ci are updated,
given the previous chord ci and its previous state vectors Hi−1 and Ci−1, together with a summa-
rizing vector sumi−1 from the note level LSTM to keep it informed:

Hi, Ci = LSTM([Hi−1, Ci−1, ci−1, sumi−1]), i 6= 1 (7)

A conditional distribution of chords D(ci) is predicted from Hi:

D(ci) = Softmax(Linear(Hi)) (8)

A conditioning vector condi for the note level LSTM is generated from its current hidden state Hi,
which is identical within a measure i:

condi = Sigmoid(Linear(Hi)) (9)

5



Under review as a conference paper at ICLR 2019

3.3 HAPPIER: INTEGRATING HIERARCHIES

Intuitively, the two hierarchies can operate on different levels, and can thus make it possible to
recognize underlying patterns beneath music across different levels of temporal abstraction. Besides,
since the measure level LSTM does not update frequently given its clock rate, it retains long-term
correlations, and can thus generate chords with long-term dependencies and guide the note level
LSTM to remain consistency over a long range of time steps by projecting conditioning vectors to
it.

The two hierarchies interact mutually via the conditioning paths and the summarizing paths. This is
also one of the major differences between HAPPIER and SampleRNN (Mehri et al., 2017).

The measure level LSTM guides the note level LSTM to remain long-term consistency by projecting
conditioning vectors to it, meanwhile the summarizing paths keep the measure level LSTM informed
of events happened downward in the note level LSTM.

The summarizing paths and the conditioning paths as an entity can also be seen as shortcut con-
nections for the note level LSTM. It is known that deep architectures with long forwarding paths
involving too many multiplication operations generally suffer from the risk of gradient vanishing
or explosion during back-propagation (Pascanu et al., 2012). While shortcut connections can en-
courage proper back-propagation supervision signals by skipping these multiplication operations,
which is the main reason for the outperforming of LSTM (Hochreiter & Schmidhuber, 1997) over
conventional RNNs and ResNet (He et al., 2016) over non-residual deep CNNs.

In an LSTM architecture, the gates decide whether to let all the information pass through, when a
gated shortcut is ‘closed’, the functions in the network represent non-short-cut functions, while when
a gate is ‘open’, all the information just passes through, and gradients can thus be back-propagated
constantly to keep correlations exist between neighboring tokens as well as between ones apart
distantly.

However, the decision of whether to ‘open’ these gates is learned in an LSTM architecture, and
tokens hundreds of time steps away generally lose their correlations because of too many times of
‘closing’ of these gates. On the contrary, HAPPIER always supports short-cut connections. Consider
two note cells hundreds of unit durations away, despite their distance in the note level, it takes only
several measures to correlate the two cells in the measure level LSTM: information first goes upward
via the summarizing path, then after several time-steps in the measure level LSTM, which has slower
clock rates, it can get downward back to the note level LSTM via the conditioning path. Thus, the
cooperation of the summarizing paths and the conditioning paths will encourage HAPPIER to learn
coherent global structures in music.

Note that SampleRNN (Mehri et al., 2017) does not support these kinds of skip connections, be-
cause it does not support information from the lower level LSTM to get upward. Also, without
summarizing paths we proposed, the measure level LSTM is modeling p(ci|c1, c2, .., ci−1) instead
of Equation 2, which means that chords are generated regardless of previous notes generated.

4 EXPERIMENTS

Quantitative and qualitative results are shown in this section to measure HAPPIER’s sequence mod-
eling performance. We process around 1000 polyphonic tunes into our data representation format
shown in Figure 3 from the publicly available Nottingham dataset (Boulanger-Lewandowski et al.,
2012) for training and validation. Preprocessing and learning details are presented in Appendix B.

4.1 QUANTITATIVE ANALYSIS FOR PREDICTION

We first evaluate HAPPIER’s sequence modeling capability in a prediction setting. We measure
HAPPIER’s prediction Negative Log Likelihood (NLL) of the next token given all previous tokens.
This does not sufficiently reflect whether HAPPIER can learn long-term consistency over music, but
still serves as a quantitative comparison experiment to show how each part of it works.

In this setting, we construct three models for comparison experiments: an LSTM Baseline (only the
note level LSTM), a HAPPIER model with only conditioning path, and another HAPPIER model

6



Under review as a conference paper at ICLR 2019

with both conditioning and summarizing paths. The three models share exactly the same set of
architecture details and hyper-parameters. The prediction NLL of the pitch and tick (Figure 3) output
by the note level LSTM of the three models are shown in Table 1. Chord NLL is not compared,
for the baseline LSTM without hierarchy cannot handle the hierarchical data structure of both a
chord track and a melody track. The result indicates that HAPPIER performs better for melody
track generation than the LSTM Baseline in the prediction setting, and that the improvement can be
mainly attributed to the prescence of the conditioning path.

Table 1: Prediction NLL (Validation)

Model Note Pitch NLL Note Tick NLL

LSTM Baseline 0.854 0.216
HAPPIER: Only Conditioning 0.830 0.212
HAPPIER: Conditioning + Summarizing 0.843 0.214

4.2 QUALITATIVE ANALYSIS FOR GENERATION

This Subsection gives qualitative analysis of the generated samples from HAPPIER to show that it
generates music retaining long-term consistency. Generated samples are presented in Appendix C,
Figure 4 serves as an example of them.

Figure 4: One extracted generated sample by HAPPIER. The full sample and some more samples
are presented in Appendix C.

In Figure 4, the generated tune remains in D major (e.g. given the #C and #F) globally. The
progression of chords also follows D major. The melody track returns to the tonic note of D every
a while and the chord track returns to the tonic chord correspondingly. Generated samples from
HAPPIER retain long-term consistency in this way, and we also suggest our readers to listen to the
generated samples themselves with comparison to the state-of-the-art methods to judge this 1.

1Links to the generated samples of the state-of-the-art methods are presented in Appendix A.

7



Under review as a conference paper at ICLR 2019

4.3 LISTENING TESTS

We also evaluate the performance of HAPPIER by human listening tests. We compare generated
samples by HAPPIER with those from RNN-RBM (Boulanger-Lewandowski et al., 2012), Deep-
Bach (Hadjeres et al., 2017) and SequenceTutor (Jaques et al., 2017). These three works all publish
their generated samples online (Appendix A). These publicly accessible samples are used for this
experiment. RNN-RBM is trained on similar datasets as ours, while DeepBach and Sequence Tutor
are trained on different datasets. Sequence Tutor is trained with more than 30000 MIDI files, which
are not made publicly accessible, and DeepBach is trained with 352 Bach Chorales.

We conduct AB preference tests among the generated samples of HAPPIER and those of the 3
models mentioned above. We also conduct a test between our generated samples and samples from
our training dataset. Each subject is shown a set of 4 pairs of samples, and each pair contains samples
from two different models. Subjects then choose the preferred samples or choose not to prefer to
any of them (no pref.) after listening. Our samples are rendered with GarageBand from the MIDI
files the network generates.

Subjects are also asked to give information about their musical expertise. They could choose a
category fits them best among Level 1, knowing little about music theories; Level 2, music lovers or
instrument players; and Level 3, having received training in composition. For this experiment, 179
subjects take the test, among whom 103 in Level 1, 64 in Level 2, and 12 in Level 3. Experiment
results are shown in Figure 5. Results show that HAPPIER is more auditorily pleasing compared
with the state-of-the-art approaches in machine learning community, and the generated samples from
HAPPIER can be hardly distinguished from samples from the Nottingham dataset.

Figure 5: Experiment results for the listening test. 179 subjects are involved.

5 CONCLUSION

We have proposed a novel end-to-end hierarchical polyphonic music generative RNN: HAPPIER,
which gains strength from the correspondence of its hierarchical structure and the hierarchical nature
of music. The model learns long-term correlations and performs better in listening tests compared
to the state-of-the-art methods. The work mainly focuses on the automatic composition problem,
but our contribution is not limited there. We believe the HAPPIER approach of designing hierar-
chical deep recurrent models with sub-parts of it operating on different clock rates and on different
temporal resolution levels will be promising for a number of sequence modeling applications, where
conventional approaches generally suffer from their inefficiency of learning long-range correlations.

8



Under review as a conference paper at ICLR 2019

REFERENCES

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic music generation and transcription. In Proc.
of the International conference on Machine learning (ICML), 2012.

H. Chu, R. Urtasun, and S. Fidler. Song from pi: A musically plausible network for pop music
generation. In arXiv preprint arXiv: 1611.03477, 2016.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent variable
model for sequential data. In Advances in neural information processing systems (NIPS), pp.
2980–2988, 2015.

Cuthbert, M. Scott, and A. Christopher. music21: A toolkit for computer-aided musicology and
symbolic music data. 2010.

P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems (NIPS), pp. 271–271, 1993.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

K. Ebcioglu. An expert system for harmonizing four-part chorales. Computer Music Journal, 12(3):
43–51, 1988.

J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Simonyan. Neural audio
synthesis of musical notes with wavenet autoencoders. In Proc. of the International conference
on Machine learning (ICML), 2017.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems
(NIPS), pp. 2672–2680, 2014.

S. Gu, Z. Ghahramani, and R. E. Turner. Neural adaptive sequential monte carlo. In Advances in
neural information processing systems (NIPS), pp. 2629–2637, 2015.

G. Hadjeres, F. Pachet, and F. Nielsen. Deepbach: a steerable model for bach chorales generation.
In Proc. of the International conference on Machine learning (ICML), 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

S. E. Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependencies. In
Advances in neural information processing systems (NIPS), 1995.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, pp. 1735–1780,
1997.

N. Jaques, S. Gu, D. Bahdanau, J. M. Hernandez-Lobato, R. E. Turner, and D. Eck. Sequence
tutor: Conservative fine-tuning of sequence generation models with kl-control. In Proc. of the
International conference on Machine learning (ICML), 2017.

J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A clockwork rnn. In arXiv preprint
arXiv:1402.3511, 2014.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In Advances in neural infor-
mation processing systems (NIPS), pp. 3675–3683, 2016.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid matching for recog-
nizing natural scene categories. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2006.

9



Under review as a conference paper at ICLR 2019

F. Liang, M. Gotham, M. Johnson, and J. Shotton. Automatic stylistic composition of bach chorales
with deep lstm. In International Society for Music Information Retrieval Conference (ISMIR), pp.
449–456, 2017.

H. Lim, S. Rhyu, and K. Lee. Chord generation from symbolic melody using blstm networks. In
International Society for Music Information Retrieval Conference (ISMIR), pp. 621–628, 2017.

S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and Y. Bengio. Sam-
plernn: An unconditional end-to-end neural audio generation model. In International Conference
on Learning Representations (ICLR), 2017.

A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior,
and K. Kavukcuoglu. Wavenet: A generative model for raw audio. In arXiv preprint arXiv:
1609.03499, 2016.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In
Proc. of the International Conference on Machine Learning (ICML), 2012.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A hierarchical latent vector model
for learning long-term structure in music. In Proc. of the International conference on Machine
learning (ICML), 2018.

I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Building end-to-end dialogue sys-
tems using generative hierarchical neural network models. In Proc. of the 30th AAAI Conference
on Artificial Intelligence (AAAI), 2016.

Y. Teng, A. Zhao, and C. Goudeseune. Generating nontrivial melodies for music as a service. In
International Society for Music Information Retrieval Conference (ISMIR), pp. 657–663, 2017.

John Thickstun, Zaid Harchaoui, and Sham Kakade. Learning features of music from scratch. In
International Conference on Learning Representations (ICLR), 2017.

P. M. Todd. A connectionist approach to algorithmic composition. Computer Music Journal, 13(4):
27–43, 1989.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

L. Yang, S. Chou, and Y. Yang. Midinet: A convolutional generative adversarial network for
symbolic-domain music generation. In International Society for Music Information Retrieval
Conference (ISMIR), pp. 324–331, 2017.

A. Ycart and E. Benetos. A study on lstm networks for polyphonic music sequence modelling. In
International Society for Music Information Retrieval Conference (ISMIR), pp. 421–427, 2017.

H. Yu and L. R. Varshney. Towards deep interpretability (mus-rover ii): Learning hierarchical
representations of tonal music. In International Conference on Learning Representations (ICLR),
2017.

APPENDICES

APPENDIX A: LINKS TO GENERATED SAMPLES BY THE STATE-OF-THE-ART MODELS

RNN-RBM and Nottingham Dataset (Boulanger-Lewandowski et al., 2012) :

http://www-etud.iro.umontreal.ca/˜boulanni/icml2012;

DeepBach (Hadjeres et al., 2017) :

https://sites.google.com/site/deepbachexamples;

Sequence Tutor (Jaques et al., 2017) :

goo.gl/XIYt9m;

10

http://www-etud.iro.umontreal.ca/~boulanni/icml2012
https://sites.google.com/site/deepbachexamples
goo.gl/XIYt9m


Under review as a conference paper at ICLR 2019

APPENDIX B: IMPLEMENTATION DETAILS

We process the Nottingham dataset (Boulanger-Lewandowski et al., 2012), a collection of around
1200 folk tunes with chords, instantiated from MIDI format. The tunes have an average number of
measures of 37. Most of them are composed of two tracks: a melody track and a chord track, as
shown in Figure 1. Tunes not fit into this format and tunes with rare complex time signature, 9/8 for
instance, are discarded for simplicity. Finally, 993 tunes remain as our training, validation, and test
datasets.

We discretize time with 16th notes or 32nd notes: each time tick in our model equals to the duration
of an 16th note or an 32nd note, which is called an unit duration. In this way, for example, each
measure is subdivided into 12 time ticks, for time signatures 6/8 and 3/4; or 16 time ticks, for 2/4
and 4/4.

The input of the note level LSTM n contains concatenated one-hot series of npitch, ntick, and T
(Figure 3), and the input of the measure level c is one-hot series of cpitch.

While training, the time ticks every measure is fixed as a constant 12 or 16 to simplify the training
process. To implement this, two identical networks sharing the same set of parameters are con-
structed, note cells of the first one update 12 times within the inner loop of a measure; while the
other 16 times (Figure 2), each fed with corresponding data. In the training process, teacher forcing
(Williams & Zipser, 1989) technique is adopted.

In Equation 3, we simplify the representation by integrating pitch and time-tick losses of the note
level cells, a more exact loss function is presented below:

min
θ

∑
i∈{1,2,..,N}

(−cpitchi log(p̂cpitchi
|θ)+

∑
j∈{1,2,..,Ni}

(−npitchij log(p̂npitchij
|θ)− ntickij log(p̂ntickij

|θ)))
(10)

While generating, note that the sampled token of npitch and ntick may not correspond. For instance,
consider the case that the generated npitch has changed from the previous pitch but ntick is 0,
denoting that the previous pitch should hold. When this happens, the generated ntick is adopted and
the generated npitch is thus replaced by the previous pitch to correspond with the holding.

Both the measure level and the note level LSTM have hidden state sizes of 60. The sizes of both
the conditioning vector and the summarizing vector are set to 10. Optimization is performed with
Adagrad (Duchi et al., 2011), a batch size of 16, initial learning rate of 0.7, and a stepwise learning
rate decay of 0.9 every 300 steps. Gradients are clipped to ensure the L2 norm was less than 5.0, and
weight regularization is applied with β = 2.5 × 10−5. The weights are initiated from a Gaussian
distribution N (0, 3× 10−2). The losses for the first 4 tokens of each sequence are not used to train
the model, since it cannot reasonably be expected to accurately predict them with no context (Jaques
et al., 2017). Maximum back-propagation truncated length is set to be 12 measures.

We implement HAPPIER with TensorFlow, music21 (Cuthbert et al., 2010) and MuseScore libraries.

APPENDIX C: GENERATED SAMPLES

11



Under review as a conference paper at ICLR 2019

Figure 6: Generated sample.

12



Under review as a conference paper at ICLR 2019

Figure 7: Generated sample.

13



Under review as a conference paper at ICLR 2019

Figure 8: Generated sample.

14


	Introduction
	Related Works
	Method
	Note Level LSTM
	Measure Level LSTM
	HAPPIER: Integrating Hierarchies

	Experiments
	Quantitative Analysis for Prediction
	Qualitative Analysis for Generation
	Listening Tests

	Conclusion

