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ABSTRACT

Intelligent creatures can explore their environments and learn useful skills without
supervision. In this paper, we propose “Diversity is All You Need”(DIAYN), a
method for learning useful skills without a reward function. Our proposed method
learns skills by maximizing an information theoretic objective using a maximum
entropy policy. On a variety of simulated robotic tasks, we show that this simple
objective results in the unsupervised emergence of diverse skills, such as walking
and jumping. In a number of reinforcement learning benchmark environments, our
method is able to learn a skill that solves the benchmark task despite never receiving
the true task reward. We show how pretrained skills can provide a good parameter
initialization for downstream tasks, and can be composed hierarchically to solve
complex, sparse reward tasks. Our results suggest that unsupervised discovery of
skills can serve as an effective pretraining mechanism for overcoming challenges
of exploration and data efficiency in reinforcement learning.

1 INTRODUCTION

Deep reinforcement learning (RL) has been demonstrated to effectively learn a wide range of reward-
driven skills, including playing games (Mnih et al., 2013; Silver et al., 2016), controlling robots (Gu
et al., 2017; Schulman et al., 2015b), and navigating complex environments (Zhu et al., 2017;
Mirowski et al., 2016). However, intelligent creatures can explore their environments and learn useful
skills even without supervision, so that when they are later faced with specific goals, they can use
those skills to satisfy the new goals quickly and efficiently.

Learning skills without reward has several practical applications. Environments with sparse rewards
effectively have no reward until the agent randomly reaches a goal state. Learning useful skills without
supervision may help address challenges in exploration in these environments. For long horizon tasks,
skills discovered without reward can serve as primitives for hierarchical RL, effectively shortening
the episode length. In many practical settings, interacting with the environment is essentially free, but
evaluating the reward requires human feedback (Christiano et al., 2017). Unsupervised learning of
skills may reduce the amount of supervision necessary to learn a task. While we can take the human
out of the loop by designing a reward function, it is challenging to design a reward function that
elicits the desired behaviors from the agent (Hadfield-Menell et al., 2017). Finally, when given an
unfamiliar environment, it is challenging to determine what tasks an agent should be able to learn.
Unsupervised skill discovery partially answers this question.1

Autonomous acquisition of useful skills without any reward signal is an exceedingly challenging
problem. A skill is a latent-conditioned policy that alters the state of the environment in a consistent
way. We consider the setting where the reward function is unknown, so we want to learn a set of
skills by maximizing the utility of this set. Making progress on this problem requires specifying a

∗Work done as a member of the Google AI Residency Program (g.co/airesidency).
1See videos here: https://sites.google.com/view/diayn/
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learning objective that ensures that each skill individually is distinct and that the skills collectively
explore large parts of the state space. In this paper, we show how a simple objective based on mutual
information can enable RL agents to autonomously discover such skills. These skills are useful for a
number of applications, including hierarchical reinforcement learning and imitation learning.

We propose a method for learning diverse skills with deep RL in the absence of any rewards. We
hypothesize that in order to acquire skills that are useful, we must train the skills so that they
maximize coverage over the set of possible behaviors. While one skill might perform a useless
behavior like random dithering, other skills should perform behaviors that are distinguishable from
random dithering, and therefore more useful. A key idea in our work is to use discriminability
between skills as an objective. Further, skills that are distinguishable are not necessarily maximally
diverse – a slight difference in states makes two skills distinguishable, but not necessarily diverse
in a semantically meaningful way. To combat this problem, we want to learn skills that not only
are distinguishable, but also are as diverse as possible. By learning distinguishable skills that are
as random as possible, we can “push” the skills away from each other, making each skill robust to
perturbations and effectively exploring the environment. By maximizing this objective, we can learn
skills that run forward, do backflips, skip backwards, and perform face flops (see Figure 3).

Our paper makes five contributions. First, we propose a method for learning useful skills without any
rewards. We formalize our discriminability goal as maximizing an information theoretic objective
with a maximum entropy policy. Second, we show that this simple exploration objective results in
the unsupervised emergence of diverse skills, such as running and jumping, on several simulated
robotic tasks. In a number of RL benchmark environments, our method is able to solve the benchmark
task despite never receiving the true task reward. In these environments, some of the learned skills
correspond to solving the task, and each skill that solves the task does so in a distinct manner. Third,
we propose a simple method for using learned skills for hierarchical RL and find this methods solves
challenging tasks. Four, we demonstrate how skills discovered can be quickly adapted to solve a new
task. Finally, we show how skills discovered can be used for imitation learning.

2 RELATED WORK

Previous work on hierarchical RL has learned skills to maximize a single, known, reward function
by jointly learning a set of skills and a meta-controller (e.g., (Bacon et al., 2017; Heess et al., 2016;
Dayan & Hinton, 1993; Frans et al., 2017; Krishnan et al., 2017; Florensa et al., 2017)). One problem
with joint training (also noted by Shazeer et al. (2017)) is that the meta-policy does not select “bad”
options, so these options do not receive any reward signal to improve. Our work prevents this
degeneracy by using a random meta-policy during unsupervised skill-learning, such that neither the
skills nor the meta-policy are aiming to solve any single task. A second importance difference is that
our approach learns skills with no reward. Eschewing a reward function not only avoids the difficult
problem of reward design, but also allows our method to learn task-agnostic.

Related work has also examined connections between RL and information theory (Ziebart et al.,
2008; Schulman et al., 2017; Nachum et al., 2017; Haarnoja et al., 2017) and developed maximum
entropy algorithms with these ideas Haarnoja et al. (2018; 2017). Recent work has also applied tools
from information theory to skill discovery. Mohamed & Rezende (2015) and Jung et al. (2011) use
the mutual information between states and actions as a notion of empowerment for an intrinsically
motivated agent. Our method maximizes the mutual information between states and skills, which
can be interpreted as maximizing the empowerment of a hierarchical agent whose action space is
the set of skills. Hausman et al. (2018), Florensa et al. (2017), and Gregor et al. (2016) showed that
a discriminability objective is equivalent to maximizing the mutual information between the latent
skill z and some aspect of the corresponding trajectory. Hausman et al. (2018) considered the setting
with many tasks and reward functions and Florensa et al. (2017) considered the setting with a single
task reward. Three important distinctions allow us to apply our method to tasks significantly more
complex than the gridworlds in Gregor et al. (2016). First, we use maximum entropy policies to force
our skills to be diverse. Our theoretical analysis shows that including entropy maximization in the RL
objective results in the mixture of skills being maximum entropy in aggregate. Second, we fix the
prior distribution over skills, rather than learning it. Doing so prevents our method from collapsing to
sampling only a handful of skills. Third, while the discriminator in Gregor et al. (2016) only looks at
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Algorithm 1: DIAYN
while not converged do

Sample skill z ∼ p(z) and initial state s0 ∼ p0(s)
for t← 1 to steps_per_episode do

Sample action at ∼ πθ(at | st, z) from skill.
Step environment: st+1 ∼ p(st+1 | st, at).
Compute qφ(z | st+1) with discriminator.
Set skill reward rt = log qφ(z | st+1)− log p(z)
Update policy (θ) to maximize rt with SAC.
Update discriminator (φ) with SGD.

Figure 1: DIAYN Algorithm: We update the discriminator to better predict the skill, and update the
skill to visit diverse states that make it more discriminable.

the final state, our discriminator looks at every state, which provides additional reward signal. These
three crucial differences help explain how our method learns useful skills in complex environments.

Prior work in neuroevolution and evolutionary algorithms has studied how complex behaviors can be
learned by directly maximizing diversity (Lehman & Stanley, 2011a;b; Woolley & Stanley, 2011;
Stanley & Miikkulainen, 2002; Such et al., 2017; Pugh et al., 2016; Mouret & Doncieux, 2009).
While this prior work uses diversity maximization to obtain better solutions, we aim to acquire
complex skills with minimal supervision to improve efficiency (i.e., reduce the number of objective
function queries) and as a stepping stone for imitation learning and hierarchical RL. We focus on
deriving a general, information-theoretic objective that does not require manual design of distance
metrics and can be applied to any RL task without additional engineering.

Previous work has studied intrinsic motivation in humans and learned agents. Ryan & Deci (2000);
Bellemare et al. (2016); Fu et al. (2017); Schmidhuber (2010); Oudeyer et al. (2007); Pathak et al.
(2017); Baranes & Oudeyer (2013). While these previous works use an intrinsic motivation objective
to learn a single policy, we propose an objective for learning many, diverse policies. Concurrent
work Achiam et al. (2017) draws ties between learning discriminable skills and variational autoen-
coders. We show that our method scales to more complex tasks, likely because of algorithmic
design choices, such as our use of an off-policy RL algorithm and conditioning the discriminator on
individual states.

3 DIVERSITY IS ALL YOU NEED

We consider an unsupervised RL paradigm in this work, where the agent is allowed an unsupervised
“exploration” stage followed by a supervised stage. In our work, the aim of the unsupervised stage is
to learn skills that eventually will make it easier to maximize the task reward in the supervised stage.
Conveniently, because skills are learned without a priori knowledge of the task, the learned skills can
be used for many different tasks.

3.1 HOW IT WORKS

Our method for unsupervised skill discovery, DIAYN (“Diversity is All You Need”), builds off of
three ideas. First, for skills to be useful, we want the skill to dictate the states that the agent visits.
Different skills should visit different states, and hence be distinguishable. Second, we want to use
states, not actions, to distinguish skills, because actions that do not affect the environment are not
visible to an outside observer. For example, an outside observer cannot tell how much force a robotic
arm applies when grasping a cup if the cup does not move. Finally, we encourage exploration and
incentivize the skills to be as diverse as possible by learning skills that act as randomly as possible.
Skills with high entropy that remain discriminable must explore a part of the state space far away
from other skills, lest the randomness in its actions lead it to states where it cannot be distinguished.

We construct our objective using notation from information theory: S and A are random variables
for states and actions, respectively; Z ∼ p(z) is a latent variable, on which we condition our
policy; we refer to a the policy conditioned on a fixed Z as a “skill”; I(·; ·) andH[·] refer to mutual
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information and Shannon entropy, both computed with base e. In our objective, we maximize the
mutual information between skills and states, I(S;Z), to encode the idea that the skill should control
which states the agent visits. Conveniently, this mutual information dictates that we can infer the skill
from the states visited. To ensure that states, not actions, are used to distinguish skills, we minimize
the mutual information between skills and actions given the state, I(A;Z | S). Viewing all skills
together with p(z) as a mixture of policies, we maximize the entropyH[A | S] of this mixture policy.
In summary, we maximize the following objective with respect to our policy parameters, θ:

F(θ) , I(S;Z) +H[A | S]− I(A;Z | S) (1)
= (H[Z]−H[Z | S]) +H[A | S]− (H[A | S]−H[A | S,Z])

= H[Z]−H[Z | S] +H[A | S,Z] (2)

We rearranged our objective in Equation 2 to give intuition on how we optimize it.2 The first term
encourages our prior distribution over p(z) to have high entropy. We fix p(z) to be uniform in our
approach, guaranteeing that it has maximum entropy. The second term suggests that it should be
easy to infer the skill z from the current state. The third term suggests that each skill should act as
randomly as possible, which we achieve by using a maximum entropy policy to represent each skill.
As we cannot integrate over all states and skills to compute p(z | s) exactly, we approximate this
posterior with a learned discriminator qφ(z | s). Jensen’s Inequality tells us that replacing p(z | s)
with qφ(z | s) gives us a variational lower bound G(θ, φ) on our objective F(θ) (see (Agakov, 2004)
for a detailed derivation):

F(θ) = H[A | S,Z]−H[Z | S] +H[Z]

= H[A | S,Z] + Ez∼p(z),s∼π(z)[log p(z | s)]− Ez∼p(z)[log p(z)]

≥ H[A | S,Z] + Ez∼p(z),s∼π(z)[log qφ(z | s)− log p(z)] , G(θ, φ)

3.2 IMPLEMENTATION

We implement DIAYN with soft actor critic (SAC) (Haarnoja et al., 2018), learning a policy
πθ(a | s, z) that is conditioned on the latent variable z. Soft actor critic maximizes the policy’s
entropy over actions, which takes care of the entropy term in our objective G. Following Haarnoja
et al. (2018), we scale the entropy regularizerH[a | s, z] by α. We found empirically that an α = 0.1
provided a good trade-off between exploration and discriminability. We maximize the expectation in
G by replacing the task reward with the following pseudo-reward:

rz(s, a) , log qφ(z | s)− log p(z) (3)
We use a categorical distribution for p(z). During unsupervised learning, we sample a skill z ∼ p(z)
at the start of each episode, and act according to that skill throughout the episode. The agent is
rewarded for visiting states that are easy to discriminate, while the discriminator is updated to better
infer the skill z from states visited. Entropy regularization occurs as part of the SAC update.

3.3 STABILITY

Unlike prior adversarial unsupervised RL methods (e.g., Sukhbaatar et al. (2017)), DIAYN forms a
cooperative game, which avoids many of the instabilities of adversarial saddle-point formulations.
On gridworlds, we can compute analytically that the unique optimum to the DIAYN optimization
problem is to evenly partition the states between skills, with each skill assuming a uniform stationary
distribution over its partition (proof in Appendix B). In the continuous and approximate setting,
convergence guarantees would be desirable, but this is a very tall order: even standard RL methods
with function approximation (e.g., DQN) lack convergence guarantees, yet such techniques are still
useful. Empirically, we find DIAYN to be robust to random seed; varying the random seed does not
noticeably affect the skills learned, and has little effect on downstream tasks (see Fig.s 4, 6, and 13).

4 EXPERIMENTS

In this section, we evaluate DIAYN and compare to prior work. First, we analyze the skills themselves,
providing intuition for the types of skills learned, the training dynamics, and how we avoid problematic

2While our method uses stochastic policies, note that for deterministic policies in continuous action spaces,
I(A;Z | S) = H[A | S]. Thus, for deterministic policies, Equation 2 reduces to maximizing I(S;Z).
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behavior in previous work. In the second half, we show how the skills can be used for downstream
tasks, via policy initialization, hierarchy, imitation, outperforming competitive baselines on most
tasks. We encourage readers to view videos3 and code4 for our experiments.

4.1 ANALYSIS OF LEARNED SKILLS

(a) 2D Navigation (b) Overlapping Skills (c) Training Dynamics

Figure 2: (Left) DIAYN skills in a simple navigation environment; (Center) skills can overlap if they
eventually become distinguishable; (Right) diversity of the rewards increases throughout training.

Question 1. What skills does DIAYN learn?

We study the skills learned by DIAYN on tasks of increasing complexity, ranging from point
navigation (2 dimensions) to ant locomotion (111 dimensions). We first applied DIAYN to a simple
2D navigation environment. The agent starts in the center of the box, and can take actions to directly
move its (x, y) position. Figure 2a illustrates how the 6 skills learned for this task move away from
each other to remain distinguishable. Next, we applied DIAYN to two classic control tasks, inverted
pendulum and mountain car. Not only does our approach learn skills that solve the task without
rewards, it learns multiple distinct skills for solving the task. (See Appendix D for further analysis.)

Finally, we applied DIAYN to three continuous control tasks (Brockman et al., 2016): half cheetah,
hopper, and ant. As shown in Figure 3, we learn a diverse set of primitive behaviors for all tasks. For
half cheetah, we learn skills for running forwards and backwards at various speeds, as well as skills
for doing flips and falling over; ant learns skills for jumping and walking in many types of curved
trajectories (though none walk in a straight line); hopper learns skills for balancing, hopping forward
and backwards, and diving. See Appendix D.4 for a comparison with VIME.

Question 2. How does the distribution of skills change during training?

While DIAYN learns skills without a reward function, as an outside observer, can we evaluate the
skills throughout training to understand the training dynamics. Figure 2 shows how the skills for
inverted pendulum and mountain car become increasingly diverse throughout training (Fig. 13 repeats
this experiment for 5 random seeds, and shows that results are robust to initialization). Recall that
our skills are learned with no reward, so it is natural that some skills correspond to small task reward
while others correspond to large task reward.

Question 3. Does discriminating on single states restrict DIAYN to learn skills that visit disjoint sets
of states?

Our discriminator operates at the level of states, not trajectories. While DIAYN favors skills that
do not overlap, our method is not limited to learning skills that visit entirely disjoint sets of states.
Figure 2b shows a simple experiment illustrating this. The agent starts in a hallway (green star), and
can move more freely once exiting the end of the hallway into a large room. Because RL agents are
incentivized to maximize their cumulative reward, they may take actions that initially give no reward
to reach states that eventually give high reward. In this environment, DIAYN learns skills that exit
the hallway to make them mutually distinguishable.

3https://sites.google.com/view/diayn/
4https://github.com/ben-eysenbach/sac/blob/master/DIAYN.md
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Figure 3: Locomotion skills: Without any reward, DIAYN discovers skills for running, walking,
hopping, flipping, and gliding. It is challenging to craft reward functions that elicit these behaviors.

Question 4. How does DIAYN differ from Variational Intrinsic Control (VIC) (Gregor et al., 2016)?

Figure 4: Why use a fixed prior? In contrast to
prior work, DIAYN continues to sample all skills
throughout training.

The key difference from the most similar prior
work on unsupervised skill discovery, VIC, is
our decision to not learn the prior p(z). We
found that VIC suffers from the “Matthew Ef-
fect” Merton (1968): VIC’s learned prior p(z)
will sample the more diverse skills more fre-
quently, and hence only those skills will receive
training signal to improve. To study this, we
evaluated DIAYN and VIC on the half-cheetah
environment, and plotting the effective number
of skills (measured as exp(H[Z])) throughout
training (details and more figures in Appendix E.2). The figure to the right shows how VIC quickly
converges to a setting where it only samples a handful of skills. In contrast, DIAYN fixes the
distribution over skills, which allows us to discover more diverse skills.

4.2 HARNESSING LEARNED SKILLS

The perhaps surprising finding that we can discover diverse skills without a reward function creates a
building block for many problems in RL. For example, to find a policy that achieves a high reward
on a task, it is often sufficient to simply choose the skill with largest reward. Three less obvious
applications are adapting skills to maximize a reward, hierarchical RL, and imitation learning.

4.2.1 ACCELERATING LEARNING WITH POLICY INITIALIZATION

After DIAYN learns task-agnostic skills without supervision, we can quickly adapt the skills to solve
a desired task. Akin to the use of pre-trained models in computer vision, we propose that DIAYN can
serve as unsupervised pre-training for more sample-efficient finetuning of task-specific policies.

Question 5. Can we use learned skills to directly maximize the task reward?

We take the skill with highest reward for each benchmark task and further finetune this skill using the
task-specific reward function. We compare to a “random initialization” baseline that is initialized
from scratch. Our approach differs from this baseline only in how weights are initialized. We
initialize both the policy and value networks with weights learned during unsupervised pretraining.
Although the critic networks learned during pretraining corresponds to the pseudo-reward from the
discriminator (Eq. 3) and not the true task reward, we found empirically that the pseudo-reward was
close to the true task reward for the best skill, and initializing the critic in addition to the actor further
sped up learning. Figure 5 shows both methods applied to half cheetah, hopper, and ant. We assume
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Figure 5: Policy Initialization: Using a DIAYN skill to initialize weights in a policy accelerates
learning, suggesting that pretraining with DIAYN may be especially useful in resource constrained
settings. Results are averages across 5 random seeds.

that the unsupervised pretraining is free (e.g., only the reward function is expensive to compute)
or can be amortized across many tasks, so we omit pretraining steps from this plot. On all tasks,
unsupervised pretraining enables the agent to learn the benchmark task more quickly.

4.2.2 USING SKILLS FOR HIERARCHICAL RL

In theory, hierarchical RL should decompose a complex task into motion primitives, which may be
reused for multiple tasks. In practice, algorithms for hierarchical RL can encounter many problems:
(1) each motion primitive reduces to a single action (Bacon et al., 2017), (2) the hierarchical policy
only samples a single motion primitive (Gregor et al., 2016), or (3) all motion primitives attempt to
do the entire task. In contrast, DIAYN discovers diverse, task-agnostic skills, which hold the promise
of acting as a building block for hierarchical RL.

Question 6. Are skills discovered by DIAYN useful for hierarchical RL?

We propose a simple extension to DIAYN for hierarchical RL, and find that simple algorithm outper-
forms competitive baselines on two challenging tasks. To use the discovered skills for hierarchical
RL, we learn a meta-controller whose actions are to choose which skill to execute for the next k steps
(100 for ant navigation, 10 for cheetah hurdle). The meta-controller has the same observation space
as the skills.

Figure 6: Hierarchical RL

As an initial test, we applied the hierarchical RL
algorithm to a simple 2D point navigation task
(details in Appendix C.2). Figure 6 illustrates
how the reward on this task increases with the
number of skills; error bars show the standard
deviation across 5 random seeds. To ensure that
our goals were not cherry picked, we sampled 25
goals evenly from the state space, and evaluated
each random seed on all goals. We also compared to Variational Information Maximizing Exploration
(VIME) (Houthooft et al., 2016). Note that even the best random seed from VIME significantly
under-performs DIAYN. This is not surprising: whereas DIAYN learns a set of skills that effectively
partition the state space, VIME attempts to learn a single policy that visits many states.

Figure 7: Challenging tasks for hierarchical RL:
(Left) Cheetah Hurdle; (Right) Ant Navigation

Next, we applied the hierarchical algorithm to
two challenging simulated robotics environment.
On the cheetah hurdle task, the agent is rewarded
for bounding up and over hurdles, while in the
ant navigation task, the agent must walk to a set
of 5 waypoints in a specific order, receiving only
a sparse reward upon reaching each waypoint.
The sparse reward and obstacles in these envi-
ronments make them exceedingly difficult for
non-hierarchical RL algorithms. Indeed, state of the art RL algorithms that do not use hierarchies
perform poorly on these tasks. Figure 8 shows how DIAYN outperforms state of the art on-policy
RL (TRPO (Schulman et al., 2015a)), off-policy RL (SAC (Haarnoja et al., 2018)), and exploration
bonuses (VIME). This experiment suggests that unsupervised skill learning provides an effective
mechanism for combating challenges of exploration and sparse rewards in RL.
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Figure 8: DIAYN for Hierarchical RL: By learning a meta-controller to compose skills learned by
DIAYN, cheetah quickly learns to jump over hurdles and ant solves a sparse-reward navigation task.

Question 7. How can DIAYN leverage prior knowledge about what skills will be useful?

If the number of possible skills grows exponentially with the dimension of the task observation, one
might imagine that DIAYN would fail to learn skills necessary to solve some tasks. While we found
that DIAYN does scale to tasks with more than 100 dimensions (ant has 111), we can also use a
simple modification to bias DIAYN towards discovering particular types of skills. We can condition
the discriminator on only a subset of the observation space, or any other function of the observations.
In this case, the discriminator maximizes E[log qφ(z | f(s))]. For example, in the ant navigation task,
f(s) could compute the agent’s center of mass, and DIAYN would learn skills that correspond to
changing the center of mass. The “DIAYN+prior” result in Figure 8 (right) shows how incorporating
this prior knowledge can aid DIAYN in discovering useful skills and boost performance on the
hierarchical task. (No other experiments or figures in this paper used this prior.) The key takeaway
is that while DIAYN is primarily an unsupervised RL algorithm, there is a simple mechanism for
incorporating supervision when it is available. Unsurprisingly, we perform better on hierarchical
tasks when incorporating more supervision.

4.2.3 IMITATING AN EXPERT

Expert
trajectories

DIAYN 
imitations

Figure 9: Imitating an expert: DIAYN imitates an expert standing upright, flipping, and faceplanting,
but fails to imitate a handstand.

Question 8. Can we use learned skills to imitate an expert?

Aside from maximizing reward with finetuning and hierarchical RL, we can also use learned skills
to follow expert demonstrations. One use-case is where a human manually controls the agent to
complete a task that we would like to automate. Simply replaying the human’s actions fails in
stochastic environments, cases where closed-loop control is necessary. A second use-case involves an
existing agent with a hard coded, manually designed policy. Imitation learning replaces the existing
policy with a similar yet differentiable policy, which might be easier to update in response to new
constraints or objectives. We consider the setting where we are given an expert trajectory consisting
of states, without actions, defined as τ∗ = {(si)}1≤i≤N . Our goal is to obtain a feedback controller
that will reach the same states. Given the expert trajectory, we use our learned discriminator to
estimate which skill was most likely to have generated the trajectory. This optimization problem,
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which we solve for categorical z by enumeration, is equivalent to an M-projection (Bishop, 2016):

ẑ = arg max
z

Πst∈τ∗qφ(z | st)

We qualitatively evaluate this approach to imitation learning on half cheetah. Figure 9 (left) shows
four imitation tasks, three of which our method successfully imitates. We quantitatively evaluate this
imitation method on classic control tasks in Appendix G.

5 CONCLUSION

In this paper, we present DIAYN, a method for learning skills without reward functions. We show
that DIAYN learns diverse skills for complex tasks, often solving benchmark tasks with one of the
learned skills without actually receiving any task reward. We further proposed methods for using the
learned skills (1) to quickly adapt to a new task, (2) to solve complex tasks via hierarchical RL, and
(3) to imitate an expert. As a rule of thumb, DIAYN may make learning a task easier by replacing the
task’s complex action space with a set of useful skills. DIAYN could be combined with methods for
augmenting the observation space and reward function. Using the common language of information
theory, a joint objective can likely be derived. DIAYN may also more efficiently learn from human
preferences by having humans select among learned skills. Finally, the skills produced by DIAYN
might be used by game designers to allow players to control complex robots and by artists to animate
characters.

Acknowledgements: We’d like to thank JD Co-Reyes and Andrew Liu for insightful discussions,
and our anonymous reviewers for their thoughtful feedback and suggestions.
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A PSEUDO-REWARD

The log p(z) term in Equation 3 is a baseline that does not depend on the policy parameters θ, so
one might be tempted to remove it from the objective. We provide a two justifications for keeping
it. First, assume that episodes never terminate, but all skills eventually converge to some absorbing
state (e.g., with all sensors broken). At this state, the discriminator cannot distinguish the skills,
so its estimate is log q(z | s) = log(1/N), where N is the number of skills. For practical reasons,
we want to restart the episode after the agent reaches the absorbing state. Subtracting log(z) from
the pseudo-reward at every time step in our finite length episodes is equivalent to pretending that
episodes never terminate and the agent gets reward log(z) after our “artificial” termination. Second,
assuming our discriminator qφ is better than chance, we see that qφ(z | s) ≥ p(z). Thus, subtracting
the log p(z) baseline ensures our reward function is always non-negative, encouraging the agent to
stay alive. Without this baseline, an optimal agent would end the episode as soon as possible.5

B OPTIMUM FOR GRIDWORLDS

For simple environments, we can compute an analytic solution to the DIAYN objective. For example,
consider a N ×N gridworld, where actions are to move up/down/left/right. Any action can be taken
in any state, but the agent will stay in place if it attempts to move out of the gridworld. We use (x, y)
to refer to states, where x, y ∈ {1, 2, · · · , N}.
For simplicity, we assume that, for every skill, the distribution of states visited exactly equals that
skill’s stationary distribution over states. To clarify, we will use πz to refer to the policy for skill z.
We use ρπz

to indicate skill z’s stationary distribution over states, and ρ̂πz
as the empirical distribution

over states within a single episode. Our assumption is equivalent to saying
ρπz

(s) = ρ̂πz
(s) ∀s ∈ S

One way to ensure this is to assume infinite-length episodes.

We want to show that a set of skills that evenly partitions the state space is the optimum of the DIAYN
objective for this task. While we will show this only for the 2-skill case, the 4 skill case is analogous.

SKILL 1

SKILL 2

(a) Optimum Skills for Gridworld with 2 Skills
(b) Policy for one of the optimal skills. The agent stays
in place when it attempts to leave the gridworld.

Figure 10: Optimum for Gridworlds: For gridworld environments, we can compute an analytic
solution to the DIAYN objective.

The optimum policies for a set of two skills are those which evenly partition the state space. We will
show that a top/bottom partition is one such (global) optima. The left/right case is analogous.
Lemma B.1. A pair of skills with state distributions given below (and shown in Figure 10) are an
optimum for the DIAYN objective with no entropy regularization (α = 0).

ρπ1(x, y) =
2

N2
δ(y ≤ N/2) and ρπ2(x, y) =

2

N2
δ(y > N/2) (4)

5In some environments, such as mountain car, it is desirable for the agent to end the episode as quickly as
possible. For these types of environments, the log p(z) baseline can be removed.
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Before proving Lemma B.1, we note that there exist policies that achieve these stationary distributions.
Figure 10b shows one such policy, were each arrow indicates a transition with probability 1

4 . Note
that when the agent is in the bottom row of yellow states, it does not transition to the green states,
and instead stays in place with probability 1

4 . Note that the distribution in Equation 4 satisfies the
detailed balance equations (Murphy, 2012).

Proof. Recall that the DIAYN objective with no entropy regularization is:

−H[Z | S] +H[Z]

Because the skills partition the states, we can always infer the skill from the state, soH[Z | S] = 0.
By construction, the prior distribution overH[Z] is uniform, soH[Z] = log(2) is maximized. Thus,
a set of two skills that partition the state space maximizes the un-regularized DIAYN objective.

Next, we consider the regularized objective. In this case, we will show that while an even partition
is not perfectly optimal, it is “close” to optimal, and its “distance” from optimal goes to zero as the
gridworld grows in size. This analysis will give us additional insight into the skills preferred by the
DIAYN objective.
Lemma B.2. A pair of skills with state distributions given given in Equation 4 achieve an DIAYN
objective within a factor of O(1/N) of the optimum, where N is the gridworld size.

Proof. Recall that the DIAYN objective with no entropy regularization is:

H[A | S,Z]−H[Z | S] +H[Z]

We have already computed the second two terms in the previous proof: H[Z | S] = 0 and
H[Z] = log(2). For computing the first term, it is helpful to define the set of “border states” for a
particular skill as those that do not neighbor another skill. For skill 1 defined in Figure 10 (colored
yellow), the border states are: {(x, y) | y = 4}. Now, computing the first term is straightforward:

H[A | S,Z] =
2

N2

(
(N/2− 1)N︸ ︷︷ ︸
non-border states

log(4) + N︸︷︷︸
border states

3

4
log(4)

)

=
2 log(4)

N2

(
1

2
N2 − 1

4
N

)
= log(4)(1− 1

2N
)

Thus, the overall objective is within log(4)
2N of optimum.

>
(a)

>
(b)

Figure 11: The DIAYN objective prefers skills that (Left) partition states into sets with short borders
and (Right) which correspond to bottleneck states.

Note that the term for maximum entropy over actions (H[A | S,Z]) comes into conflict with the
term for discriminability (−H[Z | S]) at states along the border between two skills. Everything else
being equal, this conflict encourages DIAYN to produce skills that have small borders, as shown in
Figure 11. For example, in a gridworld with dimensions N < M , a pair of skills that split along the
first dimension (producing partitions of size (N,M/2)) would achieve a larger (better) objective than
skills that split along the second dimension. This same intuition that DIAYN seeks to minimize the
border length between skills results in DIAYN preferring partitions that correspond to bottleneck
states (see Figure 11b).
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C EXPERIMENTAL DETAILS

In our experiments, we use the same hyperparameters as those in Haarnoja et al. (2018), with one
notable exception. For the Q function, value function, and policy, we use neural networks with 300
hidden units instead of 128 units. We found that increasing the model capacity was necessary to
learn many diverse skills. When comparing the “skill initialization” to the “random initialization” in
Section 4.2, we use the same model architecture for both methods. To pass skill z to the Q function,
value function, and policy, we simply concatenate z to the current state st. As in Haarnoja et al.
(2018), epochs are 1000 episodes long. For all environments, episodes are at most 1000 steps long,
but may be shorter. For example, the standard benchmark hopper environment terminates the episode
once it falls over. Figures 2 and 5 show up to 1000 epochs, which corresponds to at most 1 million
steps. We found that learning was most stable when we scaled the maximum entropy objective
(H[A | S,Z] in Eq. 1) by α = 0.1. We use this scaling for all experiments.

C.1 ENVIRONMENTS

Most of our experiments used the following, standard RL environments (Brockman et al., 2016):
HalfCheetah-v1, Ant-v1, Hopper-v1, MountainCarContinuous-v0, and InvertedPendulum-v1. The
simple 2D navigation task used in Figures 2a and 6 was constructed as follows. The agent starts in
the center of the unit box. Observations s ∈ [0, 1]2 are the agent’s position. Actions a ∈ [−0.1, 0.1]2

directly change the agent’s position. If the agent takes an action to leave the box, it is projected to the
closest point inside the box.

The cheetah hurdle environment is a modification of HalfCheetah-v1, where we added boxes with
shape H = 0.25m,W = 0.1m,D = 1.0m, where the width dimension is along the same axis as the
cheetah’s forward movement. We placed the boxes ever 3 meters, start at x = −1m.

The ant navigation environment is a modification of Ant-v1. To improve stability, we follow Pong
et al. (2018) and lower the gear ratio of all joints to 30. The goals are the corners of a square, centered
at the origin, with side length of 4 meters: [(2, 2), (2,−2), (−2,−2), (−2, 2), (2, 2)]. The ant starts
at the origin, and receives a reward of +1 when its center of mass is within 0.5 meters of the correct
next goal. Each reward can only be received once, so the maximum possible reward is +5.

C.2 HIERARCHICAL RL EXPERIMENT

For the 2D navigation experiment shown in Figure 6, we first learned a set of skills on the point
environment. Next, we introduced a reward function rg(s) = −‖s − g‖22 penalizing the distance
from the agent’s state to some goal, and applied the hierarchical algorithm above. In this task, the
DIAYN skills provided sufficient coverage of the state space that the hierarchical policy only needed
to take a single action (i.e., choose a single skill) to complete the task.

14



Published as a conference paper at ICLR 2019

D MORE ANALYSIS OF DIAYN SKILLS

D.1 TRAINING OBJECTIVES

Figure 12: Objectives: We plot the two terms from our objective (Eq. 1) throughout training. While
the entropy regularizer (blue) quickly plateaus, the discriminability term (orange) term continues to
increase, indicating that our skills become increasingly diverse without collapsing to deterministic
policies. This plot shows the mean and standard deviation across 5 seeds for learning 20 skills in half
cheetah environment. Note that log2(1/20) ≈ −3, setting a lower bound for log qφ(z | s).

To provide further intuition into our approach, Figure 12 plots the two terms in our objective
throughout training. Our skills become increasingly diverse throughout training without converging
to deterministic policies.

Figure 13: We repeated the experiment from Figure 2 with 5 random seeds to illustrate the robustness
of our method to random seed.

To illustrate the stability of DIAYN to random seed, we repeated the experiment in Figure 2 for 5
random seeds. Figure 13 illustrates that the random seed has little effect on the training dynamics.

D.2 EFFECT OF ENTROPY REGULARIZATION

Question 9. Does entropy regularization lead to more diverse skills?

α = 0.01 α = 1 α = 10

To answer this question, we apply our method
to a 2D point mass. The agent controls the ori-
entation and forward velocity of the point, with
is confined within a 2D box. We vary the en-
tropy regularization α, with larger values of α
corresponding to policies with more stochastic
actions. With small α, we learn skills that move
large distances in different directions but fail to explore large parts of the state space. Increasing α
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makes the skills visit a more diverse set of states, which may help with exploration in complex state
spaces. It is difficult to discriminate skills when α is further increased.

D.3 DISTRIBUTION OVER TASK REWARD

(a) Hopper (b) Half Cheetah (c) Ant

Figure 15: Task reward of skills learned without reward: While our skills are learned without the
task reward function, we evaluate each with the task reward function for analysis. The wide range of
rewards shows the diversity of the learned skills. In the hopper and half cheetah tasks, many skills
achieve large task reward, despite not observing the task reward during training. As discussed in prior
work (Henderson et al., 2017; Duan et al., 2016), standard model-free algorithms trained directly on
the task reward converge to scores of 1000 - 3000 on hopper, 1000 - 5000 on cheetah, and 700 - 2000
on ant.

In Figure 15, we take the skills learned without any rewards, and evaluate each of them on the
standard benchmark reward function. We compare to random (untrained) skills. The wide distribution
over rewards is evidence that the skills learned are diverse. For hopper, some skills hop or stand
for the entire episode, receiving a reward of at least 1000. Other skills aggressively hop forwards
or dive backwards, and receive rewards between 100 and 1000. Other skills fall over immediately
and receive rewards of less than 100. The benchmark half cheetah reward includes a control penalty
for taking actions. Unlike random skills, learned skills rarely have task reward near zero, indicating
that all take actions to become distinguishable. Skills that run in place, flop on their nose, or do
backflips receive reward of -100. Skills that receive substantially smaller reward correspond to
running quickly backwards, while skills that receive substantially larger reward correspond to running
forward. Similarly, the benchmark ant task reward includes both a control penalty and a survival
bonus, so random skills that do nothing receive a task reward near 1000. While no single learned
skill learns to run directly forward and obtain a task reward greater than 1000, our learned skills run
in different patterns to become discriminable, resulting in a lower task reward.

D.4 EXPLORATION

Question 10. Does DIAYN explore effectively in complex environments?

We apply DIAYN to three standard RL benchmark environments: half-cheetah, hopper, and ant. In all
environments, we learn diverse locomotion primitives, as shown in Figure 3. Despite never receiving
any reward, the half cheetah and hopper learn skills that move forward and achieve large task reward
on the corresponding RL benchmarks, which all require them to move forward at a fast pace. Half
cheetah and hopper also learn skills that move backwards, corresponding to receiving a task reward
much smaller than what a random policy would receive. Unlike hopper and half cheetah, the ant is
free to move in the XY plane. While it learns skills that move in different directions, most skills move
in arcs rather than straight lines, meaning that we rarely learn a single skill that achieves large task
reward on the typical task of running forward. In the appendix, we visualize the objective throughout
training.

In Figure 16, we evaluate all skills on three reward functions: running (maximize X coordinate),
jumping (maximize Z coordinate) and moving (maximize L2 distance from origin). For each skill,
DIAYN learns some skills that achieve high reward. We compare to single policy trained with a
pure exploration objective (VIME (Houthooft et al., 2016)). Whereas previous work (e.g., Pathak
et al. (2017); Bellemare et al. (2016); Houthooft et al. (2016)) finds a single policy that explores well,
DIAYN optimizes a collection of policies, which enables more diverse exploration.
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Figure 16: Exploration: We take DIAYN skills learned without a reward function, and evaluate
on three natural reward functions: running, jumping, and moving away from the origin. For all
tasks, DIAYN learns some skills that perform well. In contrast, a single policy that maximizes an
exploration bonus (VIME) performs poorly on all tasks.

E LEARNING p(z)

We used our method as a starting point when comparing to VIC (Gregor et al., 2016) in Section 4.2.
While p(z) is fixed in our method, we implement VIC by learning p(z). In this section, we describe
how we learned p(z), and show the effect of learning p(z) rather than leaving it fixed.

E.1 HOW TO LEARN p(z)

We choose p(z) to optimize the following objective, where pz(s) is the distribution over states
induced by skill s:

H[S,Z] = H[Z]−H[Z | S]

=
∑
z

−p(z) log p(z) +
∑
z

Es∼pz(s) [log p(z | s)]

=
∑
z

p(z)
(
Es∼pz(s) [log p(z | s)]− log p(z)

)
For clarity, we define ptz(s) as the distribution over states induced by skill z at epoch t, and define
`t(z) as an approximation of E[log p(z | s)] using the policy and discriminator from epoch t:

`t(z) , Es∼ptz(s)[log qt(z | s)]

Noting that p(z) is constrained to sum to 1, we can optimize this objective using the method of
Lagrange multipliers. The corresponding Lagrangian is

L(p) =
∑
z

p(z) (`t(z)− log p(z)) + λ

(∑
z

p(z)− 1

)

whose derivative is

∂L
∂p(z)

=��p(z)

(
−1

��p(z)

)
+ `t(z)− log p(z) + λ

= `t(z)− log p(z) + λ− 1

Setting the derivative equal to zero, we get

log p(z) = `t(z) + λ− 1

and finally arrive at

p(z) ∝ e`t(z)
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Figure 17: Effect of learning p(z): We plot the effective number of skills that are sampled from
the skill distribution p(z) throughout training. Note how learning p(z) greatly reduces the effective
number on inverted pendulum and mountain car. We show results from 3 random seeds for each
environment.

Figure 18: Learning p(z) with varying number of skills: We repeat the experiment in Figure 4 for
varying sizes of z. Regardless of the size of z, learning p(z) causes the effective number of skills
to drop to less than 10. The two subplots show the same data (Left) on a linear scale and (Right)
logarithmic scale. We plot the mean and standard deviation across 3 random seeds.

E.2 EFFECT OF LEARNING p(z)

In this section, we briefly discuss the effect of learning p(z) rather than leaving it fixed. To study the
effect of learning p(z), we compared the entropy of p(z) throughout training. When p(z) is fixed, the
entropy is a constant (log(50) ≈ 3.9). To convert nats to a more interpretable quantity, we compute
the effective number of skills by exponentiation the entropy:

effective num. skills , eH[Z]

Figure 17 shows the effective number of skills for half cheetah, inverted pendulum, and mountain car.
Note how the effective number of skills drops by a factor of 10x when we learn p(z). This observation
supports our claim that learning p(z) results in learning fewer diverse skills. Figure 18 is a repeat
of the experiment in Figure 17, where we varying the dimension of z. Note that the dimension of
z equals the maximum number of skills that the agent could learn. We observe that the effective
number of skills plummets throughout training, even when using a high-dimensional vector for z.

F VISUALIZING LEARNED SKILLS

F.1 CLASSIC CONTROL TASKS

In this section, we visualize the skills learned for inverted pendulum and mountain car without a
reward. Not only does our approach learn skills that solve the task without rewards, it learns multiple
distinct skills for solving the task. Figure 19 shows the X position of the agent across time, within
one episode. For inverted pendulum (Fig. 19a), we plot only skills that solve the task. Horizontal
lines with different X coordinates correspond to skills balancing the pendulum at different positions
along the track. The periodic lines correspond to skills that oscillate back and forth while balancing
the pendulum. Note that skills that oscillate have different X positions, amplitudes, and periods. For
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(a) Inverted Pendulum (b) Mountain Car

Figure 19: Visualizing Skills: For every skill, we collect one trajectory and plot the agent’s X
coordinate across time. For inverted pendulum (top), we only plot skills that balance the pendulum.
Note that among balancing skills, there is a wide diversity of balancing positions, control frequencies,
and control magnitudes. For mountain car (bottom), we show skills that achieve larger reward
(complete the task), skills with near-zero reward, and skills with very negative reward. Note that
skills that solve the task (green) employ varying strategies.

Figure 20: Half cheetah skills: We show skills learned by half-cheetah with no reward.

mountain car (Fig. 19b), skills that climb the mountain employ a variety of strategies for to do so.
Most start moving backwards to gather enough speed to summit the mountain, while others start
forwards, then go backwards, and then turn around to summit the mountain. Additionally, note that
skills differ in when the turn around and in their velocity (slope of the green lines).

F.2 SIMULATED ROBOT TASKS

Figures 20, 21, and 22 show more skills learned without reward.
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Figure 21: Hopper Skills: We show skills learned by hopper with no reward.
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Figure 22: Ant skills: We show skills the ant learns without any supervision. Ant learns (top row) to
move right, (middle row) to move left, (bottom row, left to right) to move up, to move down, to flip
on its back, and to rotate in place.
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Figure 23: Imitating an expert: Across 600 imitation tasks, we find our method more closely
matches the expert than all baselines.

G IMITATION LEARNING

Given the expert trajectory, we use our learned discriminator to estimate which skill was most likely
to have generated the trajectory:

ẑ = arg max
z

Πst∈τ∗qφ(z | st)

As motivation for this optimization problem, note that each skill induces a distribution over states,
pz , p(s | z). We use p∗ to denote the distribution over states for the expert policy. With a fixed
prior distribution p(z) and a perfect discriminator qφ(z | s) = p(z | s), we have p(s | z) ∝ qφ(z | s)
as a function of z. Thus, Equation G is an M-projection of the expert distribution over states onto the
family of distributions over states, P = {pz}:

arg min
pz∈P

D(p∗ || pz) (5)

For clarity, we omit a constant that depends only on p∗. Note that the use of an M-projection,
rather than an I-projection, helps guarantee that the retrieved skill will visit all states that the expert
visits (Bishop, 2016). In our experiments, we solve Equation 5 by simply iterating over skills.

G.1 IMITATION LEARNING EXPERIMENTS

The “expert” trajectories are actually generated synthetically in these experiments, by running a
different random seed of our algorithm. A different seed is used to ensure that the trajectories are not
actually produced by any of the currently available skills. Of course, in practice, the expert trajectories
might be provided by any other means, including a human. For each expert trajectory, we retrieve
the closest DIAYN skill ẑ using Equation 4.2.3. Evaluating qφ(ẑ | τ∗) gives us an estimate of the
probability that the imitation will match the expert (e.g., for a safety critical setting). This quantity is
useful for predicting how accurately our method will imitate an expert before executing the imitation
policy. In a safety critical setting, a user may avoid attempting tasks where this score is low. We
compare our method to three baselines. The “low entropy” baseline is a variant on our method with
lower entropy regularization. The “learned p(z)” baseline learns the distribution over skills. Note
that Variational Intrinsic Control (Gregor et al., 2016) is a combination of the “low entropy” baseline
and the “learned p(z)” baseline. Finally, the “few skills” baseline learns only 5 skills, whereas all
other methods learn 50. Figure 23 shows the results aggregated across 600 imitation tasks. The
X-axis shows the discriminator score, our estimate for how well the imitation policy will match the
expert. The Y-axis shows the true distance between the trajectories, as measured by L2 distance
in state space. For all methods, the distance between the expert and the imitation decreases as the
discriminator’s score increases, indicating that the discriminator’s score is a good predictor of task
performance. Our method consistently achieves the lowest trajectory distance among all methods.
The “low entropy” baseline is slightly worse, motivating our decision to learn maximum entropy
skills. When imitating tasks using the “few skills” baseline, the imitation trajectories are even further
from the expert trajectory. This is expected – by learning more skills, we obtain a better “coverage”
over the space of skills. A “learn p(z)” baseline that learns the distribution over skills also performs
poorly. Recalling that Gregor et al. (2016) is a combination of the “low entropy” baseline and the
“learn p(z)” baseline, this plot provides evidence that using maximum entropy policies and fixing the
distribution for p(z) are two factors that enabled our method to scale to more complex tasks.
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