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ABSTRACT

State-of-the-art performances on language comprehension tasks are achieved by
huge language models pre-trained on massive unlabeled text corpora, with very
light subsequent fine-tuning in a task-specific supervised manner. It seems the pre-
training procedure learns a very good common initialization for further training on
various natural language understanding tasks, such that only few steps need to be
taken in the parameter space to learn each task. In this work, using Bidirectional
Encoder Representations from Transformers (BERT) as an example, we verify this
hypothesis by showing that task-specific fine-tuned language models are highly
close in parameter space to the pre-trained one. Taking advantage of such obser-
vations, we further show that the fine-tuned versions of these huge models, having
on the order of 108 floating-point parameters, can be made very computationally
efficient. First, fine-tuning only a fraction of critical layers suffices. Second, fine-
tuning can be adequately performed by learning a binary multiplicative mask on
pre-trained weights, i.e. by parameter-sparsification. As a result, with a single
effort, we achieve three desired outcomes: (1) learning to perform specific tasks,
(2) saving memory by storing only binary masks of certain layers for each task,
and (3) saving compute on appropriate hardware by performing sparse operations
with model parameters.

1 INTRODUCTION

One very puzzling fact about overparameterized deep neural networks is that sheer increases in
dimensionality of the parameter space seldom make stochastic gradient-based optimization more
difficult. Given an effective network architecture reflecting proper inductive biases, deeper and/or
wider networks take just about the same, if not a lower, number of training iterations to converge,
a number often by orders of magnitude smaller than the dimensionality of the parameter space.
For example, ResNet-18 (parameter count 11.7M) and ResNet-152 (parameter count 60.2M) both
train to converge, at similar convergence rates, in no more than 600K iterations on Imagenet (He
et al., 2015). Meaningful optimization seems to happen in only a very low-dimensional parameter
subspace, viz. the span of those relatively few weight updates, with its dimensionality not ostensibly
scaling with the model size. In other words, the network seems already perfectly converged along
most of the parameter dimensions at initialization, suggesting that training only marginally alters a
high-dimensional parameter configuration.

This phenomenon is epitomized in fine-tuning of pre-trained models. Pre-training is a, often unsu-
pervised, learning procedure that yields a good common initialization for further supervised learning
of various downstream tasks. The better a pre-trained model is, the fewer iterations are required on
average to fine-tune it to perform specific tasks, resulting in fine-tuned models hypothetically closer 1

to the pre-trained one in parameter space. However, better pre-trained models are, almost always,
larger models (Hestness et al., 2017), and nowhere is this trend more prominent than recent pre-
trained language models that achieved state-of-the-art natural language understanding performance,
e.g. GPT-2 (Radford et al., 2019) has 1.5B parameters.

Thus, a problem naturally arises hand-in-hand with an obvious hint to its solution: as pre-trained
models get larger, on the one hand, computation of each fine-tuned model becomes more expensive

1 This vague notion of closeness, viz. separation by few gradient update steps in the parameter space, will
be made explicit later in the text.
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in terms of both memory and compute for inference, while on the other hand, greater closeness
between the pre-trained and fine-tuned models in the parameter space prescribes a higher degree of
computational redundancy that could be potentially avoided. Additionally, there might exist more
computationally efficient fine-tuned networks that are not necessarily close to, but cheaply attainable
from, the pre-trained parameters, which are shared across all tasks.

In this study, we seek to address these questions, using Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) and the General Language Understanding Evaluation
(GLUE) benchmark tasks (Wang et al., 2018) as a working example.

We first found that the fine-tuned and pre-trained parameters are both L1-close and angular-close in
parameter space, consistent with the small number of fine-tuning iterations separating them. Next,
we demonstrated that there also exist good fine-tuned models that are L0-close (i.e. having a small
number of different components) to the pre-trained one. Further, we showed that there exist good
fine-tuned parameters that are L0-small (i.e. sparse, or having a large fraction of zero components).
Finally, we successfully found fine-tuned language models that are both L0-small and L0-close to
the pre-trained models.

We remark the practical implications of these constraints. By forcing fine-tuned parameters to be
L0-close to the pre-trained ones, one only needs to store a small number of different weights per
task, in addition to the common pre-trained weights, substantially saving parameter memory. By
forcing fine-tuned parameters to be sparse, one potentially saves memory and compute, provided
proper hardware acceleration of sparse linear algebraic operations.

Surprisingly, our findings also reveal an abundance of good task-specific parameter configurations
within a sparse L0-vicinity of large pre-trained language models like BERT: a specific task can be
learned by simply masking anywhere between 1% to 40% of the pre-trained weights to zero. See
Figure 1 for an explanation of the L0- and sparse L0- vicinities.

θ1
θ2

θ3

0

(θ̃1, θ̃2, θ̃3)

L0-vicinity
L0-vicinitySparse

Figure 1: An illustration of the L0-vicinity and the sparse L0-vicinity of a pre-trained parameter
in a three-dimensional parameter space. The L0-vicinity is continuous and contains parameters that
are L0-close, whereas the sparse L0-vicinity is a discrete subset of L0-close parameters that are also
L0-small.

2 RELATED WORK

Our search for L0-close fine-tuning solutions is motivated by the observation that sensitivities of
the optimization objective to different layers in a network are highly variable (Zhang et al., 2019).
Zhou et al. (2019) trained fine-grain sparse connectivity patterns over randomly initialized network
parameters, termed supermasks, suggesting a similar and complementary role model sparsification
plays to gradient-based learning of the objective. This is also related to network architecture search
(NAS). The most similar study to ours is piggyback and its variants (Mallya et al., 2018; Mancini
et al., 2019), where in a multi-task visual object classification scenario, the authors trained task-
specific binary masks on top of a shared set of pre-trained parameters. In this work, we not only
applied similar techniques further to larger pre-trained language models, but also studied the trade-
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Table 1: Task-specific model information of BERTBASE (parameter count 109M).

GLUE TASK MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

ADDITIONAL PARAMETER COUNT 2, 304 1, 536 1, 536 1, 536 1, 536 768 1, 536 1, 536
FINE-TUNING ITERATION COUNT 36, 816 34, 113 9, 822 6, 315 804 540 345 234

off between L0-closeness and sparseness in a systematic way. Also, note that randomly generated
high-dimensional masks can also support multi-task learning, e.g. Cheung et al. (2019).

A large body of literature is concerned with sparsification of large networks for efficient inference.
Here, we employed iterative pruning (Zhu & Gupta, 2017) during fine-tuning to produce high-
performance fine-grain sparse models. To enforce parameter sparsity differentiably in combination
with the L0-closeness constraint, instead of principled approaches to imposing L0-regularization
(Louizos et al., 2017), we used simpler straight-through estimator, much like binary quantization
techniques (Courbariaux et al., 2015; Courbariaux & Bengio, 2016); note that this is also used by
Mallya et al. (2018) and Zhou et al. (2019).

3 METHODS

3.1 NOTATIONS AND MODEL ARCHITECTURE

Consider a pre-trained network Fθ : x 7→ F (x;θ), parameterized by θ, noted as subscript for
convenience. The fine-tuning procedure to perform a task t ∈ T can be described as a supervised
training procedure of model G(t)

φ ◦ Fθ : x 7→ y on fine-tuning set
{
(x

(t)
i ,y

(t)
i )

}
, where G(t) is a

task-specific last layer unique to task t, and ◦ denotes function composition.

In the case of BERT, we have a stack of modules

Fθ = BERTθ , PθL+1
◦BθL ◦ · · · ◦Bθ1 ◦ Eθ0 (θ , [θl]

L+1
0 ), (1)

among which E is the embedding layer, P a final pooling layer and each B is a transformer block
Bϑ : x 7→ LN (x+DO(WOGeLU(WILN (x+DO(WDA(WQx,WKx,WV x)))))), (2)

where ϑ , [WQ,WK ,WV ,WD,WI ,WO] collects all the learnable parameter matrices in
the block. A(·, ·, ·) represents scaled dot-product attention (Vaswani et al., 2017), DO(·)
dropout, LN (·) layer normalization and GeLU(·) the Gaussian error linear unit activation func-
tion (Hendrycks & Gimpel, 2016). We experimented with the BERTBASE model (Devlin et al.,
2018), for which L = 12, with total parameter count of 109M 2. See Table 1 for additional task-
specific parameter counts, all 5 orders of magnitude smaller than the total parameter count. Opti-
mization of them alone fails to fine-tune (see Appendix A).

3.2 GLUE BENCHMARK

The GLUE benchmark is a collection of diverse natural language understanding tasks (Wang et al.,
2018). We fine-tune on these tasks and report the evaluation performances. We exclude the prob-
lematic WNLI set 3. F1 scores are reported for QQP and MRPC, Spearman correlations are reported
for STS-B, and accuracy scores are reported for all other tasks.

3.3 CONSTRAINED FINE-TUNING PROCEDURES

For all fine-tuning procedures, we use the exact hyperparameters as described in the original pa-
per (Devlin et al., 2018) unless specified otherwise, with additional constraints described as follows.
No constraints are imposed on task-specific last layers G(t).

L0-close fine-tuning To search for fine-tuned solutions that are L0-close to the pre-trained pa-
rameters, we selectively fix certain parameter matrices at pre-trained values and perform fine-tuning
optimization on a lower-dimensional parameter space.

2 Pre-trained parameters obtained from https://github.com/google-research/bert.
3 See (12) in https://gluebenchmark.com/faq.

3

https://github.com/google-research/bert
https://gluebenchmark.com/faq


Under review as a conference paper at ICLR 2020

Table 2: Fine-tuned parameters are L1-close and angular-close to pre-trained ones. We compare
measured distance metrics with expected distances between two independent random initializations,
either uniformly or normally distributed from− 1√

H
to 1√

H
whereH = 768 is the hidden dimension.

DISTANCE METRIC BETWEEN UNIFORM
INITIALIZATIONS

BETWEEN NORMAL
INITIALIZATIONS

BETWEEN FINE-TUNED
AND PRE-TRAINED ([min,max])

L1-DISTANCE 20.0± 0.1 16.7± 0.1 [0.1, 3.3]
ANGULAR DISTANCE 0.500 0.500 [0.001, 0.027]

Sparse (L0-small) fine-tuning We use iterative pruning (Zhu & Gupta, 2017) during fine-tuning
to produce sparse models. Pruning is based on weight magnitudes in each layer and is performed
periodically during fine-tuning with sparsity gradually increasing from 0% to a final level accord-
ing to a cubic schedule. Iterative pruning successfully ensures that parameters are L0-small (see
Appendix B).

Supermask training as fine-tuning (sparse and L0-close) In order to search for fine-tuned net-
works that are both sparse and L0-close to the pre-trained one, we reparameterize the model by a
multiplicative binary mask

θ = θ̃ � µ, (3)

where θ̃ is the pre-trained parameters, and µ ∈ {0, 1}N the mask, N being the dimensionality of
the parameter space and � the Hadamard product.

If learning is purely through optimizing the mask µ while holding θ̃ constant, the mask is called a
supermask (Zhou et al., 2019). Since µ is discrete-valued and thus not differentiable, we reparame-
terize µ as

µ = Bern(σ(ν)), (4)

where Bern(p) denotes an element-wise independent Bernoulli sampler with probability p, and σ(·)
the sigmoid function, applied element-wise on ν ∈ RN , the continuous mask parameter. We treat
gradient backpropagation through µ as a straight-through estimator, similar to the techniques used
in Mallya et al. (2018); Zhou et al. (2019). Same fine-tuning hyperparameters were used except for
the learning rate (see Appendix C).

Control over the final sparsity is exerted by initialization ofµ for fine-tuning. We initialize ν accord-
ing to a soft magnitude-based pruning mask: a fraction of small-magnitude values are initialized to
ν = −5 and the rest to ν = 5. We found that the initial sparsity directly controls the final sparsity
(see Appendix D), allowing us to produce masks with sparsity levels ranging from 1% to 89%.

4 EXPERIMENTAL RESULTS

4.1 FINE-TUNED AND PRE-TRAINED PARAMETERS ARE L1-CLOSE AND ANGULAR-CLOSE

We observe that the original fine-tuning procedures for GLUE tasks all take 102 to 104 parameter
update steps (Table 1), negligible compared to the dimensionality of the parameter space, viz. 108.
Thus, we first questioned whether fine-tuned parameters are indeed close to the pre-trained ones in
parameter space. We measured the L1-distances, i.e. L1-norm of parameter difference, and angular
distances (Table 2). Specifically, we inspect the weight matrices in self-attention layers, of size 768×
768 where 768 is the hidden state dimension. We report the minimum and maximum values across
GLUE tasks: MNLI showed the largest values, and RTE showed the smallest values. Evidently, we
see a significantly higher L1- and angular-closeness between fine-tuned and pre-trained parameters
as compared to the expected distance between two independent random initializations. This suggests
that, during the course of fine-tuning, the very few model parameter updates traversed a very short
distance in the parameter space. Comparing the parameter distance across GLUE tasks, we find that
it scales with the number of fine-tuning iterations (see Appendix E).

Further, we inspect the closeness in parameter subspaces for each layer. We found that, though all
layers change very little during fine-tuning, there is nevertheless a high degree of variability across
different parameter matrices (Figure 2). Blocks deeper in the encoder stack are less L1-close but
more angular-close than shallower ones. In all self-attention modules, value and output projection
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Figure 2: L1- and angular distances in parameter subspaces between pre-trained and fine-tuned
weights. Shown are metrics across the 12 encoder stack layers for the self-attention projection
matrices (WQ,WK ,WV andWD) and feed-forward matrices (WI andWO). The results presented
here are for MNLI fine-tuning, but similar patterns are observed across all GLUE tasks.

Table 3: L0-close fine-tuning results: layers excluded from fine-tuning, corresponding number of
parameters remaining to fine-tune, and the fine-tuning performance on the MRPC task (F1 score).
We report the mean and standard deviation across 10 independent runs.

LAYERS EXCLUDED FROM FINE-TUNING TASK-SPECIFIC PARAMETER STORAGE F1 SCORE

NONE (BASELINE) 109M FLOAT (100%) 89.4± 0.7
(1) KEY PROJECTION LAYERS IN SELF-ATTENTION 102M FLOAT (94%) 89.1± 0.8
(2) DEEPEST ENCODER STACK LAYERS 95M FLOAT (87%) 88.8± 0.9
(3) WORD EMBEDDING LAYER 86M FLOAT (78%) 89.3± 0.8
(1), (2), AND (3) 66M FLOAT (60%) 88.7± 0.9

(1), (2), AND (3) WITH 30% SPARSE FINE-TUNING 66M BINARY (60%) 87.4± 2.2
(1), (2), AND (3) WITH 40% SPARSE FINE-TUNING 66M BINARY (60%) 86.6± 2.2

matrices (WV and WD) change significantly more than query and key projection matrices (WQ

andWK) during fine-tuning.

4.2 L0-CLOSE FINE-TUNING

Next, inspired by the high degree of variability in each layer’s parameter change during fine-tuning,
we ask whether effective fine-tuning can be achieved by optimizing only a fraction of layers while
having others fixed at pre-trained values, resulting in fine-tuned models L0-close in parameter space.

Our results suggest this is indeed feasible (Table 3). Informed by different layers’ sensitivity to fine-
tuning, we performed fine-tuning experiments by progressively excluding: (1) key projection layers
in self-attention across all encoder stack layers, (2) the penultimate and ultimate encoder stacks, and
(3) the word embedding layer. Each of these exclusions independently or all three combined do not
significantly degrade performance, while reducing the number of parameters to fine-tune by up to
40% (from 109M to 66M).

4.3 SPARSIFICATION AS FINE-TUNING

Encouraged by these results, we ask whether more aggressive constraints can be imposed to the fine-
tuning process to further cut computational cost. Though L0-close fine-tuning obviates optimization
of a large fraction of parameters, avoiding full storage of all parameters for each fine-tuned task, all
operations still need to be performed at inference time. In order to reduce operations, we seek to
sparsify parameters. Combined with strict L0-closeness, this amounts to a search over a binary mask
in a high-dimensional parameter space. We adopt supermask training (see Section 3) to this end.

Figure 3 shows fine-tuned model performance across GLUE tasks obtained by supermask train-
ing. Final sparsity level of the supermask is controlled by its initialization (see Section 3 and Ap-
pendix D). We note that there is little task performance degradation between 1% and 40% of parame-
ter sparsity. Layer-wise sparsity levels of supermasks also demonstrate systematic trends (Figure 4):
(1) across GLUE tasks, WQ, WK and WI tend to be sparser than WV , WD and WO, and (2)
shallower encoder stack layers are sparser than deeper ones. Moreover, we show that supermask
fine-tuning of only a fraction of sensitive layers could also achieve high performance (Table 3).
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Figure 3: Performance of supermask fine-tuned models across GLUE tasks. We show the mean of
performance metrics across 10 independent Bernoulli samplings. Note the baseline performance for
each task marked by the leftmost end of each curve.
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Figure 4: Supermask sparsity levels across layers. Shown is the low-sparsity MNLI supermask with
a global sparsity level of 12.9%, but similar patterns are observed across all GLUE tasks.

4.4 FINE-TUNED SUPERMASKS ARE NONTRIVIAL

How does the learning of a supermask actually work? Does a supermask trivially learn to prune
away the weights with smallest magnitudes? To address these questions, we inspect the magnitudes
of the pre-trained weights zeroed by the supermasks (Figure 5, Table 4). These weights turn out
to have remarkably higher magnitudes than the next smallest entries, suggesting the learning of
supermaks is mechanistically distinct from trivial magnitude-based pruning.

Table 4: Comparison between supermask pruned weights and magnitude-based pruned weights.
Specifically, we compare the weights pruned with low-sparsity supermasks (initialized at 0% spar-
sity) and weights pruned with one-shot magnitude-based pruning at the same final sparsity. We
report the maximum and mean magnitude of the pruned weights. The last row shows percentages of
the overlap between the supermask and the magnitude-based pruning mask, i.e. the percentages of
weights zeroed by the supermask that are also the smallest weights.

GLUE TASK MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

PRUNED MAX 0.0093 0.0093 0.0075 0.0059 0.0022 0.0018 0.0009 0.0007
SUPERMASK MAX 1.7 6.4 2.5 1.7 1.1 2.8 1.8 2.8

PRUNED MEAN 0.0033 0.0032 0.0026 0.0020 0.0008 0.0006 0.0003 0.0002
SUPERMASK MEAN 0.032 0.033 0.033 0.035 0.037 0.036 0.038 0.036

OVERLAP 11.1% 10.0% 6.7% 3.6% 0.7% 0.7% 0.7% 0.7%

4.5 OCCURRENCES AND UNIQUENESS OF GOOD, SPARSE FINE-TUNED SUPERMASKS

One surprising finding of this study is the many occurrences of good fine-tuned parameters among
the 2N configurations in the set

{
θ : θ = θ̃ � µ,µ ∈ {0, 1}N

}
, viz. vertices of an N -dimensional

hypercube. First, there exist supermasks up to 40% sparse without significant performance degrada-
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Figure 5: Pruned weight distributions, compared between supermask and magnitude-based pruning.

Table 5: Low-sparsity supermask performance. We report the sparsity levels achieved when the
supermasks were initialized at 0% sparsity. For several tasks, fine-tuning is achieved with less than
3% of pre-trained weights pruned. For the supermask evaluation results, we include the mean and
standard deviation of 10 Bernoulli samplings of a single run.

GLUE TASK MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE

BASELINE 84.3/85.6 88.5 91.6 92.7 55.2 88.5 90.7 67.1

SUPERMASK
81.5/82.9 87.2 89.8 91.3 50.8 88.2 91.3 68.8

±0.1 ±0.1 ±0.1 ±0.2 ±0.8 ±0.1 ±0.4 ±1.0

FINAL SPARSITY 12.9% 12.6% 10.3% 7.4% 2.9% 2.2% 1.3% 1.0%

tion for all GLUE tasks, for some tasks even sparser (Figure 3). It is natural that performance drops
as the mask becomes sparser; however, it is rather counterintuitive that there exist good supermasks
at the dense end (Figure 3), because we know that the pre-trained model with only the task-specific
last layer fine-tuned utterly fails to learn any task (Appendix A).
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Figure 6: Low-sparsity supermask performance, i.e. task performance of super-masks initialized at
0% sparsity, compared against baseline.

To shed more light on this phenomenon, we study the supermasks trained with all-dense initialization
(Figure 6). Surprisingly, these low-sparsity supermasks successfully learned to perform all the tasks
without significant degradation from baseline. Essentially, complicated tasks like MNLI and QQP
can be learned by clamping 12 − 13% of the pre-trained weights to zero, whereas for simple tasks
like MRPC and RTE, setting only 1 − 2% of the pre-trained weight entries to zero suffices to learn
the task (Table 5). Fine-tuning can indeed be very fine, suggesting relative frequent occurrences of
good solutions within a sparse L0-neighborhood of the pre-trained parameters.

Finally, we question whether the supermasks learned to perform different tasks share commonalities.
Specifically, we quantify the amount of overlapping zeros in learned supermasks across different
tasks (Figure 7). It seems the overlaps are not substantially larger than what would have been caused
by chance, suggesting that, even though there seem to be many good supermasks for each task, these
masks are largely distinct from each other, each unique to the task it learns.
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Figure 7: Fractions of overlap of zero elements in supermasks across GLUE tasks, compared to
randomly generated masks. Each value in the grid shows the fraction of pruned elements in one
task (horizontal axis) that are also pruned in the other (vertical axis). Here, we show low-sparsity
supermasks (initialized at 0% sparsity) and compare the masks in the value layer of the first encoder,
which is one of the most sparse layers in the entire model.

5 CONCLUSIONS

We show that, due to surprisingly frequent occurrences of good parameter configurations in the
sparse L0-vicinity of large pre-trained language models, two techniques are highly effective in pro-
ducing efficient fine-tuned networks to perform specific language understanding tasks: (1) optimiz-
ing only the most sensitive layers and (2) learning to sparsify parameters. In contrast to commonly
employed post-training compression methods that have to trade off with performance degradation,
our procedure of generating sparse networks is by itself an optimization process that learns specific
tasks.
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APPENDIX A OPTIMIZATION OF TASK-SPECIFIC LAST LAYERS ALONE FAILS
TO FINE-TUNE

Optimization of only task-specific layers does not lead to successful fine-tuning. For instance, for
the MRPC task, freezing parameter weights in the pre-trained model and optimizing the task-specific
last layer alone yields a low-performing model. Across 10 independent runs, the model consistently
predicts all 1’s for the paraphrase classification task, yielding an F1 score of 81.2. This is a signif-
icant degradation compared to the baseline performance of 89.4 ± 0.7 across multiple runs (Table
3). Thus, it is critical to fine-tune layers in the pre-trained model and not just the task-specific layers
alone.

APPENDIX B SUPERMASK TRAINING VERSUS ITERATIVE PRUNING

Iterative pruning during fine-tuning (Figure 8) outperforms supermask training (Figure 3) at higher
sparsity levels. While supermask training remains successful up to 40% sparsity, iterative pruning
produces binary masks up to 50% sparse and for some tasks even sparser without significant per-
formance degradation. However, while iterative pruning saves compute on appropriate hardware by
performing sparse operations with model parameters, supermask training further saves memory by
storing only binary masks of certain layers for each task.
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Figure 8: Iterative pruning during fine-tuning. We plot the evaluation performance at sparsity levels
from 10% to 90% across GLUE tasks. Note the baseline performance for each task marked by the
leftmost end of each curve (0% sparsity).

APPENDIX C LEARNING RATE OF SUPERMASK TRAINING

Supermask training requires a much larger learning rate compared to typical training (Zhang et al.,
2019). While a learning rate of 2× 10−5 is used for optimizing weights, a learning rate of 2× 10−1

is used for optimizing masks. We notice a degradation in performance at smaller learning rates for
supermask training (Table 6).

Table 6: MRPC low-sparsity supermask performance at learning rates from 2×10−5 and 2×10−1.
We note that supermask training requires a much higher learning rate than typical parameter training.
At low learning rates, the model significantly degrades in performance and predicts all 0’s for the
paraphrase classification task, yielding an F1 score of 0.0. This pattern holds true across GLUE
tasks.

LEARNING-RATE 2× 10−1 2× 10−2 2× 10−3 2× 10−4 2× 10−5

F1 SCORE 91.3± 0.4 82.0± 0.2 0.0 0.0 0.0
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APPENDIX D CORRELATION BETWEEN INITIAL AND FINAL SPARSITIES OF
SUPERMASKS

There is no straightforward to control the amount of weights pruned when training super-
masks (Zhang et al., 2019). We find that setting the initial sparsity through a soft magnitude-based
pruning mask controls the final sparsity level. Figure 9 shows this correlation between initial and
final sparsities of supermasks across GLUE tasks.
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Figure 9: The supermasks are initialized to a soft magnitude-based pruning mask and the sparsity
level shifts during supermask training. This figure shows the initial sparsity level plotted against the
final sparsity level. We note that, at lower initial sparsity levels, the supermask is pushed to a greater
sparsity level, whereas at higher sparsity levels, the supermask is pushed to a lower sparsity level.
This pattern is similar across GLUE tasks but is most prominent in the MNLI task, scaling with the
number of fine-tuning steps (Table 1).

APPENDIX E CORRELATION OF PARAMETER DISTANCE WITH FINE-TUNING
STEPS

We find that parameter distance scales with the number of fine-tuning steps (Figure 10).
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Figure 10: Scaling of parameter distance with the number of fine-tuning iterations. We find that
angular distance correlates with the amount of fine-tuning (Table 1). Each data point corresponds to
a different GLUE task.
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