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ABSTRACT

This paper presents a method to solve the city metro network expansion problem
using reinforcement learning (RL). In this method, we formulate the metro ex-
pansion as a process of sequential station selection, and design feasibility rules
based on the selected station sequence to ensure the reasonable connection pat-
terns of the metro line. Following this formulation, we train an actor critic model
to design the next metro line. The actor is a seq2seq network with attention mech-
anism to generate the parameterized policy which is the probability distribution
over feasible stations. The critic is used to estimate the expected reward, which is
determined by the output station sequences generated by the actor during training,
in order to reduce the training variance. The learning procedure only requires the
reward calculation. Thus our general method can be extended to multi-factor cases
easily. Considering origin-destination (OD) trips and social equity, we expand the
current metro network in Xi’an, China, based on the real mobility information
of 24,770,715 mobile phone users in the whole city. The results demonstrate the
effectiveness of our method.

1 INTRODUCTION

City metro network plays an important role in public transportation system. With the development
of city, new transportation demands have led to the expansion of metro network. The last few years
have witnessed tremendous expansion of metro network (Sun et al., 2018). On the other hand, the
expansion of the metro network in turn has a profound impact on the city. The expanded lines
may change the mobility trend of city population. Most previous research focuses on the design
of metro network from scratch (Gutiérrez-Jarpa et al., 2018; Laporte & Pascoal, 2015). However,
in the subsequent construction process, the dynamic of the city has been different from that in the
initial stage. The original scheme may not be suitable for the current situation. Therefore, it is
more reasonable to gradually design new lines to expand the metro network according to current
city dynamic.

Usually, transportation planning objectives are mobility-based, such as maximizing OD trips. As
the society progressed, sustainability has increasingly become the demand of city development. The
sustainability prompts governments to re-recognize the role of the transport system, and thereby
influences their transport policy (Manaugh et al., 2015). One conception of sustainability, social
equity, which can be measured by the distributable benefit accessibility (Behbahani et al., 2019),
has been acknowledged important. There have been several real transportation plans considering
social equity (Arsenio et al., 2016). Metro network, an important transportation system, has a great
influence on social equity. Therefore, in this work, we consider both OD trips and social equity to
expand city metro network.

However, the problem becomes difficult when the city becomes large. First, it is difficult to formulate
the problem efficiently (Laporte & Mesa, 2015). Existing studies formulate the problem as non-
linear integer programming, and call for an exponential number of subtour elimination constraints
to ensure the rationality of expanded metro lines (Gutiérrez-Jarpa et al., 2013; Wei et al., 2019),
which hinders solving the problem efficiently.

Second, the huge solution space makes it difficult to find a good solution effectively. Exact methods
are inapplicable for integer programming problems with large solution space (Farahani et al., 2013).
One common method in existing studies is to limit the search space. Previous work (Gutiérrez-Jarpa
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et al., 2013; Wei et al., 2019; Laporte & Pascoal, 2015; Gutiérrez-Jarpa et al., 2018) predefines
corridors based on expert knowledge, and only consider to design metro lines in these corridors.
Their results depend on expert guidance, and it is possible that the best solution is left out. Therefore,
we call for a method which does not require expert knowledge.

Carefully handcrafted heuristics, embedded with problem-specific knowledge, are usually efficient
for large search space (Dufourd et al., 1996). However, the factors considered in the expansion of
metro line vary with different cities and stages. Once the objectives of metro expansion change,
heuristic methods need to be revised. Rather than handcrafting different heuristics for different
objectives, a general method is necessary.

In this paper, we propose a method without expert knowledge to solve the city metro network ex-
pansion problem using RL. We formulate the metro line expansion as a process of sequential station
selection, an MDP, and design feasibility rules based on the selected station sequence to ensure
the reasonable connection patterns of the metro line. This formulation efficiently characterize the
expansion of the metro line, without heavy constraints like existing studies (Wei et al., 2019).

Following this formulation, we propose an actor critic model (Konda & Tsitsiklis, 2000) to generate
the next metro line. The actor is based on the seq2seq model (Sutskever et al., 2014). In the actor, an
encoder characterizes the timely metro station information in the expansion process. After encoding,
an RNN decoder is used to characterize the sequence information of the selected stations. Moreover,
we employ an attention layer to produce the probability distribution over feasible candidate stations.
Only requiring the reward calculation, we train the model with the critic reducing training variance,
in order to find the high-priority metro line following feasibility rules. The reward function takes the
final output station sequence as input only, which is friendly to objective changing. Therefore, our
model is general for different objectives. Without expert knowledge, the learning procedure drives
the policy to keep track of the better solution during the search and to search for better solutions. Its
natural exploration mechanism determines that RL is suitable for large scale solution space.

Based on real city-scale human mobility information of 24,770,715 mobile phone users obtained
from a citywide 3G cellular network, we expand the current metro network in Xi’an, China. The
results demonstrate the effectiveness of our method.

Our contributions are as follows:

1. We formulate the expansion of a metro line as a process of sequential stations selection, a
Markov decision process (MDP). We design feasibility rules based on the selected station
sequence to ensure the reasonable connection patterns of metro line, which is more efficient
to formulate the problem than integer programming models.

2. We firstly propose a RL based method to solve the city metro network expansion prob-
lem. Without expert knowledge, our general method can be easily extended to the metro
expansion considering multi-factors.

3. We incorporate social equity concerns into metro network expansion. Compared with the
realistically planned lines, the results show the rationality of considering social equity in
transportation planning.

4. We use real city-scale human mobility information to expand a metro network. The exper-
imental results demonstrate the effectiveness of our method.

2 RELATED WORK

2.1 METRO NETWORK DESIGN

Metro network plays an important role in public transportation system. For metro network design,
Laporte & Pascoal (2015) predefine a set of corridors, and propose path based algorithms. Consid-
ering the connection with existing lines, Wei et al. (2019) expand the metro network in predefined
corridors. However, these methods depend on predefined corridors by planner, which may be in-
terfered by human judgment. Gutiérrez-Jarpa et al. (2018) propose a greedy generation heuristic to
select a set of corridors with higher passenger traffic from a set of candidate corridors. Enumerating
all candidate corridors is impossible, which may leave out some good solutions. The corridors may
need frequent adjustments, once the objectives change. In addition, these studies adopt non-linear
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integer programming models to formulate the metro network design problem, and call for exponen-
tial number of constraints to ensure the rationality of expanded metro lines, which makes it difficult
to solve the problem efficiently. To cope with these problems above, we propose a general method
that is suitable for diverse objectives and does not require prior knowledge to expand city metro
network.

2.2 REINFORCEMENT LEARNING

The strength of RL lies in its powerful decision-making ability. RL has made great progress in
complicated tasks like playing Atari games (Mnih et al., 2013), robot training (Yang et al., 2017)
and combinatorial optimization (Bello et al., 2016; Nazari et al., 2018). RL is proved efficient
in problems with high dimensional search space, such as Go (Silver et al., 2016) and StarCraft
(Vinyals et al., 2017). Meanwhile, classical combinatorial optimization problems like minimum cut
(Li et al., 2018b), traveling salesman problem (Bello et al., 2016; Kool & Welling, 2018) and vehicle
routing problem (Nazari et al., 2018) are solved by RL. Li et al. (2018a) points out that RL can find
important factors which may be ignored by human. We believe that RL has the ablity to solve the
metro expansion problem.

3 PROBLEM FORMULATION

In this paper, we design the next metro line to expand the current metro network in the target city.
The metro line is determined by stations and line routing, and is allowed to connect with existing
lines to form transfer stations.

For a target city, we divide it into n× n grids in a two dimensional space {gi}n
2−1
i=0 . Each grid gi is

a square with a width of d, and its center is a candidate station si. We define the expansion of metro
network on an undirected graph G = (S,E), where S = {s0, s1, ..., sn2−1} contains all candidate
stations and E = {(si, sj) |si, sj ∈ S} contains all direct links between stations in existing lines.
Each grid gi is associated with a compound index of developmentDi, and any two candidate stations
si and sj are associated with the two-way symmetrical OD trips odi,j(= odj,i) between them. We
present the expanded metro line as an ordered station sequence Z = (z1, z2, . . . , zT ), zi ∈ S, and it
should satisfy the following constraints.

• The consecutive stations must follow the minimum-maximum distance rules.
• The line routing should ensure reasonable connection patterns of stations, avoiding subtour

and meandering line.
• The number of the stations is limited by N .
• The budget is limited by B.

Satisfied by the new line Z, we denote the newly added OD trips as Rod(Z) and the social equity
indicator as Rac(Z), which aims to maximize the total benefits of the society. More details about
these two are in Appendix A. The objective of the new metro line is to maximize the weighted sum
of OD trips and social equity

ω (Z) = α1 ×Rod(Z) + α2 ×Rac(Z) (1)

where α1 and α2 are the weights of added OD trips and social equity, and α1 + α2 = 1.

4 METHOD

4.1 RL FORMULATION

We focus on the city metro network expansion problem. We denote the station selected at step t as
zt, and the selected station sequence until step t as Zt = {z1, z2, . . . , zt}. Given the graph G, we
aim to learn a parameterized policy P (Z|G) to maximize ω.

P (Z|G) =
T∏
t=1

P (zt|G, Zt−1) , (2)
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and
Mt =M(Zt) (3)

Equation (3) characterizes the update of feasibility rules. We use a binary vector Mt to indicate
whether each station can be selected in next step. According to the rules, feasible stations are set to
1, oherwise 0 (see Section 4.2 for more details). Important RL elements are listed as follows.

Environment. The environment correspond to the city in which the metro is expanded. The RL
agent will build the station in order, completing the metro network expansion.

State. For step t, the selected station sequence Zt is the current state. After the agent chooses the
next station zt+1, the state will be updated with Zt+1.

Action. We define the station zt which the agent chooses to build next step as the action. Once the
action is decided, the current state will be updated.

Reward. Since RL are set to maximize the reward, we define the value of objective ω as reward.
The reward function is calculated when the metro expansion is done.

Station

Line routing

Feasible grid

Infeasible grid

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

𝑧1

𝑧2

𝑧3

𝑧4
𝑧5
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Figure 1: An example of metro line expansion.
4.2 FEASIBILITY RULES

In this section, we present the feasibility rules (3) to satisfy the constraints in Section 3. The RL
agent can only select stations in a certain filter to ensure the minimum-maximum distance rule. The
filter is a square shape with m × m grids. To ensure reasonable connection patterns of stations,
we design the action direction rules based on history actions to determine the candidate action in
the next step (see Appendix B for more details). During the expansion, the expanded metro line
is allowed to connect with existing lines to form transfer stations, but it cannot coincide with the
existing lines. Per unit length of metro line and per station consume a certain cost. Once the number
of selected stations reaches the upper limit N , or the cost of construction exceeds the budget B,
the expansion process is terminated. Based on these rules, the agent dynamically acquires the next
optional stations, which avoids exponential constraints in existing studies (Gutiérrez-Jarpa et al.,
2013; Wei et al., 2019). An example is shown in Figure 1.

4.3 NETWORK ARCHITECTURE

As depicted in Figure 2, the neural network serially chooses the next station, with continuous inter-
action with the environment. We use the seq2seq model with attention mechanism to construct the
neural network (Sutskever et al. (2014); Vaswani et al. (2017)).

At step t, the encoder which includes a single 1-dimensional CNN layer is used to embed the in-
formation of candidate stations into a d-dimensional space. During the encoding step, we consider
several information for each grid {gi}n

2−1
i=1 , including coordinates and whether it is selected as a

station by the RL agent. The information after embedding can be denoted as Xt = {Xt
i}
n2−1
i=1 .

The decoder consists of an RNN layer and is used to output the current hidden state ht. It takes
the embedded information of the last selected station zt and memory hidden state as input. After
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Figure 2: Network architecture

decoding, the attention mechanism is employed. The attention mechanism takes the encoder output
Xt as reference and the hidden state ht as query to generate the probability distribution which
indicates the probability of each candidate station. In the attention mechanism, the probability is
calculated as

qti = vTa tanh(Wa[X
t
i ;h

t]), at = softmax(qt) (4)

ct =
∑
i

atiX
t
i (5)

P (zt+1|G, Zt) = softmax(vTc tanh(Wc[X
t
i ; c

t])⊕H ·Mt) (6)

where at is the relevant parameter, and ct is the context parameter. Wa, Wc, vTa and vTc are train-
ing parameters. [. . . ; . . . ] represents the element-wise concatenation operator and ⊕ represents the
element-wise sum operator. H is a huge constant and Mt reflects the feasibility rules.

Once the station is selected, the current hidden state and the embedded information of the selected
station will be the input of next decoder step. The process of choosing stations repeats until any
termination condition is reached. Detailed processing procedure is presented in Algorithm 1.

Algorithm 1 Processing Procedure
Input Graph G
1: for t = 0, ...,T− 1 do
2: Update the feasible stations Mt by Equation (3).
3: Compute embeddings Xt of the current state by encoder.
4: Compute the query ht according to last hidden state ht−1 and the embedding of last selected station
Xt

i by decoder (Initialize h0 when t = 0).
5: Compute the attention value at by Equation (4), and the probability P (zt+1|G, Zt) by Equation (6).
6: Select Station zt+1 with the probability P (zt+1|G, Zt).
7: end for
8: return Solution = ZT

4.4 TRAINING

Taking learning methods into consideration, due to the lack of labels, the metro expansion problem
cannot be tackled with supervised learning. The quality of supervised learning model is closely
related to the quality of labels which are hard to obtain.

In contrast, RL provides the method for training the network. By setting the network parameters as
θ, given the graph G, the training objective can be denoted as

J(θ|G) = EZ∼p(·|θ)ω(Z|G) (7)
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Parameters are trained with the policy gradient algorithm (Williams (1992)).

∇J(θ|G) = EZ∼p(·|θ)[(ω(Z|G)− b(G))∇θ log pθ(Z|G)] (8)

where b(G) represents the baseline for reducing the training variance.

During training, the well known actor critic algorithm is used. For each step, the actor chooses
the next station to build according to the network in Section 4.3. The critic is set to calculate the
baseline in Equation (8). The network architecture is simple for critic, containing a single Dense
and ReLu layer after the original information is embedded with CNN. Detailed algorithm is shown
in Algorithm 2.

Algorithm 2 Actor Critic Training
Require: Batch size B, Training epoch E, Step T

1: Initialize actor parameters θ
2: Initialize critic parameters θc
3: for epoch = 1, ...,E do
4: Reset city metro network G
5: for t = 1, ...,T do
6: Select the next station by actor, zt ← SampleSolution (p(·|θ))
7: Update feasibility rules Mt =M(Zt)
8: end for
9: Find a solution Zi for each batch, where i ∈ {1, . . . , B}

10: Calculate baseline b(G) by critic
11: ∇J(θ|G)← 1

B

∑B
i=1(ω(Z

i|G)− b(G))∇θ log pθ
(
Zi|G

)
12: Update the parameters of actor θ ← Adam(θ,∇J(θ|G))
13: ∇Lc ← 1

B

∑B
i=1(ω(Z

i|G)− b(G))2
14: Update the parameters of critic θc ← Adam(θc,∇Lc)
15: end for

5 EXPERIMENTS

We conduct a case study to investigate the behavior of our method. The data and parameters are
presented in Section 5.1. We conduct our method to expand the metro network in Section 5.2.
Compared with baseline in Section 5.3, we demonstrate that our method is not in need of expert
knowledge. We sequentially expand several metro lines in Section 5.4.

5.1 DATA AND PARAMETERS

The research is conducted based on the metro network in Xi’an, Shaanxi Province, China. Its first
line started operation on September 16, 2011, and four lines are in operation by September 2019.
Our experimental data, coming from a citywide 3G cellular data network, records the mobility in-
formation of 24,770,715 mobile phone users from October 1, 2015 to October 31, 2015. Figure 3(a)
shows the metro network with 4 lines, where the red lines represent the existing 2 lines before
October, 2015; the green lines represent the subsequently opened 2 lines; the dots represent stations.

Through data analysis referring to Yin et al. (2017), we set each grid as a square with 1000 meters
width and divide the study area into 29 × 29 grids. Correspondingly, we set the size of filter in
Section 4.2 as 5 × 5 according to Laporte & Pascoal (2015). Subsequently, we calculate the OD
trips between any two grids. Figure 3(b) presents the distribution of house prices in 2015. The
house price of grid gi is used to characterize its index of development Di, which is applied to the
calculation of social equity (see Appendix A for more details).

5.2 METRO EXPANSION RESULTS

We conduct our method to design the next metro line according to the objective (1). The results
are shown in Figure 4, and corresponding indicators are presented in Table 1. With the decrease
of α1, the expanded line shifts from satisfying more OD trips in Figure 4(a) to achieving higher
social equity indicator in Figure 4(c). Among them, the expanded line in Figure 4(c) passes through
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Figure 3: The current city operational status.

the grids with high development level according to Figure 3(b), which intuitively demonstrates the
effectiveness of our method when social equity is considered only. While considering OD trips and
social equity as equally important, the expanded line satisfies two factors in a balanced way. Its
shape is like a partial combination of the 2 subsequently opened lines after October, 2015.

Different objectives lead to different metro network. The objectives of metro expansion vary with
different cities and stages, which may cause existing methods, whether heuristics or predefined
corridors, to be revised. By changing the reward function, our method can be easily extended to
different objectives, without problem-specific knowledge. Therefore, our method is general, and
more suitable for metro expansion.
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Figure 4: The next expanded metro line with higher priority. The blue lines are our expanding lines.

Table 1: The newly satisfied OD trips and social equity
Rod Rac ω

α1, α2 = 1, 0 48.17 34.60 48.17
α1, α2 = 0.5, 0.5 26.79 33.18 29.98
α1, α2 = 0, 1 27.38 36.64 36.64

5.3 COMPARISONS WITH BASELINE

We compare our method against the baseline proposed in Wei et al. (2019). As for the baseline, we
predefine corridors and end nodes as Wei et al. (2019) did. We conduct the baseline to expand metro
line only in these corridors, with the end nodes as endpoints of metro lines.

Specifically, we firstly predefine corridor 1-3 in Table 2, which respectively contain our expanded
lines with different objectives in Section 5.2. Taking the first predefined corridor in Figure 5(a) as
an example, the area between the two yellow lines is the predefined corridor. After the corridor is
determined, the optimization is conducted by Gurobi with the same objective function (maximizing
OD trips). The result of corridor 1 is slightly better than ours according to Table 2. The same results
appear in corridor 2 and 3 for the corresponding objectives.

Then we randomly predefine the fourth and fifth corridors, which are shown in Figure 5(b) and
Figure 5(c). Similarly, we conduct the baseline in these two corridors with different objectives
respectively. Corresponding results are presented in Table 2. Compared with our method, all the
expanded lines in the fourth and fifth corridors show bad performance.
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Table 2: Comparisons with baseline (Wei et al., 2019).
α1 = 1 α1 = 0.5 α1 = 0

Method Rod Rac ω Rod Rac ω Rod Rac ω

Corridor 1 48.33 - 48.33 - - - - - -
Corridor 2 - - - 27.53 33.93 30.73 - - -
Corridor 3 - - - - - - - 37.14 37.14
Corridor 4 23.97 - 23.97 16.70 22.68 19.59 - 26.87 26.87
Corridor 5 28.63 - 28.63 27.52 21.21 24.37 - 21.95 21.95

Our model 48.17 - 48.17 25.03 31.63 28.33 - 36.64 36.64

It can be vividly shown that the baseline method relys heavily on expert guidance. Once the corridor
contains several good solutions, optimization tools such as Gurobi perform well in metro expansion
problem. While the conditions is far more complicated in real world, causing it difficult to find
the appropriate corridors. The fourth and fifth corridors indicate the bad results of choosing the
unsuitable area. However, regardless of expert knowledge, RL shows the ability to find a good
solution. The results are close to those conducted by Gurobi, showing the effiveness of our method.
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(c) The fifth predefined corridor.

Figure 5: Comparisons with the expanded lines in predefined corridors. The area between two
yellow lines is the predefined corridors. The blue (violet) lines are the expanded lines with our
(baseline) method, considering only OD trips.

5.4 EXPANSION OF MULTIPLE METRO LINES

Considering OD trips and social equity as equally important, we sequentially design the second
metro line with the expanded line in Figure 4(b) as the existing line. The expanded line presented in
violet is shown in Figure 6. Its lower left part is similar to the manually designed sixth metro line in
reality. In this way, we design the metro lines sequentially and gradually expand the metro network.
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Figure 6: Multiple expanded metro lines.

6 CONCLUSION

This paper presents a method to solve the city metro network expansion problem using RL. By
formulating the metro line expansion as a process of sequential station selection, we train a seq2seq
model with attention mechanism to generate a parameterized policy. Without expert knowledge, the
parameterized policy generates the next metro line. Our method is general for different objectives,
thus it is suitable for the expansion of metro network with multi-factor objectives.
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A ADDED OD TRIPS AND SOCIAL EQUITY INDICATOR

A.1 ADDED OD TRIPS

In our study, the expanded line Z is allowed to connect with existing metro lines to form transfer
stations. Thus, our Rod(Z) contains not only the OD trips between the stations on Z, but also
contains the OD trips between the stations on Z and the stations on existing lines through transfer
stations.

A.2 SOCIAL EQUITY INDICATOR

In this paper, the social equity indicator is calculated as the same in Behbahani et al. (2019). The
expansion of metro has an impact on the accessibility of each area. We calculate the accessibility
Aci of area i as

Aci =
∑
j

DjF (cij) (9)

where

cij : the travel cost between i and j

F (cij) is defined as

F (cij) = F (tij) = e−βtij (10)
where tij is travel time and β is an adjustment parameter.

Dj is the compound index of development and defined as

Dj =
∑
k

wkdj,k (11)

where dj,k is an economic variable and wk is the weight.

In our study, we condider that tij is proportional to distance between i and j. Kuntz & Helbich
(2014) consider the house price as a socioeconomic variable, thus we take the house price of grid gi
as its index of development Dj .

Under a utilitarianism theory, the social equity indicatorRac(Z) is defined as the total added benefits∑
iAci. We prefer the metro line satisfying greater social equity indicator Rac(Z).
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B ACTION DIRECTION RULES

In practice, the metro line should avoid subtour and squiggly line. Based on history action direction,
we design agent action direction rules to ensure the rationality of expanded metro lines, shown in
Figure 7.

History action direction
Permissible 

direction
History action direction

Permissible 
direction

Permissible direction Impermissible direction No direction restriction

+

+

+

+

Figure 7: Action direction rules.
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