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ABSTRACT

Humans rely on episodic memory constantly, in remembering the name of some-
one they met 10 minutes ago, the plot of a movie as it unfolds, or where they
parked the car. Endowing reinforcement learning agents with episodic memory is
a key step on the path toward replicating human-like general intelligence. We an-
alyze why standard RL agents lack episodic memory today, and why existing RL
tasks do not require it. We design a new form of external memory called Masked
Experience Memory, or MEM, modeled after key features of human episodic
memory. To evaluate episodic memory we define an RL task based on the com-
mon children’s game of Concentration. We find that a MEM RL agent leverages
episodic memory effectively to master Concentration, unlike the baseline agents
we tested.

1 INTRODUCTION

From a neurobiological perspective, episodic memory is a key component of human life — remem-
bering the name of a new acquaintance, recalling the plot of a movie as it unfolds, or realizing
where the car is parked, are all examples of how we use episodic memory1 to store and recall novel
information. If a person’s ability to form and retrieve new episodic memories is lost, as in advanced
Alzheimer’s disease, the person is severely incapacitated as a result. Although today’s standard Re-
inforcement Learning (RL) agents possess forms of procedural and semantic memory (Gershman
& Daw, 2017), they lack any functional equivalent of episodic memory. Our motivation is to expand
the general intelligence of RL agents by imbuing them with a useful form of episodic memory.

Human episodic memories appear to be records of experience that are re-experienced when associa-
tively recalled (Conway, 2009). In RL, fundamental experiences are termed observations. Accord-
ingly, we propose the following working definition: Episodic memory for an RL agent is the ability
to leverage details of a past observation that is similar to the current observation. This definition
implies that an agent would exercise episodic memory by doing certain things at specific points in
time, including

1. At the time of the old observation, the details of that observation must be stored somewhere
in the agent. This stored record is the episodic memory.

2. Later, when another observation arrives, it must somehow be compared with the stored
observations. If one of those is sufficiently similar, then the details of the old observation
must be retrieved from memory. There are different implementations of similarity and
retrieval. We will propose a concrete one later.

3. After retrieving the details of the old observation that is similar to the new one, the agent
must be able to utilize that information to benefit it’s pursuit of reward.

Designing an RL agent with episodic memory is one challenge, and designing an RL task to evaluate
episodic memory in an agent is another. The main difficulty is that unless the task is very carefully
designed, the RL agent may find a way to solve the task using other learning abilities besides episodic
memory. To illustrate, we briefly introduce the RL task that we will present later in detail.

To evaluate an agent’s episodic memory ability, we introduce the Concentration task based on the
card game of the same name. Concentration is a memory game with the goal of identifying matching

1Throughout, episodic memory refers to human episodic memory, and is not to be confused with episodes
in a Markov decision process Sutton & Barto (1998).
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pairs of cards among a large set of face-down cards. During play, one card at a time is temporarily
revealed to the player who must correctly memorize and recall the locations of each pair. Concen-
tration tests episodic memory by requiring an agent to leverage past observations of cards and their
locations in order to succeed. In our variant of Concentration, cards are not limited to the standard
deck and are instead randomly generated for each game, so each card pair is unique and never before
seen in the agent’s lifetime. Unique cards test the agent’s ability to use episodic memory to reason
about the identities and locations of the cards that are seen within the current episode, rather than
learning to recognize specific cards.

Recently, the capabilities of intelligent agents have greatly expanded through the combination of
deep learning and reinforcement learning. Deep RL agents have achieved notable success outper-
forming humans on Atari games (Mnih et al., 2015). However, many of the hardest tasks in which
RL agents still fail to surpass humans are fraught with the difficulties of sparse rewards, partial ob-
servability, and a limited amount of samples. Equipping an RL agent with memory is a promising
approach to tackling some of these challenges, and has attracted a growing amount of interest in the
research community.

Recurrent neural networks such as LSTMs are commonly used as controllers (Hausknecht & Stone,
2015; Mnih et al., 2016). LSTMs can be trained to maintain and use information on timescales of
tens of steps, but have trouble learning over longer sequences. Additionally, LSTMs do not store
observations as discrete entities, so it is unclear how an LSTM could compare a never-before-seen
observation (such as a unique card) with detailed instances of past observations, which also may
have occurred only once.

Memory augmented neural networks provide storage capabilities beyond those of an LSTM. One
such architecture, the differentiable neural computer (DNC) (Graves et al., 2016) has been shown to
be capable of handling several different memory-based tasks. We evaluate the DNC on Concentra-
tion, but discover that it has difficulty reusing elements of its memory matrix.

The key contributions of this paper are:

• We propose a working definition of episodic memory for RL agents.
• We introduce the Concentration task for evaluating episodic memory.
• We present the Masked Experience Memory (MEM) architecture, a new type of external

memory designed to provide an RL agent with human-inspired episodic memory, and in-
corporating a novel improvement over cosine similarity for content-based addressing.

• We empirically demonstrate that MEM successfully enables an RL agent to solve the Con-
centration task by remembering the identities and locations of cards it has seen only once.

• We show that baseline RL agents (LSTM-based and DNC-based) fail to solve the task.

2 RELATED WORK

Neither neural network weights nor activation states support the storage and associative retrieval of
discrete, one-shot experiences necessary for episodic memory. Neural network weights change too
slowly to store samples as individual experiences. Fast weights (Ba et al., 2016) are one approach to
storing information from discrete samples in weights, but we find no published evaluations of fast
weights on episodic memory tasks.

Many external memory architectures have been proposed for augmenting the capabilities of neural
networks in the supervised learning setting. Some of these were evaluated on data samples that
occur a relatively small number of times (Vinyals et al., 2016; Pickett et al., 2016; Santoro et al.,
2017; Kaiser et al., 2017). Adapting these architectures to RL tasks is non-trivial. For instance,
the memory module of Kaiser et al. (2017) requires ground truth output labels to create and modify
memories.

A few augmented memory architectures have been applied to the more challenging setting of deep
reinforcement learning (Zaremba & Sutskever, 2015; Oh et al., 2016; Blundell et al., 2016; Graves
et al., 2016; Pritzel et al., 2017). These external memory schemes were shown to improve learning
on certain tasks, typically by increasing sample efficiency. But to our knowledge none of them were
evaluated on episodic memory tasks.
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Despite the growing body of literature on active memory, most environments do not capture the
diversity of observations required to test episodic memory. For instance, in maze tasks such as the
the T-Maze studied by Oh et al. (2016), the agent must remember a color seen at the start of the
episode, then use that information later to move in the correct direction at the T-junction. But since
only two colors are ever displayed at the start of the maze, the agent can learn to associate the floor
tile color with the correct actions using neural network weights. In contrast, an episodic memory task
like Concentration presents many previously unseen observations which must be handled correctly
without prior exposure.

With the differentiable neural computer (DNC), Graves et al. (2016) showed than an RL agent could
use a memory matrix to buffer and use data to complete a moving blocks puzzle (Mini-SHRDLU).
We show that Mini-SHRDLU can be decomposed into separate data buffering and problem-solving
subtasks (Appendix B), neither of which requires human-like episodic memory.

Episodic memory tasks can be viewed as a special type of transfer learning. Transfer and multitask
learning (Taylor & Stone, 2009) involve evaluating the agent on a novel task (e.g. with new ob-
servations, rewards, transition dynamics). Episodic memory tasks such as Concentration feature an
endless stream of novel observations but unchanged rewards and dynamics. Prior work on transfer
learning has relied on techniques from DeepRL and model compression (Parisotto et al., 2016; Rusu
et al., 2016; Devin et al., 2017).

Concentration can be viewed as an episodic one-shot learning task in which novel observations
must be correctly memorized and recalled after a single viewing. Prior work on few-shot image
classification (Vinyals et al., 2016; Rezende et al., 2016) has used learned metric spaces and siamese
networks (Gregory Koch, 2015).

3 MASKED EXPERIENCE MEMORY (MEM)

The Masked Experience Memory (MEM) architecture imbues an RL agent with the ability to lever-
age details of a past observation that is similar to the current observation. MEM’s focus on obser-
vations differentiates it from DNC, which writes vectors to memory which are abstract in the sense
that they are not bound to agent observations. Similarly, while MEM’s read operation compares
past observations with the current observation, DNC’s read operation compares previously written
memory vectors to an abstract read vector having no necessary connection to any observation. In
these respects, DNC’s memory mechanism is strictly more general than that of MEM, possessing
more freedom of representation, as well as more potential challenges in training. This makes DNC
a valuable baseline for comparison to MEM.

Each MEM memory write operation copies the last observation into a fixed-size memory store, while
the oldest memory is dropped from the store. Other external memory implementations share this
general method of writing memories (Sukhbaatar et al., 2015; Oh et al., 2016). This corresponds to
the rapid forgetting of human episodic memories (Conway, 2009). Despite its simplicity, we view
this design as applying the useful prior assumption that the most recent history is often the most
relevant to selecting a good next action.

Each memory read operation compares the current observation with all past observations in memory,
and returns a vector calculated as a weighted sum of all memories. This part of the read operation is
the same as that used by most content-based addressing memory architectures, given by:

R =

N∑
i=1

biMi , bi =
exp(Qi)∑N
j=1 exp(Qj)

,

where the memory matrix M contains N memories, each implemented as a real-valued vector of D
dimensions (elements); the read vector R (also of length D) is a weighted average of all memories;
the read weighting vector b is a normalized probability distribution over memories; finally, each
memory’s weight bi is a function of that memory’s similarity (Qi) to the current read key vector.

There are various choices for the similarity function Q, such as the popular cosine function.
Here, we propose to use vector quadrance scaled by an explicit mask over vector elements:

Qi = − exp(z)

D∑
d=1

ad(sd −Mid)
2 , ad =

exp(wd)∑D
k=1 exp(wk)

,
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where each memory’s similarity (Qi) to the current read key (state vector s) is the squared Euclidean
distance (quadrance) between them scaled by the corresponding element of the mask vector a; the
mask vector a is a learned distribution over memory dimensions; the mask weight vector w and
attention distribution sharpness parameter z are trained by gradient descent.

The mask weight vector w is intended to learn which memory dimensions should be used as the
lookup key for memory read operations, which in turn determines the attention distribution over
memories. For instance, as a particular mask weight wi increases, the corresponding mask element
ai will also increase, causing that element of each memory to contribute more to all the similarity
calculations.

Figure 1: Pathological Example of Cosine Sim-
ilarity: Although memory vector 1 is identical to
the completed (non-zero) portion of the key vec-
tor, cosine similarity judges memory vector 2 to
be more similar to the key vector.

MEM’s usage of a mask vector in calculating
vector similarity is designed to avoid a potential
source of noise associated with a commonly-
used similarity calculation, cosine similarity:
D(u, v) = u·v

|u||v|

Since cosine similarity measures the angular
similarity between two vectors by normaliz-
ing out their magnitudes, it is ideally suited
for comparing word count vectors from docu-
ments of different lengths, for instance. But in
the general case of content-based addressing, it
is often intuitive to view the read key as par-
tially specified, with zeros in the unspecified el-
ements. From that perspective the read operation replaces the zeros with values from a memory or
memories that best match the read key. This avoids the complexity of separate key and value vectors.

However, applying cosine similarity in this way can add noise to the similarity calculation, as il-
lustrated in Figure 1. Since cosine similarity normalizes the dot product by the magnitudes of both
vectors being compared, the supposedly masked-out elements of the memory vector can still affect
the results. This noise becomes large as the non-zero portion of the key vector becomes small.

MEM avoids this problem by using an explicit mask to select which vector elements will participate
in the similarity measurement.

4 RL AGENT ARCHITECTURES

In this section, we discuss how to use MEM in an RL agent. An RL agent aims to maximize its
expected long-term return by acting in an initially unknown environment (Sutton & Barto, 1998). In
each step, it makes an observation about the environment, takes an action, then receives an immedi-
ate reward and next observation. While there exist many algorithms in the literature, for concrete-
ness, we use one of the most effective algorithms known as Asynchronous Advantage Actor-Critic
(A3C) (Mnih et al., 2016) to explain how to incorporate MEM, and run experiments with this in-
stantiation. The use of our memory architecture is similar for other RL algorithms.

Since the environment is only partially observable in many real-world problems as well as in the
game of Concentration, the observations received in individual time steps are not Markovian (Sut-
ton & Barto, 1998). Information collected from past observations should therefore be remembered
and used to make a decision at each step. One possibility is to use an LSTM to compress past
observations into a fixed-length vector, which is used to approximate a Markovian state of the envi-
ronment. This approach makes use of a limited form of memory, and is illustrated in Figure 2 (left
panel) where LSTM is used inside both the actor and critic networks of A3C.

The more general DNC-based agent uses separate actor and critic DNCs, each containing its own
LSTM controller and memory matrix, as shown in the right panel of Figure 2. Note that the same
approach is taken by Graves et al. (2016) for the Mini-SHRDLU task.

Our proposed architecture, based on MEM, is given in the middle panel of Figure 2. It uses separate
actor and critic LSTM controllers which share the same memory store. For episodic RL tasks, we
clear MEM’s memory store at the beginning of each episode, although other possibilities exist.
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For all agents on every time step, each LSTM controller receives as inputs the current observation
vector from the environment, concatenated with a one-hot vector representing the last action taken,
plus the reward just received. Each LSTM also receives as input the most recent output from the
memory store (whether MEM or DNC). In the case of MEM, a memory similarity strength value is
also passed as an additional feature to the LSTMs. In the case of DNC, the memory store’s output is
immediately concatenated with the output from its LSTM running to the output layer of its network.

Figure 2: The three RL agent architectures evaluated on Concentration.

5 CONCENTRATION TASK

To the best of our knowledge, no existing RL benchmark task could unambiguously evaluate
episodic memory in RL agents. We therefore designed a new task for this purpose, derived from
the common children’s memory game of Concentration, as described in Wikipedia.2 The game is
played with a deck of cards in which each card face appears twice. At the start of each game, the
cards are arranged face down on a flat surface. A player’s turn consists of turning over any two of the
cards. If their faces are found to match, the player wins those two cards and removes them from the
table, then plays again. If the two cards do not match, the player turns them face down again, then
play passes to the next player. The game proceeds until all cards have been matched and removed
from the table. The winning strategy is to remember the locations of the cards as their faces are
revealed, then use those memories to find matching pairs.

We convert the Concentration game into a single-player, episodic RL task. The agent occupies one
cell at a time within a square grid of cells, each of which may be empty or may contain one card.
The grid is just large enough to hold all the cards. Each card may be either face up or face down on
any given time step. The agent’s available actions are to take one step in any of the four directions,
or to flip over the card at the current location. Whenever two cards fail to match, they automatically
turn face down on the next time step. Whenever two cards match, the agent is rewarded, and the two
cards are automatically removed from the grid on the next time step. The episode terminates when
the last two cards are matched and removed, or when enough time steps have passed for all cards to
have been removed. The agent receives a small penalty for each card it flips over.

2URL: https://en.wikipedia.org/wiki/Concentration (game)
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The major issue in designing this as a test of episodic memory is how to represent the agent’s
observation of a card face. The simplest scheme would be to represent each card face by a one-
hot vector of length N/2, where N is the number of cards in the deck. But this would allow the
agent to solve the task without relying on episodic memory, because the total number of card faces
and card positions could be small enough for the agent’s network (over many training episodes) to
dedicate a different unit to every possible card-plus-position combination. Then in the course of
play, whenever a card was revealed, the network would only need to toggle the activation state of
the unit representing that particular card and position. If two units corresponding to a matching pair
were both active, the agent would know their locations and could then proceed to flip both of them
over.

Instead of using one-hot vectors, each card face could be represented by a complex image, such as
an Omniglot character, to be processed by a convolutional neural network. But the network could
still employ the strategy described above, only at a higher embedding level in the network, after
learning the fixed identities of the cards.

So to make this an unambiguous test of episodic memory, we generate new images for all card faces
at the start of each episode. This is equivalent to playing just one game of Concentration with a deck
of cards, then replacing it with a new deck of cards having different face images for the next game,
etc. This ensures that each image appears in no more than one episode, making it impractical for an
agent’s neural network to learn each image as a persistent entity from game to game.

Instead of using images composed of pixels, we define each card face to be a random real-valued
vector of length 6. This can be thought of as an image embedding vector learned at some upper level
of a CNN. We did not try any other image sizes. Each card face image (to appear on two cards) is
generated by randomly selecting six real numbers in the range [0, 1]. If the resulting vector is too
close to an already generated vector, based on a fixed Euclidean distance threshold, the vector is
randomly regenerated.

The agent’s observation vector contains six components:

1. A one-hot state vector for the cell occupied by the agent plus each of the 8 surrounding
cells. Each cell has 4 possible states: card with face down, card with face up, no card, and
off-grid.

2. A 6D real vector for the card at the agent’s current location. This vector contains zeros if
the cell does not contain a face-up card.

3. A one-hot vector identifying the row currently occupied by the agent.
4. A one-hot vector identifying the column currently occupied by the agent.
5. A one-hot vector reporting the previous action taken by the agent.
6. A single real number equal to the reward just received by the agent.

The agent’s performance is evaluated in terms of card-pair matches per card flip, which is closely
tied to the reward received. Agents are not directly penalized for spending time wandering around
the grid, but reward per time step is maximized by clearing the board quickly. For the experiments
reported here, all tasks used 8 cards on a 3× 3 grid.

6 EXPERIMENTAL RESULTS

We tested the following six agents on the Concentration task:

1. MEM agent we proposed in Section 3.
2. DNC agent of Graves et al. (2016)
3. TensorFlow LSTM agent (lacking external memory).
4. Sonnet LSTM agent (obtained by disabling DNC’s memory matrix).
5. Colorblind MEM agent (control).
6. Colorblind TensorFlow LSTM agent (control).

We chose DNC as a baseline because of its particularly powerful form of external memory, and be-
cause it differs from our own architecture in several respects. The colorblind agents serve as controls,
being unable to distinguish card faces. All agents were trained using asynchronous advantage actor-
critic (A3C) (Mnih et al., 2016) and differ only in their memory architectures. After finding each
agent’s optimal hyper-parameter settings through extensive search, we trained and evaluated each
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(a) Overview (b) Magnified view

Figure 3: The MEM agent effectively utilizes episodic memory to solve the Concentration task:
During training, counters keep track of the number of cards flipped by all 16 worker agents, as well
as the number of card-pair matches obtained by the agents. After every 100, 000 training steps these
counts are used to calculate the matches per flip for that period, then reset to zero. This produces a
trailing estimate (including exploratory actions) of the agent’s performance on the task.

Table 1: Hyper-parameter settings

agent using its optimal settings on a number of additional runs. Table 1 gives the hyper-parameter
settings used on Concentration, both tuned and fixed. Key results are collected in Figure 3a.

7 DISCUSSION

The optimal mean performance attainable by an agent with perfect episodic memory is shown at
the top of Figure 3a (Velleman & Warrington, 2013). Only the MEM agent learned a near-optimal
policy. The baseline LSTM-A3C agent’s results were overlapped with those of its colorblind version
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3b, demonstrating that the LSTM-A3C agent never learned to remember the locations of the cards it
saw. The Sonnet LSTM agent performed consistently better than the TensorFlow LSTM agent 3b,
though not by a large amount. Both implementations claim to be based on Zaremba et al. (2014),
so the difference in behavior is unexpected.

Despite being unable to see the card faces, the colorblind MEM agent 3b still performed a bit better
than any of the LSTM agents, indicating that it found some other strategy (not based on card faces)
to derive a small amount of gain from its external memory.

Even after dozens of trial settings over a wide range of hyper-parameters, the DNC agent performed
only very slightly better than the LSTM-A3C agent, and noticeably worse than its own recurrent
controller alone, the Sonnet LSTM agent. We did not attempt curriculum learning. Appendix A
presents a detailed investigation into the causes of DNC’s poor performance on this type of task.

Performing ablation studies on the MEM architecture, we found that using the mask (instead of
cosine similarity) and Euclidean distance squared were both essential to scoring above the LSTM-
A3C baseline. Adaptation of the sharpness term turned out to be essential for stable results. On the
other hand, the similarity strength feature provided no measurable benefit.

As intended, MEM’s most positive learned mask weights were the ones for the six card face dimen-
sions. At convergence of the best MEM model, 83% of the mask’s mass was concentrated on those
six elements, even though they constitute only 11% of the observation vector’s 54 elements.

8 CONCLUSIONS

We have defined episodic memory for RL agents, provided an unambiguous test for evaluating it, and
presented an implementation of episodic memory that corrects a problem with current content-based
addressing methods. Our results show that this MEM architecture, designed to emulate specific
aspects of human episodic memory, is able to use that memory effectively in the Concentration task
by remembering the locations of cards it has seen only once before. This is in sharp contrast to the
other agents tested, which never learned to remember card locations. The code to replicate this work
will be made public prior to the conference.

MEM represents the initial step on a path towards more robust and powerful episodic memory for
RL agents. We plan to extend MEM in several significant ways:

1. Making the mask weights context-sensitive so that read key vectors can quickly shift to
cover different aspects of experience depending on the situation.

2. Expanding the memory dimensions beyond the current observation to also include recurrent
network activations, so that an agent’s internal thought vectors can themselves be stored as
experiences for later recall, and can be used as read keys.

3. Rendering memory deletion a function of memory importance, so that certain experiences
can be remembered longer than others.

4. Introducing an additional mask over dimensions for write operations, so that memories
need not cover all available dimensions.

The human mind offers a remote, shining existence proof of general intelligence still beyond our
reach. Despite the distance, it lights our path, and grows brighter with each step we take toward it.
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Appendices
A DNC EXPERIMENTS

The differentiable neural computer (Graves et al., 2016) employs a differentiable memory matrix as
external memory, which shares certain sequential addressing features with computer random access
memory, with the objective of combining the advantages of neural and computational processing in
one trainable system.

To explore why DNC never learned to use its memory matrix on the Concentration task, we applied
DNC to a series of simpler tests of associative recall. The general pattern was that DNC performance
seemed to deteriorate with episode length, as if DNC had difficulty reusing previously allocated
locations in its memory matrix.

We found the simplest demonstration of this problem to be a small modification of the copy task
included in DNC’s GitHub repository. For Figures 4 and 5 the memory matrix was of size 16x16,
exactly large enough to store the 16x16 random input data in each copy round, even if none of the
data was stored in the LSTM (size 64). But when given two copy rounds in a sequence with no reset
in between, the only way to achieve zero error was to reuse some locations in the memory matrix.
This happened on two of our runs, but not on the other three runs. The instabilities in Figure 5
demonstrate the difficulty that DNC had in learning to reuse its memory matrix.

B MINI-SHRDLU

DNC (Graves et al., 2016) was evaluated on multiple supervised tasks and one RL task: Mini-
SHRDLU. The Mini-SHRDLU task was actually composed of two separate sub-tasks: data buffer-
ing and puzzle solving. The constraints defining the problem, along with many other decoy con-
straints, were fed to the RL agent once while the agent was not allowed to work on the puzzle. Only
after termination of the constraint presentation phase was the agent allowed to reposition the blocks
to solve the puzzle. The results demonstrated that DNC used its external memory to buffer the in-
coming constraint information in the memory matrix, then used that data to achieve significantly
better results on the combined buffer-puzzle task than did a baseline LSTM-based RL agent without
external memory.

We considered using the Mini-SHRDLU task as a test of an RL agent’s episodic memory. The data-
buffering stage of the task did not seem relevant to this goal, since human memory seems ill-suited
for memorizing long lists of data seen only once. Since the buffer and puzzle sub-tasks were not
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Figure 4: Multiple-copy task, 1 copy round. Five random runs where memory reuse is not required.

Figure 5: Multiple-copy task, 2 copy rounds. Five random runs where memory reuse is required.

evaluated separately, we couldn’t be sure whether DNC’s external memory helped in the puzzle-
solving component of the combined task. We investigated this question by implementing Mini-
SHRDLU without the data-buffering subtask, and giving an LSTM-based A3C RL agent access
to a simple, non-differentiable, circular array of constraints. This allowed the agent to read the
instructions at its own pace using 3 additional actions (move to next element, move to previous
element, stay at current element).

11



Under review as a conference paper at ICLR 2018

Figure 6: Mini-SHRDLU results. The DNC results were copied from (Graves et al., 2016) . The
LSTM-A3C results were achieved by an RL agent with no external memory that read the constraints
from a simple array at its own pace. After training on a lesson, the LSTM agent was tested on that
lesson using 10,000 random problems. Direct numeric comparisons between these two performance
curves are not meaningful for various reasons: (1) The LSTM agent was advanced to the next
lesson only after its performance on the previous lesson had plateaued, which gave it more training
problems than used by DNC. (2) The LSTM agent was always given problems using the full 6 blocks
on the first 6 lessons, which is why those results are not shown. (3) Twelve of the subsequent lessons
were actually skipped during training, and the LSTM agent was tested on those lessons using the
model from the next trained lesson.

As shown in Figure 6, the LSTM-based RL agent learns to solve Mini-SHRDLU problems as well
as DNC, but without using a differentiable memory matrix. These results demonstrate that external
memory was not required for the problem-solving stage of the task.
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