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Aleksei Tiulpin1,2, Mikko Finnilä1, Petri Lehenkari1,2, Heikki J. Nieminen1,3,4,
and Simo Saarakkala1,2

1 University of Oulu, Finland
2 Oulu University Hospital, Finland

3 University of Helsinki, Helsinki, Finland
4 Aalto University, Espoo, Finland

Abstract. Three-dimensional (3D) semi-quantitative grading of patho-
logical features in articular cartilage (AC) offers significant improvements
in basic research of osteoarthritis (OA). We have earlier developed the
3D protocol for imaging of AC and its structures which includes stain-
ing of the sample with a contrast agent (phosphotungstic acid, PTA)
and a consequent scanning with micro-computed tomography. Such a
protocol was designed to provide X-ray attenuation contrast to visualize
AC structure. However, at the same time, this protocol has one major
disadvantage: the loss of contrast at the tidemark (calcified cartilage in-
terface, CCI). An accurate segmentation of CCI can be very important
for understanding the etiology of OA and ex-vivo evaluation of tidemark
condition at early OA stages. In this paper, we present the first ap-
plication of Deep Learning to PTA-stained osteochondral samples that
allows to perform tidemark segmentation in a fully-automatic manner.
Our method is based on U-Net trained using a combination of binary
cross-entropy and soft-Jaccard loss. On cross-validation, this approach
yielded intersection over the union of 0.59, 0.70, 0.79, 0.83 and 0.86
within 15 µm, 30 µm, 45 µm, 60 µm and 75 µm padded zones around
the tidemark, respectively. Our codes and the dataset that consisted of
35 PTA-stained human AC samples are made publicly available together
with the segmentation masks to facilitate the development of biomedical
image segmentation methods.
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1 Introduction

Osteoarthritis (OA) is a common field of interest in micro-computed tomogra-
phy (µCT) research. OA is primarily characterized by progressive degeneration
of structure and composition articular cartilage (AC), along with the sclerotic
changes in subchondral bone [4]. These changes in the microstructure of AC
and subchondral bone can be visualized in three-dimensions (3D) using µCT.
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Conventionally, without any external X-ray contrast agents or sample processing
protocols, only calcified tissue can be visualized. Thus, direct µCT imaging of
soft tissues, such us AC, is not possible. To mitigate this limitation of X-ray
imaging, several contrast agents have been introduced to provide X-ray atten-
uation contrast for the AC, such as phosphotungstic acid (PTA), CA4+ and
others [14,10,6].

Specifically for OA, a novel ex-vivo µCT contrast method and a protocol to
quantify collagen distribution in AC has recently been introduced along with
the 3D grading system [10,11]. There, PTA was validated as a contrast agent,
since it directly binds to collagen and significantly increases the attenuation con-
trast within the cartilage tissue [11,7]. However, despite the unique possibility
to image soft tissues, PTA staining has one major drawback when it is used for
osteochondral tissue: X-ray attenuation contrast at the tidemark (calcified car-
tilage interface; CCI) is lost due to the accumulation of PTA. Another drawback
of the PTA staining is the occasional occurrence of non-enhancing regions, i.e.
voids, at the CCI [10]. Both of these limitations and the typical examples of the
PTA-stained samples analyzed in this study are illustrated in Figure 1.

(a) (b)

Fig. 1. Examples of the slices from ◦ = 2mm human osteochondral plugs imaged with
contrast-enhanced µCT. a) a typical sample showing the loss of the contrast at the
CCI. b) a typical non-enhancing region (void) which occurs with some samples.

An accurate analysis of CCI from PTA-stained µCT image stacks is of high
importance in the evaluation of early OA-induced changes [8]. Two straightfor-
ward solutions exist: either to perform a manual annotation of this area, or,
alternatively, perform double imaging – with and without PTA. However, both
of these options are time consuming and could be avoided with the help of Ma-
chine Learning. In clinical OA research Machine Learning is has been applied to
various tasks [21,20,19,12,15,2], however, its application in OA basic research so
far has been limited [1].

Recently, one form of Machine Learning – Deep Learning (DL) has become
a gold standard in medical image segmentation [17]. Fully-convolutional neural
networks (CNN) have shown drastic improvements in the performance of the seg-
mentation methods and decreased their computational time [17]. In particular,
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U-Net CNN architecture [16] allowed to significantly improve the bio-medical
image segmentation.

In this study, we tackled the problem of automatic tidemark segmentation
in PTA-stained osteochondral samples using Deep Learning. This study has the
following contributions:

– We present a method based on Deep Learning that allows to perform assess-
ment of tidemark in PTA-stained human osteochondral samples.

– We also present a data acquisition protocol based that allowed to obtain the
segmentation masks without their explicit annotation by a human expert.

– In our experiments, we demonstrated the performance of popular U-Net
architecture and assessed binary cross-entropy, focal and soft-Jaccard losses.

– Finally, we release our source code and the dataset with the ground truth
masks for the benefit of the community.

2 Materials and methods

Our imaging pipeline consisted of sample preparation, imaging, data pre-processing
and, finally, image segmentation. The graphical illustration of this process is
demonstrated in Figure 2 and also in Figure 3, respectively. The following sub-
sections describe our methodology in details.

2.1 Samples preparation and imaging protocol

We followed the institutional guidelines and regulations (Institutional ethics ap-
proval PPSHP 78/2013, The Northern Ostrobothnia Hospital District’s ethical
comittee) during sample extraction. The samples were obtained from n = 20 pa-
tients undergoing total knee arthroplasty surgery (informed consents obtained).
At the preparation stage, the osteochondral plugs (◦ = 2mm, depth ≈ 4 mm)
were drilled from tibial and femoral condyles. These plugs were then frozen under
−80◦C. Before the imaging, we thawed the osteochondral plugs and fixed them
in 10% neutral-buffered formalin for a minimum of 5 days. Subsequently, these
plugs were wrapped into parafilm and orthodonic wax to avoid sample drying
during the imaging process.

At first, we stained the samples with CA4+ contrast agent and imaged them
using a µCT system (Bruker microCT Skyscan 1272, Kontich, Belgium; 45 kV,
222 µA, 3.2 µm voxel side length, 3050 ms, 2 frames/projection, 1200 projections,
0.25mm aluminum filter) to be used in another study. After the imaging, CA4+
was washed out and the plugs were stained in PTA for 48 hours before the second
round of imaging with µCT using the same imaging settings.

Both CA4+ and and PTA data were reconstructed using NRecon software
of version 1.6.10.4; Bruker microCT, Kontich, Belgium. Eventually, these 3D
stacks were co-registered using rigid intensity-based registration (mean squared
error loss) with a subsequent manual adjustment. Subsequently, CA4+ stacks’
intensities were thresholded to obtain the hard tissue masks used as segmentation
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ground truth. At the final step of the process, we graded each individual cartilage
feature from PTA-stained samples according to the 3D histopathological grading
system [10].

 Sample

CA4+ Washing PTA

micro CT imaging

Arthroplasty sample Sample preparation Imaging

Fig. 2. Data acquisition pipeline: from sample preparation to imaging.

2.2 Data pre-processing

Our imaging protocol allowed to obtain the 3D volumes of human cartilage and
the mask annotations for the underlying mineralized tissues. The original size of
the reconstructed samples ranges from 756× 756 to 1008× 1008 pixels in width
and 884 to 2067 pixels in height (including the empty space around the sample).
To harmonize the data and reduce its size, we firstly cut the bottom 30% of the
scanned volume and performed a global contrast normalization of its intensities
to [0, 1] range. Subsequently, we performed a thresholding with a cut-off 0.1 and
summed all the intensities of the obtained volume along the Z-axis. We used
active contours method from OpenCV [3] to identify the largest closed contour
in the obtained summed image and then identified its center of mass.

Having the center of mass of the sample in XY plane, we performed the
cropping of the original volumes and the corresponding ground truth masks to
the size of 448 × 448 × 768 (XYZ) voxels. All the volumes and their masks were
then split into ZX and ZY slices to enlarge the dataset in slice-wise segmentation
done by a U-Net-like Deep Neural Network [16].

2.3 Network Architecture

Our model is inspired by U-Net [16] with minor modifications. Here, we used 24
convolutional filters as the base width of our model and doubled this quantity
every time after the max-pooling layer. The depth of the model was set to 6
and bilinear interpolation was used in the decoder of our model. Finally, every
convolutional module of the model had two consequent blocks of convolution,
batch normalization and ReLU layers.

2.4 Loss function

In this study, we evaluated several loss functions. As such, we investigated Binary
Cross-Entropy (BCE), soft-Jaccard loss (1−J; J – soft-Jaccard index), focal loss
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Fig. 3. Data processing pipeline. Here, we co-registered CA4+ and PTA samples and
obtained the segmentation masks for hard tissues. These masks were used in training
of our segmentation model.

and also a combination of BCE and soft jaccard losses. Instead of computing
a direct sum of BCE and soft-Jaccard losses, Iglovikov et al. [5] proposed to
combine BCE and a negative of log J:

L(w,X,y) = BCE(w,X,y) − log J(w,X,y), (1)

where w are the model’s weights, X are the images and y are the ground truth
segmentation masks. We found that the loss in equation 1 yields better perfor-
mance than when computing soft-Jaccard without a logarithm.

2.5 Evaluation metric

As a main evaluation metric, we used Jaccard coefficent (intersection over the
union, IoU). IoU was computed only at the area padded around the tidemark. In
particular, we identified the location of the tidemark slice-by-slice and for every
slice we created a padded region of ±P pixels. Such masks allowed to estimate
the IoU only within the zone of the interest ignoring the other, non-relevant parts
of the sample, e.g. bone. Besides the IoU, we also computed the complimentary
metrics: Dice’s and Volumetric similarity scores.

3 Experiments

3.1 Implementation details

We implemented our models and training pipelines using PyTorch [13].To aug-
ment our data, we applied random cropping, horizontal flip and random gamma-
correction, varying value of gamma from 0.5 to 2. To make our model applicable
to the real-life scenario when the black edges (air around the sample) are seen
in the full sample, we first performed a padding to 800 × 800 pixels before ran-
dom cropping. For the validation set, we used the original size of the images of
768 × 448. We used SOLT library [18] to perform data augmentation.
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All our experiments were conducted with Adam optimizer [9], batch size of
32, learning rate of 1e − 4 and a weight decay of 1e − 4. For the focal loss, we
used the standard hyperparameters: α = 0.25 and γ = 2. All the experiments
were done using group-5-fold stratified cross-validation, where the group division
was performed by subject id and stratification was done using the previously
mentioned 3D histopathological grades obtained for the calcified zone [10].

We assessed the results on sample-wise out-of-fold predictions. Here, we av-
eraged the inference results for each sample’s ZX and ZY slices and thresholded
the obtained masks with the threshold of 0.3 for the combined loss and 0.5 for
BCE and focal losses, respectively. The padding values P for computing the IoU
were set to 15 µm, 30 µm, 45 µm, 60 µm, 75 µm, 90 µm, 105 µm, 120 µm, 135
µm and 150 µm.

3.2 Segmentation performance

The performance of our network with different loss functions on cross-validation
for IoU, Dice’s and Volumetric similarity scores is presented in Figure 4.
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Fig. 4. Median values of performance metrics for different levels of padding around
the tidemark. Here, subplots (a), (b) and (c) show the performance for IoU, Dice and
Volumetric similarity scores, respectively.

More fine-grained assessment of the median values of the performance metrics
and their standard deviations is presented in Table 1. From Figure 4 and Table 1
it can be seen that for all the metrics, a combination of BCE and jaccard losses
from equation 1 yields better performance in the close proximity to the tidemark.

4 Conclusion

In this study, we for the first time applied Deep Learning to µCT imaged osteo-
chondral samples in order to segment the tidemark. The results presented in this
paper are promising and indicate the possibility of accurate CCI segmentation
even with a 2-dimensional method. Despite this, we believe that the presented
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Table 1. Median and standard deviation of IoU for different levels of tidemark padding.

Loss
Pad [µm]

15 30 45 60 75

BCE 0.57 ± 0.14 0.71± 0.11 0.77 ± 0.10 0.82 ± 0.09 0.85 ± 0.08
Focal 0.44 ± 0.19 0.65 ± 0.18 0.73 ± 0.15 0.79 ± 0.14 0.82 ± 0.12
BCE-log(Jaccard) 0.59± 0.13 0.70 ± 0.10 0.79± 0.08 0.83± 0.08 0.86± 0.07

results can further be improved. In particular, we think that a optimizing the
segmentation of the tidemark directly with a volumetric model, e.g. 3D U-Net
could yield better results. Finally, the future studies should also leverage other,
surface-related metrics, e.g. hausdorff distance for more precise assessment of the
segmentation results. The codes and the dataset are released on the project’s
GitHub page: https://github.com/MIPT-Oulu/mCTSegmentation.
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