
Reprocess: Process Refinement for Improving Accuracy in Hybrid Planning
Domain Models

Alan Lindsay1, Santiago Franco2, Rubiya Reba1, Thomas L. McCluskey1
1University of Huddersfield, UK.
a.lindsay@hud.ac.uk

2Royal Holloway, University of London, UK.
santiago.francoaixela@rhul.ac.uk

Abstract

The creation and maintenance of a domain model is a well
recognised bottleneck in the use of automated planning; in-
deed, ensuring a planning engine is fed with an accurate
model of an application is essential in order that generated
plans are effective. Engineering domain models using a hy-
brid representation is particularly challenging as it requires
accurately describing continuous processes, which can have
complex numeric effects. In this work we consider the prob-
lem of the refinement of an engineered hybrid domain model,
to more accurately capture the effect of the underlying pro-
cesses. Our approach exploits the information content of the
original model, utilising machine learning techniques to iden-
tify important situation and temporal features that indicate a
variation in the original effect. We use the problem of mod-
elling traffic flows in an Urban Traffic Management setting as
a case study and demonstrate in our evaluation that the refined
domain models provide more accurate simulation, which can
lead to higher quality plans.

Introduction
The modelling problem is a well recognised bottleneck in
the use of automated planning: if the problem formulation
(domain model, initial state, goal) does not correspond to
the problem at hand then clearly the wrong planning prob-
lem will be attempted. For the planner to be able to gener-
ate accurate plans, a domain model used by a planner must
adequately model the application domain; in particular the
domain model, utilising its operational semantics, must sim-
ulate the effect of a plan accurately. Various lines of re-
search have focused on the domain model accuracy problem,
from as far back as Benson’s thesis (Benson 1996) to more
recent work on Space applications (Clement et al. 2011;
Frank 2015).

Even in classical planning, validating that the model is an
accurate representation may be a challenge. If the model is
hybrid, involving continuous changes to variables, the bur-
den on the knowledge engineer is greater than in a traditional
classical case, since the encoding of a continuous changes
would seem to be more difficult than the encoding of dis-
crete changes. This is particularly apparent in applications
to physical systems where it can be necessary to use richer
languages to capture the important phenomena of an envi-
ronment. Further, it may be that modelled processes change

their behaviour over time, and the model has to be constantly
maintained. Or it may be that there are many similar pro-
cesses in the domain, but each is a variant over the space
that the planning function is aimed at. In these cases, pro-
ducing a faithful hybrid planning domain model is indeed a
challenge.

Our research is aimed towards creating a general method
for the refinement of engineered hybrid domain models, suit-
able for automated planning in real world environments. In
this paper we describe a method for the refinement of do-
main model process descriptions, utilising the PDDL+ lan-
guage for model encoding. The approach is designed so that
the resulting refined domain model will retain (a) its origi-
nal language - PDDL+ (b) its efficiency, so that plan genera-
tion and simulation times will not be greatly increased (c) its
readability so that changes can be explained in terms of high
level features. We illustrate and evaluate the approach using
as a case study the domain of Urban Traffic Management.
A PDDL+ model of traffic flow is utilised based on earlier
work in this area, and an industry standard, proprietary sim-
ulator called AIMSUN (Barceló and Casas 2005) is used to
provide process training data. Our evaluation demonstrates
that simulation using the refined domain model is closer to
the behaviour of the actual processes being modelled, and
when using expert selected features the plans produced with
the refined domain are of higher quality than the original.
Further, we show that the efficiency of the model increases
linearly with complexity.

Preliminaries
We are concerned with applications involving both plan gen-
eration and plan execution, where in execution mode an or-
acle is available that can supply the current state of the sys-
tem. The oracle may obtain state information from a stream
of sensor information from the environment, or be sup-
plied by a simulator which represents the real environment
(Clement et al. 2011). This is normally required in planning
and execution so that the planner can monitor a generated
plan’s execution, and check it is having the expected effect,
with the possibility of re-planning if actual and expected di-
verge. Additionally, in our approach, this state information
is used to drive refinement of the domain model.

The method used in this paper is summarized as follows:
a planning application is being undertaken in which knowl-

edge engineers have developed a hybrid domain model DM
to the point where an available planning engine can generate
plans for the application, but the plan engine’s simulation
does not accurately match the state information from the or-
acle due to inaccurate process descriptions. Given a process
P in the DM changes a set of continuous variables V , for
each v in V , assume the effect of P ’s corresponding domain
process is dependent on some subset of state variables cap-
tured in DM . From the environment, training sequences of
external states are obtained, each annotated with which pro-
cesses are in operation at that time. A learning method uses
them to discover an expression, incorporating a combination
of state variables from DM , which best predicts the effects
on v as found in the external states, and replaces the origi-
nal expression with the discovered expression in the process
specification. The domain model is then replaced with the
new version.

To make this method concrete, and evaluate it on a real
planning application, we have used the PDDL+ encoding
(Fox and Long 2002) for hybrid domain models, and the
ENHSP planner (Scala et al. 2016) to generate plans with
the engineered and refined domain models. In a PDDL+ en-
coding, a hybrid planning model involves time-dependent
discrete-continuous changes in the numeric resources which
can be encoded with three main components: processes, ac-
tions and events. A process simulates continuous changes
on numeric variables which can be initiated or terminated
by an action/event whereas an event can be triggered by the
external environment to bring about discrete changes.

Motivating Example Domains: Consider as a simple ex-
ample a model of the Bouncing Ball domain1 where the ball
has perfect elasticity i.e. no energy is lost upon bouncing.
The original process describing the ball movement is called
ball-movement, and may be engineered using the known
gravitational equation. If it were possible to collect accurate
and representative data on the position and velocity of the
ball, the model could be refined to better fit reality - in this
case we assume by finding the appropriate falling friction
coefficient, e.g. 0.8. However, when the ball is rising, both
gravity and friction pull the ball back, resulting in a rising
friction coefficient bigger than one, e.g. 1.2. In other words,
the model would be refined in accordance with the data by
learning two scaling factors to the increase in velocity split-
ting the ball-movement process into two new processes by
adding as preconditions whether velocity >= 0 or < 0.

As another example, consider a fixed angle solar panel
used for charging2, where the original engineered model as-
sumes a constant rate of charge. The amount of electricity
it receives, however, is a function of the time of the day,
weather etc. Given a set of training data containing time,
weather, etc, and the charging effect, the PDDL+ domain
model can be refined into multiple charge processes to im-
prove accuracy. This example illustrates a potential trade-off

1Similar to the example in Coles’s tutorial http://cognitive-
robotics17.csail.mit.edu/docs/tutorials/Tutorial8 Planning in Hybrid
Domain.pdf

2A good example is the satellite cooled domain, see
https://nms.kcl.ac.uk/planning/software/colin.html

between accuracy vs computational complexity: the more
accurate, the more processes need to be checked for appli-
cability.

As an in-depth case study, for the rest of this paper, we
consider the domain of Urban Traffic Management (UTM).
(Vallati et al. 2016) introduced a hybrid planning approach
using a PDDL+ representation to solve traffic management
problems involving congestion in both unexpected and reg-
ular road traffic. In their macroscopic model of UTM, a road
network is represented by a directed graph where the edges
and vertices denote the road links and junctions (the en-
try/exit point of the road links) respectively. Each entry/exit
pair is called a turn and the traffic flow through a turn (here
called the turn rate) is measured in standardized vehicles
(PCU) per second. Flow across a junction is organised by
grouping these turns into stages (representing the stages of
traffic signals) and then selecting durations for each of these
stages. Each road link has a maximum capacity, and the oc-
cupancy of a road link denotes the current number of ve-
hicles within it. This approach was used in feasibility trials
and incorporated a simple description of the turn rate pro-
cess which took no account of the changing features of the
road network (McCluskey and Vallati 2017). The case study
demonstrates the utility of learning a time/situation depen-
dent turn rate which leads to more accurate simulation and
better solution plans.

Process Refinement for PDDL+
Our approach is to replace a process with a set of more tar-
geted processes that will each better capture the effects of
the observed process in a specific situation. One important
feature of our approach is that we learn effect modifying
factors, which instead of overwriting the original specified
effects, adjusts them. The motivation here is that in focusing
on refining the process descriptions we exploit the existing
structure and information content within the existing model.

The general template for our target representation is pre-
sented in Figure 1 for the flowrun green process, which
models flow of traffic across a junction as a continuous pro-
cess. The intention is to form a partitioning that identifies
groups of states that require a similar modification to the
effect. For example, a process might require a warm up pe-
riod, which can be better represented by separating the pro-
cess’s first n seconds of operation and reducing the pro-
cess’s effect in that initial period. This is achieved by con-
structing a set of processes that each define the process’s
effect for a more specific situation. This requires that the
new processes have extended preconditions, as illustrated
by the refinement-condition predicates in Figure 1.
The new process also defines factor terms (highlighted in
red), which are specified for each of the continuous effects
of the process.

The context that we have selected for process refinement
includes both temporal and situational aspects, which can
both impact on the effect of continuous transitions.

Temporal Features: process effects can change depend-
ing on how long the process has been active. E.g., PCUs

getting up to speed when a stage becomes active. In order to
allow the refined processes to reflect this change, the context
includes the time since the process became active. Notice
that this part of the context is treated in the same way as the
functions in the state features.

State Features: a process’s effect may also be different
when certain state relationships exist (e.g., reduced flow for
turning across a busy road). The context that we use for
learning includes all of the not redundant predicates, both
numeric and propositional, that can be referenced by the pa-
rameters of the process. A predicate is redundant if its value
does not vary between different activations of the process
(e.g., active, will always hold for the process’s stage, p,
while the process is active).

We use only the parameters of the original process for the
following reasons. We observe that the factors that impact
on a processes’ behaviour are most likely related to the pa-
rameters of the process. Moreover, by focusing the context
it should allow less data to be used, while still learning pro-
cess specific phenomena. For example, there will be fewer
correlations with external features that might be specific to
the gathered data. A final reason is that including additional
parameters further increases the computational complexity
of the model.

Feature Space The feature space is constructed automat-
ically from the temporal and state features of the domain.
Propositional terms are included directly from the context.
The numeric features are built from any function in the con-
text (denoted f [y0, . . . , yn]) using the following language:

T [X] ::=(T [X]RT [X]) | f [y0, . . . , yn], yi ∈ X
R ::= + | − | ∗ |/

We define the depth of a numeric term depth(T [X]), as
the count of the number of function terms in T[X], e.g.,
depth[(+ (occupancy ?l1) (occupancy ?l2))]= 2. The pos-
sible features for each node are then generated by fully ex-
panding the expressible terms in the language up to a defined
depth. In this case this constructs expressions that build from
the functions of the domain using the typical binary relation-
ships: {+,−, ∗, /}.

Refinement as a Learning Problem
In this work we map the problem to a multi-target regres-
sion problem. The aim of these problems is to learn a model
that relates the set of input features to a set of target out-
puts. There is one target output for each of the process’s
continuous effects. This allows us to learn a single model
for each process, which can be more concise than if a model
is learned for each target variable, but it is also more practi-
cal for encoding back into PDDL+. The learned model can
be used to identify the appropriate factor for each effect at
any state.

We modify the input data into a process orientated form,
for a process P . For each time point, t, and active pro-
cess, p (an instantiation of P), we have a learning example,
〈p.X, tactive, s〉, which describes, p.X: a process header,

(:process flowrun green-leaf-i
:parameters (?p - stage ?r1 ?r2 - link)

:precondition
(and

(> (occupancy ?r1) 0.0) (active ?p)
(>= (turnrate ?p ?r1 ?r2) 0.0)
(< (occupancy ?r2) (capacity ?r2))
(refinement-condition-1 ?p ?r1 ?r2)
...
(refinement-condition-n ?p ?r1 ?r2))

:effect
(and

(increase (occupancy ?r2)
(* (#t (* refinement-factor-i-1 (turnrate ?p ?r1 ?r2))))

(decrease (occupancy ?r1)
(* #t (* refinement-factor-i-2 (turnrate ?p ?r1 ?r2))))))

Figure 1: An example of process refinement using the
flowrun green process. A set of conditions (bold) identify
sets of states where it is appropriate to modify the process’s
effect using a factor (red).

tactive: the active time of the process and s: the state. Each of
these examples is used to construct a single data point, as de-
scribed here. The set of features: the set, T [X], expanded to
depth, δ and single predicate terms (as described above), de-
fine lifted terms (e.g., (/(occupancy?r1)(capacity?r1))).
The terms’ values are calculated for a specific example,
〈p.X, tactive, s〉, by first instantiating the expression using
the parameters, p.X . The instantiated expression is then
evaluated in s.

For each data point we also compute a set of targets. A
distinct factor is computed for each of the process’s effects
(e ∈ EFF (P)). For each data point, d, the observed ef-
fect of the process, obsd(e), and the modelled effect of the
process, modd(e) are used to compute the factor, factor =
obsd(e)
modd(e)

.
Finally we prune examples and features as follows: i) We

prune any features where any evaluation leads to an unde-
fined value (i.e., the result of the expression is not defined).
This would suggest that the feature might lead to undefined
values during planning. ii) We prune any examples, where
the target is not defined (i.e., where the modelled effect is
0).

The result is a consistent set of features and targets for
examples across all of the instantiations of the process that
can be addressed as a general machine learning problem.

Regression Tree Learning
The hypotheses for the process model are represented by re-
gression trees. Regression trees can be used to approximate
complex functions and algorithms exist that can grow them
efficiently and effectively from observation data. Moreover
it is possible to encode the learned model in PDDL+, as pre-
sented at the end of this section. This contrasts with several
of the alternative representations used for machine learning.
In this section we overview our tree learning approach and
describe the aspects that are important for our approach.

function Reprocess(obsTrn, obsV al, P,DM) :
F = chooseFeatures(DM)
trnData = makeProcessOrientated(trnObs, P)
valData = makeProcessOrientated(valObs, P)
t← Root()
GrowTree(trnData, t, F)
PruneTree(valData, t)
RevalueTree(trnData+ valData, t)
P+ = extractProcesses(t, P)
extendModel(DM,P+)

end function

Figure 2: Pseudo code for the Reprocess approach, which
refines a process description. The Reprocess function or-
ganises the data, grows the tree and replaces the original
process with the generated refinements and supporting ex-
tensions (e.g., for maintaining active time features).

Hypothesis Construction
The Reprocess method is presented in Figure 2 and
presents the basic approach adopted in this work. The
method uses both training and validation data sets, which
are both preprocessed into process orientated data points as
described in the previous section. For efficiency the features
are evaluated in the state of each data point and stored. This
also includes computing the associated effect modifying fac-
tor for each process effect.

At the heart of the approach (i.e., GrowTree) is a multi-
target regression tree learning approach (De’Ath 2002) to
learn a multi-target regression tree. The important difference
that extends standard tree learning approaches is that the cost
function sums error terms for each of the targets. The ap-
proach greedily identifies conditions that lead to the largest
reduction in the error for the training data. This condition is
used to split the data into two parts: those for which the con-
dition holds and those for which it does not. In cases where
the condition cannot be evaluated (e.g., a missing value) a
third branch is created. A child is made for each of the data
sets and the GrowTree process is repeated at each child with
the associated (and therefore reduced) data set. The recur-
sive process is stopped when there are too few data points at
a node, or when splitting has a small change on the error.

As tree learning approaches can lead to over-fitting, we
use a validation data set in order to inform a tree pruning pro-
cess. Starting from the leaf nodes, the process re-evaluates
each of the branchings of the tree and decides whether it pro-
vides a sufficient information gain, given the new data set.
If it does not then the node becomes a leaf and the branch is
pruned. The tree is completed by re-evaluating the values at
the leaf nodes using the combined data sets.

Feature Selection As the set of features generated to rep-
resent our machine learning problem are automatically and
systematically generated, the first step is to identify a re-
duced subset of the features that appear most relevant for
using while learning. We have considered two approaches in
this work. The first is hand selection. The second is to ex-
ploit attribute selection, which is a common preprocessing

step in machine learning applications. We have adopted a fil-
ter method based on correlation, which attempts to identify
features that are correlated with the targets, yet uncorrelated
with each other (Hall 1998).

Describing Tree Node Conditions The system must also
generate possible division points for the domains of numeric
functions (e.g., (< (/ (occupancy ?l1) (capacity ?l1))0.8)).
We adopt the standard approach for regression trees: calcu-
late the value of a feature at each data point (at the current
node), order the values and propose splitting the feature’s
domain in between each pair of adjacent values.

The target The value of a tree leaf is calculated for each
of the process’s effects separately (e ∈ EFF (P)) as the av-
erage of the factors between the modelled value (modd(e))
and the observed values (obsd(e)) for the data set (DB) at
the leaf node:

t.e = [
∑

d∈DB
obsd(e)
modd(e)

]/|DB|

Leaf Cost Function The evaluation of a hypothesis is the
sum of the error at each of the tree’s leaves and for each
effect. This is based on the data at that leaf (DB) and cal-
culates the squared differences between the observed values
and the modified modelled value (using the tree’s value) for
each data point. In order to use a consistent measure of error
we evaluate the error as the error of the updated process’s
effect:

Err =
∑

d∈DB

∑
e∈EFF (p)[obsd(e)− t.e ∗modd(e)]2

Extracting PDDL+ Processes From a Tree The final step
is to modify the domain model with the refined process. The
tree conditions themselves are expressible in PDDL. As a
result the path to each leaf node describes a conjunction of
conditions that should each hold for the leaf to be appropri-
ate for the state. As such the tree is descended and condi-
tions are recorded at each node (either (<= X) or (notX),
for the left hand branch or (> X) or (X) for the right hand
branch). Any extra branches for missing function values are
identified and additional symbols are added to signify them
in the initial state. These conditions are added to the original
conditions to form a larger conjunction. The effects are then
each modified by multiplying the right hand side of the ef-
fect terms by the associated factors learned for the leaf node.
We then add a unique symbol to the process name to distin-
guish it from the processes constructed for the other leaves.
These processes replace the existing process description.

The tree hypothesis is further examined to determine if
it exploits any features that relate to the active time of the
process. If the original model does not already represent the
active time of the process (and the tree uses the features) then
the model is further extended. In particular, for a process, p,
we define a new set of functions (one for each instantiation
of the process): 〈p.name〉 counter. These functions are
maintained by events that start and end the timer and a new
process that records the active time.

Evaluation
The aim of the evaluation is to determine whether the
Reprocess procedure can improve simulation accuracy
and lead to better plans. In this context we interpret a bet-
ter plan as one that concludes in a state that is closer to the
goal (during execution). We first describe the process of ap-
plying our approach to the UTM problem domain and then
we present the results.

Process Refinement in UTM
For this evaluation we have selected a portion of the road
network for a major European city. A microscopic model
was obtained from the transport authorities and has been
captured in AIMSUN (Barceló and Casas 2005) professional
modelling and simulation software. We have identified two
networks at either side of the city for the experiments that
we denote RHS and LHS. For each run, data (including turn-
rates, active signals and occupancies) is collected from the
simulator at regular intervals. For the experiments we have
generated 8, 1 hour long, data sets for each of the networks.
These data sets each start from different initial states and
have been generated by first planning from that initial state
using the original model and then simulating the original
model’s plan. For each network, 3 plans were further divided
into training and validation sets. The remaining 5 simula-
tions were used as the test set.

The starting (original) PDDL+ domain model is the rep-
resentation of the UTM problem domain presented in (Mc-
Cluskey and Vallati 2017), as introduced above. The turn-
rates used to model flow in the original model are speci-
fied for each green time stage and link pair and approximate
maximum average flow.

The UTM domain provides a challenging test case for this
approach. AIMSUN uses a micro model of the road network,
which has been heavily parameterised to represent individ-
ual PCUs (e.g., aggression level) and has been validated
against real world data. This level of detail cannot be cap-
tured in a macro model; however, our expectation is that our
base line model can be refined in order to better characterise
the flow.

The Refined Models We have learned two trees for each
of the networks using the training and validation sets de-
scribed above. Each uses a subset of the feature set generated
by our system. The first (Hand) uses features that experts be-
lieved would determine in some way the real turn rate and
the second (Auto) uses the automated process, described as
follows.

There are 201 features generated (for max depth δ = 2)
from the original domain, which includes several that are
not obviously meaningful (e.g., (- (occupancy ?r2) (max-
greentime ?p))). For the Hand approach the following fea-
tures were selected: density of in-link, density of out-link,
proportion of process time (with respect to maximum stage-
time) and approximated maximum turnrate.

For the Auto approach we used a filtering method for fea-
ture selection, which results in a subset of 8 (RHS) and 7

2000

4000

6000

8000

400 600 800
Time

E
rr
or

Model

Auto

Hand

Original

Figure 3: A comparison of the RHS network occupancies
between modelled (Hand, Auto and Original) and those ob-
served in AIMSUN after 300s, 600s and 900s of simulation.

3000

6000

9000

400 600 800
Time

E
rr
or

Model

Auto

Hand

Original

Figure 4: Comparing LHS network occupancies between
modelled (Hand, Auto and Original) and those observed in
AIMSUN. Dotted areas indicate standard deviation.

(LHS) features. The auto selected features include 2 (RHS)
and 3 (LHS) of the 4 hand selected features.

Accuracy Through Simulation
In this experiment we examine the accuracy of the model
during plan simulation. During data collection in AIMSUN
we have periodically recorded the occupancies of the links
across the network. The plans that were used to generate
the test data were simulated using the learned and original
models. At each time point we compared the occupancies in
the modelled states against the occupancies in AIMSUN.

We have plotted the squared error observed (between
planning model and AIMSUN) for the Hand, Auto and Orig-
inal models in the two networks (RHS in Figure 3 and LHS
in Figure 4). The results indicate that the refined model us-
ing hand selected features leads to less error across the net-
work in each of the networks. In the case of the automatic
features, the refined model improves simulation accuracy in
each of the subnetworks, although not as much as for the
hand picked features. It is interesting to note that using au-
tomatically picked features for a different subnetwork does
not result in effective learning.

Efficiency of Refined Models The more refined the
model, the more processes in the PDDL+ domain and con-
sequently the bigger the simulation time. In Figure 5 we plot
the simulation time (15 minutes simulating a plan on RHS

3000

6000

9000

0 50 100 150
Complexity (nodes)

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

Figure 5: As the complexity of the refinement is increased,
the computational effort of simulating the model increases.

0

200

400

600

800

Auto Hand Original

P
C

U
s

C
le

ar
ed Network

LHS

RHS

Figure 6: PCUs cleared from the goal link after simulating
plans for the learned and original models to clear 500 PCUs
(red line).

network) with increasingly complex models (from 0 to 150
decision tree nodes). It shows that computation time grows
in a linear fashion as a function of the number of nodes in the
tree. The trade-off between accuracy and computation time
is application specific and will depend on the type of search
that will be used.

Accuracy in Planning
In this experiment we examine the accuracy of the models
in the context of planning tasks in the UTM domain. In this
case we ran AIMSUN three times from each initial state in
our test set. In the first case we generated a plan using the
original model and in the other cases, we generated a plan
using the refined models. Each plan was simulated in AIM-
SUN and stopped when the plan completed. At this stage
the model had predicted that the goal would be achieved.
We then analysed this final state in the simulator in order to
determine whether the goal had been achieved.

For this experiment the goal was to clear 500 PCUs from
a specific link. This was repeated 5 times in each network
(LHS and RHS). We have plotted the number of PCUs that
were cleared from the link at the end of the plan in the case
of each model. Figure 6 shows that the original model over
predicts the number of PCUs that are cleared from the goal
link in each network. In comparison, Hand is able to more
accurately predict the number of cleared PCUs in both net-
works and was particularly effective in the RHS network.
The Auto model performs well in the LHS network (Fig-

ure 6). In the RHS the Auto model predicts that the clearance
will be slower than was observed in AIMSUN. The selected
features do not include the saturation of either the in- or out-
links. It is therefore possible that the selected features did not
allow an effective model to be learned, but instead a model
that is over fitted to the plan distribution of the training data.

Related Work
While much of the motivation of this work aligns with re-
cent work on the challenges of domain model construction in
Space applications, and in particular the ideas underlying the
Interactive Model Development Environment (Clement et al.
2011), related work is centred around learning from execu-
tion data, an early example being Benson’s TRAIL method,
which used ILP on success and failure to learn action models
in robot simulation environments (Benson 1996). Most re-
lated to this paper’s refinement method is the progressive de-
velopment of appropriate representations for concept learn-
ing, e.g., (Martin and Geffner 2000) and selection of the ap-
propriate contexts for learning for control knowledge (Lind-
say 2015) and heuristic correction (Yoon, Fern, and Givan
2007). In domin model acquisition (DMA) it has been com-
mon to assume accurate input data and this has allowed in-
ductive learning approaches to be exploited, e.g., (Cress-
well and Gregory 2011). In recent work, researchers have
examined noisy data, exploiting clustering (Lindsay et al.
2017), machine learning (Zhuo and Kambhampati 2013) and
deep learning (Asai and Fukunaga 2018) as part of their
processes. DMA has progressively considered richer target
fragments of the PDDL language, from propositional (Wu,
Yang, and Jiang 2007; Cresswell and Gregory 2011), includ-
ing ADL (Zhuo et al. 2010); to learning action costs (Gre-
gory and Lindsay 2016) and numeric constraints (Segura-
Muros, Pérez, and Fernández-Olivares 2018). As the rich-
ness of the language is increased, the space of possible mod-
els that explain the data vastly increases and has led to the
DMA problem being set as either a search or learning prob-
lem (e.g., subtype selection in LOCM2; CP model to iden-
tify cost relevant parameters in NLOCM). We are not aware
of any work in DMA that supports modelling of continuous
transitions in PDDL+, although there are related works that
consider numeric fragments, such as the approach in (Lan-
chas et al. 2007), which learns relational decision trees to ap-
propriately estimate situation specific action durations from
observational data.

Conclusion and Future Work
In this paper we have presented an approach for refining hy-
brid planning models by exploiting observation data from
executions. In order to exploit the information content of the
original model, we discover how the effects of the original
model can be modified in order to better fit the observed
data. Our approach relies on learning a decision tree for
each process, which captures the relationship between state
functions and propositions and the effects of continuous pro-
cesses. One advantage of our approach is that it can sig-
nificantly reduce the knowledge engineering effort by gen-
erating its own refined PDDL+. We have presented both a

fully automated version, which selects its own features and
a collaborative version, which takes advantage of expertly
selected features. We have used our approach to refine a
planning model for the Urban Traffic Management domain,
which uses continuous processes to model the flow of traf-
fic. We demonstrated that when hand selected features are
used, the accuracy of simulation can be improved, result-
ing in a more accurate representation of occupancy of the
network over time, as well as plans that are more effective
during execution. We have shown that when using automat-
ically selected features, it can also improve simulation accu-
racy, however, the selected features are not as effective. The
current framework supports exploiting structure present in
the original model, which is not always sufficient to capture
important phenomena, e.g. a busy cross-flow turn can signif-
icantly alter turn rates if it ever gets full. In future work we
will develop our approach within a framework for extend-
ing the planning model with additional features, e.g., based
on derived predicates (de la Rosa and McIlraith 2011) or on
identification of relevant features through structural analy-
sis (Lindsay 2015). This will allow us to explore the space
of possible features for continuous processes within a more
general framework.

References
Asai, M., and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence.
Barceló, J., and Casas, J. 2005. Dynamic network simulation
with aimsun. In Simulation approaches in transportation
analysis. Springer. 57–98.
Benson, S. 1996. Learning Action Models for Reactive Au-
tonomous Agents. Ph.D. Dissertation, Stanford University.
Clement, B. J.; Frank, J. D.; Chachere, J. M.; Smith, T. B.;
and Swanson, K. 2011. The challenge of grounding plan-
ning in simulation in an interactive model development envi-
ronment. In Proceedings of the ICAPS Workshop on Knowl-
ege Engineering for Planning and Scheduling (KEPS).
Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
de la Rosa, T., and McIlraith, S. 2011. Learning domain
control knowledge for tlplan and beyond. In Proceedings of
the ICAPS Workshop on Planning and Learning (PAL).
De’Ath, G. 2002. Multivariate regression trees: a new
technique for modeling species–environment relationships.
Ecology 83(4):1105–1117.
Fox, M., and Long, D. 2002. PDDL+: Modeling continu-
ous time dependent effects. In Proceedings of the 3rd Inter-
national NASA Workshop on Planning and Scheduling for
Space, volume 4, 34.
Frank, J. 2015. Reflecting on planning models: A challenge
for self-modeling systems. In Proceedings of the IEEE In-
ternational Conference on Autonomic Computing (ICAC).

Gregory, P., and Lindsay, A. 2016. Domain Model Acqui-
sition in Domains with Action Costs. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
Hall, M. A. 1998. Correlation-based Feature Subset Selec-
tion for Machine Learning. Ph.D. Dissertation, University
of Waikato, Hamilton, New Zealand.
Lanchas, J.; Jiménez, S.; Fernández, F.; and Borrajo, D.
2007. Learning action durations from executions. In Pro-
ceedings of the ICAPS Workshop on AI Planning and Learn-
ing (AIPL).
Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.;
and Gregory, P. J. 2017. Framer: Planning models from natu-
ral language action descriptions. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).
Lindsay, A. 2015. Problem Models for Rule Based Plan-
ning. Ph.D. Dissertation, Department of Computer and In-
formation Sciences, Strathclyde University, UK.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Proceed-
ings of the 7th International Conference of Knowledge Rep-
resentation and Reasoning.
McCluskey, T. L., and Vallati, M. 2017. Embedding au-
tomated planning within urban traffic management opera-
tions. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS).
Scala, E.; Haslum, P.; Thiébaux, S.; et al. 2016. Heuris-
tics for numeric planning via subgoaling. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI).
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2018. Learning numerical action models from noisy and
partially observable states by means of inductive rule learn-
ing techniques. In Proceedings of the ICAPS Workshop
on Knowledge Engineering for Planning and Scheduling
(KEPS).
Vallati, M.; Magazzeni, D.; De Schutter, B.; Chrpa, L.; and
McCluskey, T. L. 2016. Efficient macroscopic urban traf-
fic models for reducing congestion: A pddl+ planning ap-
proach. In Proceedings of the AAAI Conference on Artificial
Intelligence.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An auto-
matic knowledge engineering tool for learning action mod-
els for AI planning. The Knowledge Engineering Review
22(2):135–152.
Yoon, S.; Fern, A.; and Givan, R. 2007. Using learned poli-
cies in heuristic-search planning. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence.
Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. In Proceedings of the
International Joint Conference on Artificial Intelligence.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540–1569.

