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ABSTRACT

We present a selective sampling method designed to accelerate the training of
deep neural networks. To this end, we introduce a novel measurement, the mini-
mal margin score (MMS), which measures the minimal amount of displacement
an input should take until its predicted classification is switched. For multi-class
linear classification, the MMS measure is a natural generalization of the margin-
based selection criterion, which was thoroughly studied in the binary classifica-
tion setting. In addition, the MMS measure provides an interesting insight into
the progress of the training process and can be useful for designing and monitor-
ing new training regimes. Empirically we demonstrate a substantial acceleration
when training commonly used deep neural network architectures for popular im-
age classification tasks. The efficiency of our method is compared against the
standard training procedures, and against commonly used selective sampling al-
ternatives: Hard negative mining selection, and Entropy-based selection. Finally,
we demonstrate an additional speedup when we adopt a more aggressive learning-
drop regime while using the MMS selective sampling method.

1 INTRODUCTION

Over the last decade, deep neural networks have become the machine learning method of choice
in a variety of application domains, demonstrating outstanding, often close to human-level, perfor-
mances in a variety of tasks. Much of this tremendous success should be attributed to the availability
of resources; a massive amount of data and compute power, which in turn fueled the impressive and
innovative algorithmic and modeling development. However, resources, although available, come
with a price. Data in the big data era is available, but reliable labeled data is always a challenge, and
so are the ETL (Extract-Transform-Load) processes, data transfer, and storage. With the introduc-
tion of GPUs, compute power is readily available, making the training of deep architectures feasible.
However, the training phase, which to a large extent, relies on stochastic gradient descent methods,
requires a large number of computational resources as well as a substantial amount of time. A closer
look at the compute processes highlights the fact that there is a significant difference in the com-
pute effort between the inference (forward pass) and the model update (back-propagation) where
the latter being far more demanding. The implication is evidenced by the performance charts that
hardware manufactures publish, where performance matrices such as throughput (e.g. image per
second) are up to 10x better at inference vs. training for popular deep neural network architectures.

In this paper, we address the computing challenge. Specifically, we suggest a method to select for
the back-propagation pass only those instances that accelerate the training convergence of the deep
neural network, thus speeding up the entire training process. The selection process is continuously
performed throughout the training process at each step and in every training epoch. Our selection
criterion is based on computations that are calculated anyhow as an integral part of the forward pass,
thus taking advantage of the ”cheaper” inference compute.

2 PREVIOUS APPROACHES

Accelerating the training process is a long-standing challenge that was already addressed by quite a
few authors. A common approach is to increase the batch size, thus mitigating the inherent time load.
This approach represents a delicate balance between available compute ingredients (e.g. memory
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size, bandwidth, and compute elements). Interestingly, increasing the batch size not only impacts
the computational burden but may also impact the final accuracy of the model (Goyal et al., 2017;
Jia et al., 2018; Ying et al., 2018).

Sample selection is another approach that has been suggested to accelerate the training. The most
notable one is probably the hard negative mining (Schroff et al., 2015) where samples are selected
by their loss values. The underlying assumption is that samples with higher losses have a significant
impact on the model. Most of the previous work that utilized this approach was mainly aimed
at increasing the model accuracy, but the same approach can also be used to accelerate training.
Recent works employ selection schemes that examine the importance of the samples (Alain et al.,
2015; Loshchilov & Hutter, 2015). During the training, the samples are selected based on their
gradient norm, which in turn leads to a variance reduction in the stochastic gradients. Inspired
by the batch size approach, a recent work by Katharopoulos and Fleuret (Katharopoulos & Fleuret,
2018) uses selective sampling to choose the training samples that reduce the gradient variance, rather
than increasing the size of the batch.

Our work is inspired by the active learning paradigm that utilizes selective sampling to choose the
most useful examples for training. In active learning, the goal is to reduce the cost of labeling the
training data by querying the labels of only carefully selected examples. Thus, unlike the com-
mon supervised learning setting, where training data is randomly selected, in active learning, the
learner is given the power to ask questions, e.g. to select the most valuable examples to query for
their labels. Measuring the training value of examples is a subject of intensive research, and quite
a few selection criteria have been proposed. The approach most related to our work is the uncer-
tainty sampling (?)lewis1994sequential), where samples are selected based on the uncertainty of
their predict labels. Two heavily used approaches to measure uncertainty are entropy-based and
margin-based (Settles, 2009). In the entropy-based approach (Lewis & Catlett, 1994), uncertainty
is measured by the entropy of the posterior probability distribution of the labels, given the sample.
Thus, a higher entropy represents higher uncertainty with respect to the class label. This approach
naturally handles both binary and multi-class classification settings, but it relies on an accurate esti-
mate of the (predicted) posterior probabilities. In the margin-based approach(Tong & Koller, 2001;
Campbell et al., 2000), uncertainty is measured by the distance of the samples from the decision
boundary. For linear classifiers, several works (Dasgupta, 2006; Balcan et al., 2007) gave theoretical
bounds for the exponential improvement in computational complexity by selecting as few labels as
possible. The idea is to label samples that reduce the version space (a set of classifiers consistent
with the samples labeled so far) to the point where it has a diameter at most ε (c.f (Dasgupta, 2011)).
This approach was proven to be useful also in non-realizable cases (Balcan et al., 2007). However,
generalizing it to the multi-class setting is less obvious. Another challenge in adapting this approach
for deep learning is how to measure the distance to the intractable decision boundary. Ducoffe and
Precioso (Ducoffe & Precioso, 2018) approximate the distance to the decision boundary using the
distance to the nearest adversarial examples. The adversarial examples are generated using a Deep-
Fool algorithm (Moosavi-Dezfooli et al., 2016). The suggested DeepFool Active Learning method
(DFAL) labels both, the unlabeled samples and the adversarial counterparts, with the same label.

Our selection method is also utilizing uncertainty sampling, where the selection criterion is the
closeness to the decision boundary. We do, however, consider the decision boundaries at the (last)
fully-connected layer, i.e. a multi-class linear classification setting. To this aim, we introduce the
minimal margin score (MMS), which measures the distance to the decision boundary of the two
most competing predicted labels. This MMS serves us as a measure to score the assigned examples.
A similar measure was suggested by Jiang et al. (Jiang et al.) as a loss function and a measure
to predict the generalization gap of the network. Jiang et al. used their measure in a supervised
learning setting and applied it to all layers. In contrast, we apply this measure only at the last
layer, taking advantage of the linearity of the decision boundaries. Moreover, we use it for selective
sampling, based solely on the assigned scores, namely without the knowledge of the true labels.
The MMS measure can also be viewed as an approximation measure for the amount of perturbation
needed to cross the decision boundary. Unlike the DFAL algorithm, we are not generating additional
(adversarial) examples to approximate this distance but rather calculate it based on the scores of the
last-layer.

Although our selective sampling method is founded by active learning principles, the objective is
different. Rather than reducing the cost of labelling, our goal is to accelerate the training. Therefore,
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we are more aggressive in the selection of the examples to form a batch group at each learning step,
at the cost of selecting many examples at the course of training.

The rest of the paper is organized as follows. In section 3, we present the MMS measure and describe
our selective sampling algorithm and discuss its properties. In Section 4 we present the performances
of our algorithm on the common datasets CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) and
compare results against the original training algorithm and hard-negative sampling. We demon-
strate additional speedup when we adopt a more aggressive learning-drop regime. We conclude at
Section 5 with a discussion and suggestions for further research.

3 ACCELERATING TRAINING USING MINIMAL MARGIN SCORE SELECTION

As mentioned above, our method is based on the evaluation of the minimal amount of displacement
a training sample should undergo until its predicted classification is switched. We call this measure
minimal margin score (MMS). This measure depends on the best and the 2nd best scores achieved
for a sample. Our measure was inspired by the margin-based quantity suggested by Jiang et al.
(Jiang et al.) for predicting the generalization gap of a given network. However, in our scheme, we
apply our measure to the output layer, and we calculate it linearly with respect to the input of the
last layer. Additionally, unlike (Jiang et al.), we do not care about the true label, and our measure is
calculated based on the best and the 2nd best NN scores.

An illustrative example, demonstrating the proposed approach, is given in Figure 1. In this example,
a multi-class classification problem is composed of three classes: Green, Red, and Blue along with
three linear projections: w1,w2, and w3, respectively. The query point is marked by an empty
black circle. The highest scores of the query point are s1 and s2 (assuming all biases are 0’s), where
s1 > s2 and s3 is negative (not marked). Since the best two scores are for the Green and Red
classes, the distance of the query point to the decision boundary between these two classes is d. The
magnitude of d is the MMS of this query point.

Figure 1: Illustrative example of the MMS measure. For more details see text.

Formally, let X = {x1, ...,xB} be a large set of samples and yi = F (xi; θ) ∈ Y be input to the
last layer of the neural network F . Assume we have a classification problem with n classes. At the
last layer the classifier f consists of n linear functions: fi : Y → R for i = 1 . . . n where fi is a
linear mapping fi = wT

i y + bi. For sample xk ∈ X , the classifier predicts its class label by the
maximal score achieved: `k = argmaxi fi(F (xk; θ)) = argmaxi fi(yk). Denote the sorted scores
of {fi(yk)}ni=1 by (si1k , s

i2
k , · · · , s

in
k ) where sijk ≥ s

ij+1

k and sijk = fij (yk). The classifier fi1(yk)
gave the highest score and fi2(xk) gave the second highest score. The decision boundary between
class i1 and class i2 is defined as:

D12 = {y| fi1(y) = fi2(y)}
Using this definition, the confidence of the the predicted label i1 of point xk is determined by the
distance of yk to the decision boundary D12, namely the minimal distance of yk to D12:

dk = minδy||δy|| s.t. (yk + δy) ∈ D12
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It is easy to show (see Appendix A) that

dk =
si1k − s

i2
k

‖wi1 −wi2‖

The distance dk is the Minimal Margin Score (MMS) of point xk. The larger the dk, the more
confident we are about the predicted label. Conversely, the smaller the dk, the less confident we
are about the predicted label i1. Therefore, dk can serve as a confidence measure for the predicted
labels. Accordingly, the best points to select for the back-propagation step are the points whose
MMS are the smallest.

Our implementation consists of a generic but yet simple online selective sampling method as a
preliminary part of the training optimization step. Specifically, at each training step, a selective
batch of size b is produced out of a 10x larger batch before using it in the SGD optimization routine.
At a specific iteration, we first apply a forward pass on a batch of size B, producing the prediction
scores. Secondly, we select b samples (b � B) whose MMS measures are the smallest. This
procedure is summarized in Algorithm 1.

Algorithm 1: Selection by Minimal Margin Scores

Require: Inputs X = {xi}Bi=1 , F (·; θ0) - Training model, b - batch size
t← 1
repeat
Y ← F (X ; θt−1) forward pass on batch of size B
MMS ← d(Y) calculates the Minimal Margin Scores of Y
S ← sort index(MMS, b) stores the index of the b smallest scores
Xb = {xi| i ∈ S} subset of X of of size b
θt ← sgd step(F (Xb; θt−1)) back prop. with batch of size b
t← t+ 1

until reached final model accuracy

4 EXPERIMENTS

In this section1, we empirically examined the performance of the proposed selection scheme. As
a baseline, we compared our results against the original training algorithm using uniform sampling
from the dataset. Additionally, we compared the MMS method against two popular schemes: hard-
negative mining which prefers samples with low prediction scores, and entropy-based uncertainty
sampling. Our experimental workbench was composed of the common visual datasets CIFAR10
and CIFAR100 (Krizhevsky et al., 2009) that consist of 32 × 32 color images in 10 or 100 classes
and has 50,000 training examples and 10,000 test examples.

Hard negative samples. For this experiment, we implemented the ”NM-samples” procedure
(Hoffer et al.), similar to the classical methods for ”hard-negative-mining” used by machine-learning
practitioners over the years (Yu et al., 2018; Schroff et al., 2015). We used the cross-entropy loss as
a proxy for the selection, in which the highest loss samples were selected. We denote this approach
as HNM-samples.

On both datasets we used ResNet-44 (He et al., 2016) and WRN-28-10 (Zagoruyko & Komodakis,
2016) architectures, respectively. To compare our MMS selection scheme against the baseline and
HNM, we applied the original hyper-parameters and training regime using batch-size of 64. In
addition, we used the original augmentation policy as described in He et al. (2016) for ResNet-44,
while adding cutout (DeVries & Taylor, 2017) and auto-augment (Cubuk et al., 2018) for WRN-28-
10. Optimization was performed for 200 epochs (equivalent to 156K iterations) after which baseline
accuracy was obtained with no apparent improvement.

1All experiments were conducted using PyTorch framework, and the code is publicly available at https:
//github.com/paper-submissions/mms-select.
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(a) CIFAR10 training error (b) CIFAR10 test error

(c) CIFAR100 training error (d) CIFAR100 test error

Figure 2: Training and test error (ResNet44, CIFAR10 and CIFAR100, WRN-28-10). Comparing
vanilla training, HNM-samples selection (hard negative sampling), and MMS (our) selection

CIFAR10. For the CIFAR10 dataset, sampling with the MMS scheme obtained significantly lower
error compared to the baseline and the HNM-samples throughout the entire training progress (>
25% − 30% on average). The test results are depicted in Figure 2b. Furthermore, the use of MMS
provides a slight improvement of 0.1% in the final test accuracy as well as a clear indication of a
faster generalization compared to the baseline and the HNM schemes.

CIFAR100. Inspired by the results on CIFAR10 using the MMS method, we continued to evaluate
performance on a more challenging 100 classes dataset. The MMS method obtained a non-negligible
error decrease, particularly after the first learning-rate drop (> 5% − 10% on average) as can be
seen in Figure 2d. On the other hand, we did not observe similar behaviour using the HNM and the
baseline schemes, similarly as in CIFAR10.

4.1 MEAN MMS AND TRAINING ERROR

To estimate the MMS values of the selected samples during training, we defined the mean MMS in a
training step as the average MMS of the first 10 selected samples for the batch. This was compared
to the mean MMS of the samples selected by the baseline and the HNM methods.

Figure 3 present the trace of the mean MMS that was recorded at the experiments presented in Figure
2 in the course of training. The mean MMS of the suggested scheme remains lower compared to
the baseline in most of the training process. We argue that this behaviour stems from the nature of
the uncertain classification with respect to the selected samples. This result suggests that there are
”better” samples to train the model on rather than selecting the batch randomly. Interestingly, the
HNM method obtained a similar mean MMS at the early stages of training, On the other hand, the
HNM method resulted in a similar mean MMS as our suggested method during the training, but it
increases after the learning-rate drop, and it deviates from the MMS scores obtained by our method.
Lower mean MMS scores resemble a better (more informative) selected batch of samples. Hence,
we may conclude that the batches selected by our method, provides a higher value for the training
procedure vs. the HNM samples. Moreover, the mean MMS trace is monotonically increasing as
the training progress, and it flattens when training converges.

All the selective sampling methods that we tested (HNM, entropy-based, and our MMS method),
yielded a significantly higher error throughout the training (Figures 2a, 2c, 4). This coincides with
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(a) CIFAR10 mean MMS (b) CIFAR100 mean MMS

Figure 3: mean MMS of the samples selected by three methods: baseline, HNM-samples, and MMS.

the main theme of selective sampling that strive to focus training on the more informative points.
However, training loss can be a poor proxy to this notion. For example, the selection criterion of
the HNM favours high loss scores, which obviously increases the training error, while our MMS
approach select uncertain points, some of which might be correctly classified, others might be miss-
classified by a small margin (low absolute loss scores), but they are all close to the decision boundary,
and hence useful for training. Evidently, the mean MMS provides a clearer perspective into the
progress of training and usefulness of the selected samples.

4.2 SELECTIVE SAMPLING USING ENTROPY MEASURE

Additionally, we tested the entropy-based selective sampling, which is a popular form of uncertainty
sampling. We select the examples with the largest entropy, thus the examples with the most class
overlap, forming a training batch of size 64 out of a 10x larger batch. We compared performances
with the vanilla training and the MMS selection method, using the same experimental setting.

(a) CIFAR10 training error (b) CIFAR10 test error

(c) CIFAR100 training error (d) CIFAR100 test error

Figure 4: vanilla vs. entropy-based selection: Training and test error (ResNet44, CIFAR10 and
WRN-28-10, CIFAR100).

This experiment shows (see Figure 4) that for a small problem as CIFAR10, this selection method
is efficient as our MMS. However, as CIFAR100, inducing a more challenging task, this method
fails. This entropy measure relies on the uncertainty of the posterior distribution with respect to the
examples class. We consider this as an inferior method for selection. Also, as the ratio between the
batch size and the number of classes increases, this measure becomes less accurate. Finally, as the
number of classes grows, as in CIFAR100 compared to CIFAR10, the prediction scores signal has a
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longer tail with less information, which also diminishes its value. The last assumption is not valid
for our method as we measure based on the two best predictions.

4.3 ADDITIONAL SPEEDUP VIA AN AGGRESSIVE LEANING-RATE DROP REGIME

The experimental results have led us to conjecture that we may further accelerate training using the
MMS selection, by applying an early learning-rate drop. To this end, we designed a new, more
aggressive leaning-rate drop regime. Figure 5 present an empirical evidence to our conjecture that
with the MMS selection method we can speed up training while preserving final model accuracy.

(a) CIFAR10 training error with early LR drop (b) CIFAR10 test error with early LR drop

(c) CIFAR100 training error with early LR drop (d) CIFAR100 test error with early LR drop (zoomed)

Figure 5: Training and test accuracy (ResNet44, CIFAR10 and WRN-28-10, CIFAR100). Com-
paring vanilla training, HNM-samples selection (hard negative mining), and MMS (our) selection
method using a faster regime. We plot the regular regime baseline (dotted) for perspective. The
MMS selection method achieves final test accuracy at a reduces number of training steps.

CIFAR10. For CIFAR10 and ResNet-44 we used the original learning rates η =
{0.1, 0.01, 0.001, 0.0001} while decreasing them at steps {24992, 27335, 29678} equivalent to
epochs {32, 35, 38} with batch of size 64. As depicted in Figure 5b, we can see that indeed our
selection yields validation accuracy that is similar to the one obtained using the original training
regime, in a much earlier step. As described in table 1, training with our selection scheme almost
reached final model accuracy in considerably less training steps as originally suggested. Specifi-
cally, we reached 93% accuracy after merely 44K steps (a minor drop of 0.25% compared to the
baseline). We also apply the early drop regime to the baseline configuration as well as the HNM-
samples. Both failed to reach the desired model accuracy while suffering from degradation of 1.57%
and 1.22% for the baseline and HNM-samples, respectively.

Table 1: Test accuracy (Top-1) results for CIFAR10/100. We compare model accuracy using our
training scheme and early learning-rate drop as described in section 4.3. We emphasize the reduces
number of steps required reaching this accuracy using our MMS method.

Network Dataset Steps Accuracy

Baseline Ours Baseline Ours

ResNet-44 CIFAR10 156K 44K 93.24% 93%
WRN-28-10 CIFAR100 156K 80K 82.26% 82.2%
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CIFAR100. Similarly, we applied the early learning-rate drop scheme for CIFAR100 and WRN-
28-10, using η = {0.1, 0.02, 0.004, 0.0008} and decreasing steps {39050, 41393, 43736} equivalent
to epochs {50, 53, 56} and batch of size 64. As depicted in Figure 5d, accuracy reached 82.2% with
a drop of 0.07% compared to baseline with almost halving the baseline required steps (from 156K to
80K steps). On the other hand, the baseline and the HNM-samples configurations failed to reach the
desired accuracy after applying a similar early drop regime similarly to CIFAR10. The degradation
for the HNM-samples approach was the most significant, with a drop of 2.97% compared to the final
model accuracy, while the baseline drop was approximately of 1%.

5 DISCUSSION

We presented a selective sampling method designed to accelerate the training of deep neural net-
works. Specifically, we utilized uncertainty sampling, where the criterion for selection is the dis-
tance to the decision boundary. To this end, we introduced a novel measurement, the minimal mar-
gin score (MMS), which measure the minimal amount of displacement an input should take until
its predicted classification is switched. For multi-class linear classification, the MMS measure is a
natural generalization of the margin-based selection criterion, which was thoroughly studied in the
binary classification setting. We demonstrate a substantial acceleration for training commonly used
DNN architectures for popular image classification tasks. The efficiency of our method is compared
against the standard training procedures, and against commonly used selective sampling methods:
Hard negative mining selection, and Entropy-based selection. Furthermore, we demonstrate an ad-
ditional speedup when we adopt a more aggressive learning-drop regime.

Tracking the MMS measure throughout the training process provides an interesting insight into the
training process. Figure 3 demonstrates that the MMS measure is monotonically increasing, even
when training and validation errors are flattening. Subsequently, it flattens when training converges
to the final model. This suggests that improvement in training can be obtained as long as there is
uncertainty in the class labels. Furthermore, tracking the MMS measure may turn out to be useful
for designing and monitoring new training regimes.

Our selection criterion was inspired by the Active Learning methods, but our goal, accelerate train-
ing, is different. Active learning mainly concerns about the labelling cost. Hence, it is common
to keep on training till (almost) convergence, before turning to select additional examples to label.
However, such an approach is less efficient when it comes to acceleration. In such a scenario, we can
be more aggressive; since labelling cost is not a concern, we can re-select a new batch of examples
in each training step.

An efficient implementation is also crucial for gaining speedup. Our scheme provides many oppor-
tunities for further acceleration. For example, fine-tuning the sample size used to select and fill up
a new batch, to balance between the selection effort conducted at the end of the forward pass, and
the compute resources and efforts required to conduct the back-propagation pass. This also opens
an opportunity to design and use dedicated hardware for the selection. In the past few years, custom
ASIC devices that accelerate the inference phase of neural networks were developed (goy; Hoffer
et al.; Jouppi et al., 2017). Furthermore, in (Jacob et al., 2018), it was shown that using quantization
for low-precision computation induces little or no degradation in final model accuracy. This obser-
vation, together with the fast and efficient inference achieved by ASICs, make them appealing to be
used as a supplement accelerator in the forward pass of our selection scheme.

The MMS measure doesn’t use the labels. Thus it can be used to select samples in an active learning
setting as well. Moreover, similarly to (Jiang et al.) the MMS measure can be implemented at
other layers in the deep architecture. This enables to select examples that directly impact training
at all levels. The additional compute associated with such calculating and selecting the right batch
content, makes it less appealing for acceleration. However, for active learning, it may introduce
an additional gain, since the selection criterion chooses examples which are more informative for
various layers. The design of a novel Active Learning method is left for further study.
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APPENDIX A

Assume a given point x and its DNN latest layer output y = F (x, θ). W.l.o.g let’s the largest and
the second largest scores of the classifier be: s1 = wT

1 y+ b1 and s2 = wT
2 y+ b2, respectively. We

are looking for the smallest δy satisfying:

wT
1 (y + δy) + b1 = wT

2 (y + δy) + b2

Re-arranging terms we get:
−(w1 −w2)

T δy = (s1 − s2)
The least-norm solution of the above under-determined equation is calculated using the right pseudo-
inverse of (w1 −w2)

T which gives:

δy = −(s1 − s2) w1 −w2

‖w1 −w2‖2

and therefore the MMS of y is:

d = ‖δy‖ =
√
δyT δy =

s1 − s2

‖w1 −w2‖
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